
69

Rev. Fac. Ing. Univ. Antioquia N.° 63 pp. 69-81. Junio, 2012

Model-driven web engineering methods: a
literature review

Métodos de ingeniería web dirigidos por
modelos: una revisión de literatura

Jesús Andrés Hincapié Londoño*, John Freddy Duitama

Grupo de Investigación Ingeniería y Software. Universidad de Antioquia.
Ciudad Universitaria. Bloque 21-316. A. A. 1226. Medellin, Colombia

(Recibido el 1 de septiembre de 2010. Aceptado el 23 de mayo de 2012)

Abstract

This paper presents some of the model-driven Web engineering methods
that have been proposed, and discusses and analyzes the advantages and
disadvantages of such methods regarding current tendencies and best
practices on model-driven engineering. The idea is to present each approach
and analyze the models they propose to represent Web applications, the
architectural aspects in the transformations, and the use of current Web user
interface technologies in the generated code. This is done in order to depict
possible research lines for future works on the model-driven Web engineering
area.

--------- Keywords: Web engineering, model-driven software
development, model-driven web engineering

Resumen

Este artículo presenta algunos de los métodos de ingeniería Web dirigida
por modelos que se han propuesto. En él se discuten y analizan las ventajas
y desventajas de dichos métodos con relación a las tendencias actuales
y las mejores prácticas en la ingeniería dirigida por modelos. La idea es
presentar cada método y analizar los modelos que propone para representar
aplicaciones Web, los aspectos arquitectónicos en las transformaciones y el
uso de tecnologías actuales de interfaz de usuario Web en el código generado.
Esto se hace con el fin de vislumbrar posibles líneas de investigación para
trabajos futuros en el área de la ingeniería Web dirigida por modelos.

---------- Palabras clave: Ingeniería web, desarrollo de software dirigido
por modelos, ingeniería web dirigida por modelos

*	 Autor de correspondencia: teléfono: + 57 + 4 + 260 30 18 ó 57 + 4 + 300 02 00 ext. 130, correo electrónico: jahlon@gmail.com (J. Hin-
capié)

70

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Introduction
Model-Driven Engineering (MDE) technologies
appeared as a promising approach to address
the inability of third-generation languages [1]
to alleviate the complexity of platforms and
express domain concepts effectively [2]. Model-
Driven Software Development (MDSD), which
provides a highly agile software development
process, has as one of its main priorities the
production of software that can be validated by
end users and stakeholders as early as possible.
It includes technologies such as Domain-Specific
Languages (DSL), model transformations, and
code generation that contribute to the goal of
making software development a model-centric
process [3] instead of just using models as
documentation.

When developing a Web application, it is necessary
to specify structure, behavior, navigation, and
presentation aspects. Traditional engineering
methods failed to specify navigational and
presentation issues, which is why some people
have proposed specific approaches to tailor
these two aspects of Web applications. Such
approaches are called Web Engineering Methods.
In recent years, there have been several attempts
to promote web application development as a
model-centric process. These attempts encourage
software developers to focus on problem domain-
specific modeling and analysis and structured
software reuse, meanwhile code generation is left
to an automatic model transformation process.

This paper presents some of the most relevant
model-driven Web engineering methods that have
been proposed, and discusses and analyzes the
advantages and disadvantages of such methods
regarding current tendencies and best practices in
Web application development.

The structure of this paper is as follows: first, a
brief conceptual framework describing MDSD
is presented. Then, some concepts about Web
engineering are introduced. After that, some Web
engineering methods and several model-driven
web engineering approaches are described. Then,

a set of analysis criteria are defined in order to
guide the discussion about the reviewed methods.
Finally, some conclusions and further research
lines are presented.

Model-Driven Software
Development

The application of models to software
development has been a tradition for a long
time, and it has become more popular since the
development of the Unified Modeling Language
(UML) [4].

MDSD presents an approach in which models
do not only constitute documentation, but are
considered to be similar to code artifacts because
their implementation is automated. Since those
models are highly coupled to the domain of
applications, MDSD aims at finding domain-
specific abstractions that can be specified through
formal modeling, providing models that can be
understood by domain experts.

MDSD is a software paradigm with roots in
Software Product Lines (SPL) [5] engineering,
which is the discipline of designing and building
families of applications for a specific purpose
or market segment [6]. In order to apply the
domain-specific model concept, there are
certain requirements that need to be taken into
account: DSLs that allow expressing the models,
transformation languages to express the model-
to-code transformations, and code generators
to obtain executable code on several platforms.
MDSD’s idea is give models a central role.

Web Engineering
Based on scientific and engineering principles,
Web Engineering aims at establishing systematic
approaches to successfully develop, deploy and
maintain high quality Web-based systems. It also
incorporates well-known software engineering
principles and practices [7] from diverse areas
such as human-computer interaction (HCI),
system analysis and design, requirements
engineering, hypermedia engineering, data

71

Model-driven web engineering methods: a literature review

structures, testing and project management, as
well as social sciences, arts, and graphic design.

When model-based initiatives such as MDSD grew
in popularity within the software development
community, several Web Engineering approaches
began to change their notations and processes to
be MDSD compliant. As stated in [8], this change
implied a redesign in Web modeling languages;
a reorganization of the set of models to be built
in a modular and platform independent way;
planning the development processes in terms of
model transformations; and adopting standards
such as UML, Meta-Object Facility (MOF) [9],
XML Metadata Interchange (XMI), or Query/
View/Transformation (QVT).

MDSD compliance turned into a discipline within
Web Engineering called Model-Driven Web
Engineering (MDWE). MDWE adopts some of
the techniques proposed in MDSD in order to
generate Web applications: (1) the construction of
meta-models and models in the Web applications
domain; (2) the definition and implementation of
model-to-model transformations and model-to-
text transformations with the purpose of obtaining
some parts of the entire implementation; and (3)
the adaptation or development of CASE tools
to support the creation and transformation of
models and the generation of code. In this way,
MDWE aims at bridging the gap between the
high level design models and the low-level Web
implementation code [10].

Figure 1 depicts a general scheme followed by
most of the MDWE methods, which propose
a structure model to represent the data, a
navigation model describing pages and the way
to navigate among them, and the presentation
model defining the human-computer interaction
(HCI) elements. A user model is used in some
approaches. Then, after a model transformation is
performed, different layers of a Web application
are generated, normally presentation, business
logic, and persistence layers.

Figure 1 General scheme of a MDWE method

Literature review

Since most MDWE methods are based on
traditional Web Engineering methods, we
present first traditional methods, to proceed
later to review MDWE approaches. At the end,
we develop a discussion of each MDSD-based
method presented based on a set of criteria
previously selected.

Web engineering methods

Table 1 lists some of the most representative
approaches of traditional Web engineering.

Table 1 List of Web engineering methods

Name

1
Object-Oriented Hypermedia Design Method
(OOHDM) - 1995

2 Web Site Design Method (WSDM) - 1995
3 Web Modeling Language (WebML) - 2000
4 Object-Oriented Hypermedia (OO-H) - 2000
5 UML-Based Web Engineering (UWE) - 2002

The Object-Oriented Hypermedia Design Model
(OOHDM) [11-14] is an approach that emphasizes
separately the navigational design and the abstract
interface design. As every object-oriented
modeling proposal, it promotes the development
of new applications reusing existing components.
OOHDM is a four steps process. The first step
is a domain analysis in which an application
conceptual model is built. The second step
consists of a navigational design describing the
navigation structure of a hypermedia application

72

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

in terms of navigational contexts. These contexts
are inferred from navigation classes such as
nodes, links, and guided tours. Nodes represent
logic views of conceptual classes, and links
are derived from conceptual relationships. The
abstract interface design is the third step and
proposes the construction of perceptible objects,
such as an image or a map, in terms of interface
classes. These perceptible objects are mapped
to navigational objects in order to give the last
ones a perceptible appearance. In the fourth step,
interface objects are mapped to implementation
objects involving architectural specifications.

Web Site Design Method (WSDM) is a user-
centered approach where the starting point
during the analysis is the set of potential Web
application users. It consists of fourth phases:
(1) user modeling, (2) conceptual design, (3)
implementation design, and (4) the actual
implementation.

Phase (1) classify users in function of the Web
audience by looking at the organization or the
process for which the Web site will be built. User
classes are defined based on subsets of all potential
users that are similar in terms of their information
requirements. Next, user classes are analyzed
focusing on the information requirements (what to
present) and characteristics of intended audience.
If users have different characteristics within
one user class, this is divided into perspectives
which represent different usability requirements.
Phase (2) is projected to formally model the
information requirements expressed in the user
class descriptions by building conceptual models
for the different user classes. During the sub-
phase called navigational design, a conceptual
navigation model -several navigation tracks- is
constructed. A navigation track is described in
terms of components and links that represent the
way users of a particular perspective can navigate
through the available information. Three types
of components are described: An information
component with the information that correspond
to a specific perspective; a navigation component
that consists of a group of links; and an external
component which is a reference to a component

in another site. In phase (3) the look and feel
of the Web site is designed with the objective
of creating a consistent, pleasing, and efficient
look and feel for the conceptual design made
in the previous phases. In order to achieve an
implementation model, WSDM proposes some
well-known guidelines like the ones described in
[15]. The final phase is the actual realization of
the Web site according to the design made in the
previous phases. In order to store the information
associated with the site, authors proposed using
techniques for database backed web sites depicted
in [16].

The Web Modeling Language (WebML) [17]
is a notation to specify complex Web sites
at conceptual level. It proposes four models:
(1) a structural model defining the data of the
application in terms of relevant entities and
relationships, which is compatible with UML
and Entity/Relationship (E/R) notations. (2) A
hypertext model that describes hypertexts that
can be published in the site. Each hypertext
defines a site view and consists of a composition
sub-model and a navigation sub-model. The
first model specifies the pages that make up the
hypertext and the content units that structure
a page, and the second one describes how
pages and content units are linked to form the
hypertext. (3) A presentation model that states
the distribution and graphical appearance of the
pages, independently of the output device. And
(4) a personalization model in which users and
groups of users are modeled as predefined entities
called User and Group.

The Object Oriented Hypermedia (OO-H) [18,
19] Method is a generic model, integrated into
OO-Method [20, 21], for the semantic structure of
Web interfaces. It defines the abstract interaction
model of the user interface, the information which
each type of user can access, and the navigation
paths from one information view to another.

Since OO-Method captures the statics of the
system, OO-H addresses particularities associated
with the design of web interfaces by adding
several constructs for navigation and interface

73

Model-driven web engineering methods: a literature review

design to the OO-Method conceptual model.
OO-H provides an interface execution model
in order to determine the way of implementing
the conceptual model in a given development
environment.

In OO-H, the navigation model is represented by
means of a Navigation Access Diagram (NAD).
The NAD is built starting from the filtering and
enriching of the information provided by the
class diagram that is captured in the conceptual
modeling phase of the OO-Method. As each
type of user has a different system view and
can activate different services, each one needs a
corresponding NAD.

The main components of the NAD are navigation
classes, navigation targets, navigation links, and
collections.

Navigation classes, which are based on the classes
identified during the conceptual modeling phase,
contain the attributes relevant to the considered
user and view, and the services capable of
being invoked by the actual user of the NAD.
A navigation target is a set of navigation classes
which provide the user with a coherent view of
the system. OO-H bases its navigation targets
on user requirements, instead of on the physical
presentation of the information. Navigation links
are defined by a name, a source navigation class,
a target navigation class, associated navigation
patterns, and associated navigation filters.
Navigation patterns [22] are a mechanism for a
web user interface to share its knowledge about
the way of showing the information objects to
the user. Navigation filters restrict the order,
the quantity or the quality of the target objects.
Collections are structures, with a set of filters
and a set of navigation patterns associated, which
abstract some concepts regarding both external
and internal navigations, and are useful limiting
the interaction options between the user and the
application.

Regarding the execution model for a target
development environment, OO-H focuses
on defining how to implement the interface
information associated to web environments,

since OO-Method has already defined an
execution strategy.

UML-based Web Engineering (UWE) [23, 24] is a
development process for Web applications which
focuses on systematic design, personalization, and
semi-automatic generation. Based on UML and the
UML extension mechanism, it defines navigation
and presentation models which are supplemented by
other UML diagrams and UML modeling elements
within an iterative and incremental approach based
on the Unified Software Development Process
[25]. The main modeling activities in UWE are
the requirements analysis, conceptual, navigation
and presentation design, supplemented with task
and deployment modeling and visualization of
Web scenarios. The task models and state charts of
Web scenarios are included to model the dynamic
aspects of the application.

In UWE, requirements of a Web application can
be specified by using a use case model. The static
view of the system, also known as conceptual
model, is represented using a UML class diagram
which is built based on the use cases and the
detailed description of these use cases with
activity diagrams (in a textual form).

The navigation model is represented as UML
stereotyped class diagrams and consists of two
components: the navigation space model and the
navigation structure model. The former specifies
which object can be visited by navigation, while
the latter defines how these objects are reached.
The modeling of the navigation is built following
a set of guidelines defined in [26].

The presentation model is represented using a
particular form of a class diagram that uses the
UML composition notation for classes and also
stereotyped classes. This model describes where
and how navigation objects will be presented to
the user. For the presentation model, UWE uses a
set of stereotypes that consists of the stereotypes
text, button, image, audio, anchor, collection,
and anchored collection.

In UWE, state chart diagrams are used in order to
visualize navigation scenarios that allow detailing

74

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

parts of the navigation structure model by
specifying the event that triggers the transitions,
defining guard conditions, and including the
actions to be performed. UWE also proposes the
use of sequence diagrams to show presentation
flows such as interaction between windows and
frames. UWE uses activity diagrams for task
modeling; here, a task represents one or more
actions that a user may perform to achieve a
goal [27]. It also extends the concept of task by
including actions performed by the system. With
this extension, the method defined road-maps of
user interaction with the system.

MDWE approaches

Table 2 presents several MDWE approaches.
Most of the approaches described are well-
recognized and widely referenced within the Web
engineering research community. They represent
well the topics of interest in Web engineering
during the last years.

Table 2 List of MDWE approaches

Name

1 Web Software Architecture (WebSA) – 2004

2
Hypertext Modeling Method of MIDAS (MIDAS HM3)
– 2006

3 Object Oriented Web Solutions (OOWS) – 2006

4 UML-Based Web Engineering (UWE) – 2007

5
Web Modeling Language and WebRatio (WebML
and WebRatio) - 2008

6
DSL for the implementation of dynamic web
applications (WebDSL) - 2009

7 DSL for generating Web application (MarTE) – 2009

The approaches are described in terms of the
models they proposed that are common to Web
Engineering and its diagramming notation; the
consideration of architectural models; and model
transformations

The Web Software Architecture (WebSA) [28,
29] is a model-driven approach that defines

an instance of the MDA development process
for the Web application domain. It groups the
Web application model into three viewpoints:
requirements, functional, and architectural
viewpoints.

Regarding common models to Web engineering,
WebSA uses models proposed in two approaches:
UWE and OO-H. These models correspond to
the requirements and functional viewpoints and
consist of a structural model and a navigational
model. The structural model is built using a UML
class diagram, while the navigational model is
built using a UML class diagram and a UML
profile.

The architectural viewpoint, the main contribution
of the approach, includes a logical architecture
view and a physical architecture view. It is made
up of three models: (1) the subsystem model,
which determines the layers of the application,
(2) the Web component configuration model,
which represents each subsystem in terms of
abstract components and abstract connectors, and
(3) the web component integration model that
allows the designer to determine the low level
platform-independent component that make up
the final application.

The MDA-based development process establishes
four phases of the development life cycle: analysis;
platform independent design, where a platform
independent (PIM) model is built; platform
specific design, where a platform specific model
(PSM) is built; and implementation.

In the analysis phase, the Web application
specification is divided into functional models
and conceptual architecture models. The first
ones reflect the functional analysis, and the
second ones define the system architecture based
on the concept of conceptual architecture [30].

In order to get to the platform independent design
phase, a PIM-to-PIM transformation is performed
providing a set of artifacts in which the conceptual
elements of the analysis phase are mapped to
concrete elements where the information about
functionality and architecture is integrated. These

75

Model-driven web engineering methods: a literature review

models of the second phase are then transformed
into Platform Specific Models (PSM) by means
of several PIM-to-PSM transformations that
generate the specification of the Web application
for a given platform. In the final phase, a PSM-
to-Code transformation, implemented by means
of templates, is performed.

The Hypertext Modeling Method of MIDAS
(HM3) [31] is a methodological framework for
agile development of Web information systems
based on MDA. It proposes to model the system
by specifying Computation Independent Models
(CIMs), PIMs, PSMs, and the mapping rules
between these models. It proposes to model
the system according to three basic aspects:
hypertext, content, and behavior. However, it
does not propose any strategy for modeling
architectural issues. All the models in MIDAS
are made using UML as notation, as well as the
use of UML profiles.

HM3 defines a new UML profile to support the
Hypertext modeling, and it uses this profile to
specify the meta-models for the user services
model, the extended user services model, the
extended slices model, and the extended navigation
model it proposes. Besides, the approach defines
the transformation rules in a declarative style and
then maps them to graph rules with the intention
of automating these rules with existing facilities to
automate graph transformations.

The Object-Oriented Web Solutions (OOWS)
[32, 33] is based in OO-Method, which is a
method that combines formal specifications
with conventional object modeling techniques to
specify information systems. OOWS integrates
navigation and presentation designs into the
object-oriented conceptual modeling provided
by OO-Method. OOWS allows specifying
functional, navigational, and presentational
aspects of Web application requirements by
using graphics schemes and high abstraction
level primitives. Using conceptual schemes
as input, a methodology is defined in order to
bring the problem space to the solution space by

defining matches between conceptual modeling
abstractions and final software components.

The structural, dynamic, and functional models
come from OO-Method; OOWS complements
them with a navigational model and a presentation
model. The structural model is defined by a class
diagram. The dynamic model, a state charts
diagrams, describes the different valid sequences
of an object life-cycle for each system class, and
it also represents interaction between objects
by means of sequence diagrams. The functional
model captures the semantics of state changes
in order to define the effects of a service using
a formal specification. Before the creation of
the navigation and presentation models, OOWS
defines a user diagram to describe the types of
users that can interact with the system and the
visibility they can have on the attributes and
operations of the classes. Once users are identified,
a system structured view is created for each class
of the structure diagram in terms of attributes,
operations, and relationships visibility, which
forms the navigation diagram. The presentation
model consists of several patterns associated to
the primitives of navigational context (navigation
classes, links): information paging, order criteria,
and information organization. The last one is
made of four patterns: record, table, master-
detail, and tree.

In order to develop the application, OOWS
takes as a basis the OO-Method structural
and behavioral models and generates the
persistence and application layers by using the
OlivaNova model transformation engine [34].
The presentation layer is generated by an OOWS
transformation process, and all the artifacts are
generated to be deployed on .NET platforms.

As stated earlier, MDA approach of UWE
proposes several models to represents structure,
navigation, and presentation. All this models are
based in several UML diagram –such as classes,
state charts, and sequence diagrams– and the
use of UML profiles. Nevertheless, it does not
consider any architectural model.

76

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

In this model-driven version of UWE [35], the
content and presentation models are translated
into Java beans and Java Server Pages (JSPs)
using model transformation rules implemented
in the Atlas Transformation Language (ATL). In
order to make models executable, UWE proposes
a virtual machine built on top of the controller
of the Spring Framework. This virtual machine
executes the business processes integrated into
the navigation structure. A detailed description
of CIMs, PIMs, CIM-to-PIM transformations,
and PIM-to-PIM transformations expressed as
ATL transformation rules is included in the UWE
extension presented in [36].

The WebML [37] characteristics regarding the
models proposed by the method were presented
earlier. However, in this new version of WebML,
the language has been extended to include new
constructs that allow specifying applications
where page content and navigation can be
adapted to build context-aware Web applications
[38]. Next, we describe the commercial tool that
assists the development process with WebML
and its model-driven features.

WebRatio presents a design layer that allows
data and hypertext design, producing an
internal representation in XML of the models.
It also allows creating XSL style sheets from
XHTML mock-ups, which are prototypes of the
presentation layer based on XHTML. These style
sheets are associated with WebML pages in order
to define a presentation style of the application.

A code generator, which connects the design layer
with a J2EE-based runtime layer, exploits XSL
transformations to translate models represented as
XML into application code. The XSL translators
produce a set of dynamic page templates and
XML files that express the dependencies of a
WebML unit from the data layer. These XML
files are called unit descriptors.

In this new version of WebML, the language has
been extended to include new constructs that
allow specifying application where Web services
can be invoke, the navigation can be driven by
process models, and page content and navigation

can be adapted to build context-aware Web
applications [38].

The next work is a DSL for the implementation
of dynamic web application called WebDSL
[39, 40]. It consists of sub-languages for the
specification of data models and for the definition
of pages for viewing and editing objects in the data
model. WebDSL uses entity definitions syntax
in order to describe the data model of a Web
application. It also proposes textual constructs
for page definitions specifying a presentation
of a Web page and its associated entities. The
navigation between pages is defined by means of
navigational elements that specify linked pages.

WebDSL also proposes higher abstraction level
constructs for access control and workflow. The
access control is governed by rules that determine
access to the application components. It also
allows representing users in order to generate
authentication components. The workflow
abstraction, based on WebWorkFlow [41], defines
activities between different actors which result in
task pages, task lists, status pages, and navigation
between them.

The model transformations in WebDSL are
implemented using Stratego/XL which is a
rewriting system that integrates model-to-
model, model-to-code, and code-to-code
transformations. The WebDSL generator consists
of a set of rules that rewrite extensions of the
WebDSL core language to more primitive
language constructs by means of a technique of
compilation by normalization [42].

MarTE [43] uses a DSL to generate web
application from UML domain models [44].
It describes the language’s semantics, abstract
syntax, and concrete syntax and frames it
within a MDSD based transformation tool to
generate web applications. The semantics of
the DSL is referred as the meaning of web
application elements that allow providing a
well fit human-computer interaction [45] to
generated applications. They describe concepts
like web forms, web list, master-detail, lookup,
defined selection, and primary key, claiming

77

Model-driven web engineering methods: a literature review

that with these artifacts it is possible to generate
fully functional web applications that perform
data manipulation operations (Create, Retrieve,
Update, Delete, Exists and List) and that are
ready for deployment.

The abstract syntax is supported by a meta-model
called Web Application Meta-Model (WAMM).
It describes all the global components needed to
generate a complete web application in an object
oriented programming language. Authors aim at
WAMM as a generic web application platform,
which any web application could be defined in.
WAMM is divided in two parts: a structure part
that contains the structure of the domain objects
and the relationships between them; and an
application part containing the relations between
the domain objects and the web user interface.

The concrete syntax consists of a UML profile
called WebApp Profile. It offers a mechanism
to mark the UML domain model in order to
provide a good human-computer interaction to
the generated application. Such profile is made
of several stereotypes and tagged values that are
use to mark classes, attributes, and relationships
in the domain model. These stereotypes are:
Form, List, Master-Detail, Lookup, Defined
Selection, and Primary Key. Each stereotype
contains several tagged values which define
specific characteristics of the user interface
elements derived from the stereotypes through a
transformation process. As an example, the Form
stereotype, which applies to classes, is used when
there is the need of manipulating in a web form
the information of a single record based on the
marked class. The transformation process for
generating web applications is based on ATL
and JET, and uses some technologies in order to
integrate the DSL into the Eclipse Platform [46].

Analysis criteria
Table 3 presents a list with the criteria that will
be used to analyze, MDWE approaches presented
previously.

Table 3 List of analysis criteria

Criterion

1 Definition of common models for Web engineering
methods

2 Ease of use of the diagramming notation

3 Independence of the target architecture from the
transformations

4 Use of current Web interface technologies in the
generated presentation layers.

The idea behind these criteria is to determine if
the methods described in the previous section
include elements of current research in MDWE.
Also, it is important to analyze the ease of use
when the methods serve as a basis for new MDWE
developments. The first criterion refers to the
discussion of whether the methods proposed or
not some of the models depicted in figure 1, and
how those models are implemented and coupled
to the whole process. The criterion number two
takes to analyze the graphics constructs that each
method proposes. This implies discussing about
how easy it is for a developer to understand
and use the notation, and how well it represents
the characteristics of Web applications. The
third criterion refers to determine if the target
architecture of the generated Web application is
included in the method transformation engine,
or if there is a mechanism to detach the target
architecture from the method, opening the
opportunity to generate Web applications for
different architectures. Finally, the last criterion
is intended to determine if the generated Web
applications are based on technologies that are
used nowadays to build Web applications, or if
the concepts of Rich Internet Applications (RIA)
[47] are taken into account in the generation
process.

RIA approaches bring all the benefits of desktop
applications to increase the responsiveness and
usability of the user interfaces in the generated
Web application. This is achieved by allowing

78

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

the use of client’s memory, powering both
the client and the server to carry out complex
operations, and improving the presentation
and user interaction by avoiding unnecessary
refreshments of the whole page.

Discussion
Here, an analysis of the approaches described
previously is presented, regarding the criteria
listed in table 3.

All the approaches coincide on defining a structure
model, a navigation model, and a presentation
model. However, there are some special cases
in which extra models are defined, or in which
the common models are defined implicitly. It is
the case of MarTE, where the navigation and
presentation characteristics of a Web application
are represented through tagged values in the
UML profile used to mark the structural model.
Although this feature of MarTE may be simple
and easy for the user to use, it restraints the user
to the navigation and presentation characteristics
defined by the authors.

The use of common models in different approaches
facilitates the understanding of Web application
designs, and creates a set of standard concepts
for Web application modeling. Furthermore, it
could lead to define Web application models
serialization standards that allow interchanging
models between different tools, as it is done
nowadays with standards like XMI.

All approaches, except WebML and WebDSL,
use UML along with UML profiles to define
the modeling notation. This is very convenient
since UML is a widely accepted standard for
modeling software, and learning a UML-based
Web modeling language, for a developer used
to UML, may be easier than learning a totally
unknown language. However, there are notations
with graphic constructs that represent better the
elements of the Web application domain. It is the
case of WebML which has a proprietary notation
(DSL) to define each model it proposes. The
notation of WebML is easy to understand since its

abstractions are very similar to actual objects of
the Web domain, thus it provides a more intuitive
way for developers to model Web applications.
This type of notations may demand more learning
time than a known notation like UML, but it
compensates this time with its intuitiveness.
Moreover, using technologies such as Eclipse
Modeling Framework (EMF) or Graphic
Modeling Framework (GMF), it is relatively
easy to build tools that support modeling Web
application with these notations.

The case of WebDSL is different since the
modeling notation is not based on commonly
software development notations. Besides, it lacks
of the intuitiveness of the graphic constructs
because of its textual form. This fact makes the
process of learning and using this notation harder
than using a graphic one whether it is UML-
based or no.

Most of the approaches do not consider a
mechanism to keep the specification of the target
architecture separate from the transformations. In
most of them, authors decide first the architecture
of the generated application and the platform in
which the application will be executed, and then
they define the method transformations according
to the decision they made. This leads the target
architecture to depend on the method, and restricts
the use of the method because, for instance, if
the method generates application for the J2EE
platform, it could not be used in a project that
requires to be implemented for a .NET platform.

In the case of WebSA, authors claim that their
approach can provide a way for transformation
and platform modularization to support different
architectures. They define two transformations:
(1) a transformation in which functional models
and architectural models are merged, and (2) a
transformation that converts the integration model
to different platform specific models. The second
transformation uses the OMG standard MOFScript
[48], and defines the rules to transform a PIM to
code corresponding to J2EE and .NET platforms.

Despite WebSA already predefines different
transformations for specific platforms, it is a very

79

Model-driven web engineering methods: a literature review

promising approach since there are similarities in
these transformations that could be common to
any platform. In this way, a generic mechanism
could be defined in order to include more
transformation rules that allow the generation of
Web application to other platforms like PHP.

Finally, the definition of an architectural model
could allow the integration of this approach with
different Web engineering methods.

On the topic of the last criterion, most of the
methods do not present any evidence of the use
of RIA technologies within the transformations
that generate the presentation layers. At most,
they support presentation patterns catalogs
for Web applications, or XML techniques
for the implementation of the navigation and
presentation aspects. These patterns or techniques
lack of current presentation characteristics of the
so-called Web 2.0 applications such as the use of
AJAX or Abode AIR technologies. Including this
type of technologies within the Web engineering
methods could improve and make more attractive
to final users the generated applications. The only
method of the ones described in this paper, which
presents works regarding the use of current Web
interface technologies, is WebML. It proposes
an approach [49] to apply the RUX-Method [50]
presentation model to obtain a RIA.

The downside of using the RUX-Method is that
it implies an increase in the complexity of the
transformations of the method since it has to take
into account the constructs for the new RIA-based
presentation model. Nevertheless, it is something
that can be done, and whose benefits outweigh
the disadvantages.

Conclusions
In this paper we presented a literature review of
Web Engineering methods. First, some traditional
non model-driven methods were introduced to
establish the origins of Web engineering. Then,
several model-driven approaches were portrayed
and analyzed regarding the definition of common
models in Web engineering, the ease of use of the

diagramming notation, the independence of the
target architecture from the transformations, and
the use of current Web interface technologies in
the generated application.

One conclusion that comes out of the analysis
performed is that the use of common models is
recommended since it promotes standard concepts
in Web application modeling. Furthermore, the
notation for building such models should be
intuitive and easy to use, and it should have a
serialization mechanism that allows integrating
the models with other methods.

Another conclusion is that the use of current Web
interface technologies in the generated applications
and the separation of the target architecture from
the transformations are not common among the
methods analyzed. This leads to possible research
lines in which mechanisms to represent architectures
are studied in order to find a way to separate that
representation from the transformations of a
MDSD-based Web engineering method. It also
suggest research lines that consider approaches to
model RIAs within a Web engineering method in
order to generate application that take advantage of
modern Web technologies.

Acknowledgments
This work was developed within the ALIANZA
REGIONAL EN TIC APLICADAS (ARTICA),
funded by Colciencias and the Ministry of
Information and Communication Technologies.

References
1.	 M. Nasir. A Journey Through Programming Language

Generations. Disponible en: http://www.doc.ic.ac.
uk/~nd/surprise_96/journal/vol2/mjbn/article2.html.
Consultado en Octubre 5 de 2009

2.	 D. Schmidt. “Guest Editor’s Introduction: Model-Driven
Engineering.” Computer. Vol. 39. 2006. pp. 25-31.

3.	 A. Forward, T. Lethbridge. Problems and opportunities
for model-centric versus code-centric software
development: a survey of software professionals.
Proceedings of the 2008 international workshop
on Models in software engineering. ACM, Leipzig
(Germany). 2008. pp. 27-32.

80

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

4.	 OMG. OMG Unified Modeling Language (UML),
Superstructure. 2009. Disponible en: http://www.omg.
org/spec/UML/2.2/Superstructure/PDF/. Consultado
en Octubre 5 de 2009.

5.	 SEI. Software Product Lines | Overview. Disponible
en: http://www.sei.cmu.edu/productlines/. Consutado
en Mayo 20 de 2010.

6.	 T. Stahl, M. Voelter. Model-Driven Software
Development: Technology, Engineering, Management.
1st ed. Ed. Wiley. 2006. pp. 20-35.

7.	 S. Murugesan, Y. Deshpande, S. Hansen, A. Ginige.
“Web Engineering: a New Discipline for Development
of Web-Based Systems.” Web Engineering. Vol. 2016.
2001. pp. 3-13.

8.	 N. Koch, S. Meliá-Beigbeder, N. Moreno-Vergara, V.
Pelechano-Ferragud, F. Sánchez-Figueroa, J. Vara-
Mesa. “Model-driven web engineering.” Upgrade-
Novática Journal (English and Spanish), Council of
European Professional Informatics Societies (CEPIS)
IX. Vol. 2. 2008. pp. 40-45.

9.	 OMG. Meta Object Facility (MOF) Core Specification.
2006. Disponible en: http://www.omg.org/spec/
MOF/2.0/. Consultado en Octubre 5 de 2009.

10.	 H. Gellersen, M. Gaedke. “Object-Oriented Web
Application Development.” IEEE Internet Computing.
Vol. 3. 1999. pp. 60-68.

11.	 D. Schwabe, G. Rossi. “The object-oriented
hypermedia design model.” Commun. ACM. Vol. 38.
1995. pp. 45-46.

12.	 D. Schwabe, G. Rossi. Building hypermedia
applications as navigational views of information
models. Hawaii International Conference on System
Sciences. IEEE Computer Society. Los Alamitos,
Californis (USA). 1995. pp. 231.

13.	 D. Schwabe, R. Guimarães, G. Rossi. “Cohesive
Design of Personalized Web Applications.” IEEE
Internet Computing. Vol. 6. 2002. pp. 34-43.

14.	 D. Schwabe, G. Rossi. “An object oriented approach to
Web-based applications design.” Theory and practice
of object systems. Vol. 4. 1998. pp. 207-225.

15.	 J. December, M. Ginsburg. Html and Cgi Unleashed/
Book and Cd-Rom. 1st ed. Ed. Pearson Education Ltd.
1995. pp.194-258.

16.	 P. Greenspun. Database Backed Web Sites: The
Thinking Person’s Guide to Web Publishing. 1st ed. Ed.
Ziff-Davis Press. 1997. pp.214-251.

17.	 S. Ceri, P. Fraternali, A. Bongio. “Web Modeling
Language (WebML): a modeling language for
designing Web sites.” Computer Networks. Vol. 33.
2000. pp. 137-157.

18.	 J. Gómez, C. Cachero, O. Pastor. Extending a
Conceptual Modelling Approach to Web Application
Design. Proceedings of the 12th International
Conference on Advanced Information Systems
Engineering. Ed. Springer-Verlag. London, UK. 2000.
pp. 79-93.

19.	 C. Cachero, J. Gómez, Advanced conceptual modeling
of Web applications: Embedding operation interfaces
in navigation design. 21th International Conference on
Conceptual Modeling (JISBD). Madrid (Spain). 2002.
pp. 235-248.

20.	 O. Pastor, E. Insfran, V. Pelechano, J. Romero, J.
Merseguer. De Sistemes Informàtics. OO-METHOD:
An OO Software Production Environment Combining
Conventional and Formal Methods. IN CAISE ’97.
International conference on advanced information
systems. Barcelona (Spain). 1997. pp. 145-158.

21.	 O. Pastor, J. Gómez, E. Insfrán, V. Pelechano. “The
OO-Method approach for information systems
modeling: from object-oriented conceptual modeling
to automated programming.” Inf. Syst. Vol. 26. 2001.
pp. 507-534.

22.	 M. Bernstein. Patterns of hypertext. Proceedings of the
ninth ACM conference on Hypertext and hypermedia:
links, objects, time and space---structure in hypermedia
systems: links, objects, time and space---structure in
hypermedia systems. ACM, Pittsburgh (USA). 1998.
pp. 21-29.

23.	 N. Koch, M. Wirsing. Software engineering for
adaptive hypermedia applications. PhD. Thesis. Reihe
Softwaretechnik 12. 2001. pp. 145-289.

24.	 N. Koch, A. Kraus. The expressive power of uml-based
web engineering. Second International Workshop on
Web-oriented Software Technology (IWWOST02).
Málaga (Spain). 2002. pp. 105-120.

25.	 I. Jacobson, G. Booch, J. Rumbaugh. The Unified
Software Development Process. 1st ed. Ed. Addison-
Wesley Professional. 1999. pp. 1-512.

26.	 R. Hennicker, N. Koch. A UML-based methodology for
hypermedia design. Proceedings of the 3rd international
conference on The unified modeling language:
advancing the standard., Ed. Springer-Verlag. York
(UK). 2000. pp. 410-424.

27.	 M. Harmelen. “Interactive system design using Oo&hci
methods” Object modeling and user interface design:
designing interactive systems. Ed. Addison-Wesley
Longman Publishing Co. Inc. 2001. pp. 365-427.

28.	 S. Beigbeder, C. Castro. “An MDA Approach for the
Development of Web Applications.” Web Engineering.
Vol. 3140. 2004. pp. 769.

81

Model-driven web engineering methods: a literature review

29.	 S. Beigbeder. WebSA: un método de desarrollo dirigido
por modelos de arquitectura para aplicaciones web.
PhD. Thesis. Universidad de Alicante. Departamento
de Lenguajes y Sistemas Informáticos. Alicante
(España). 2007. pp. 85-223.

30.	 P. Nowack. Structures And Interactions - Characterizing
Object-Oriented Software Architecture. PhD Thesis. The
Maersk Mc-Kinney Moeller Institute for Production
Technology. University of Southern Denmark. Odense,
Denmark. 2000. pp. 41-45.

31.	 P. Cáceres, V. Castro, J. Vara, E. Marcos. Model
transformations for hypertext modeling on web
information systems. Proceedings of the 2006 ACM
symposium on Applied computing. ACM. Dijon
(France). 2006. pp. 1232-1239.

32.	 O. Pastor, J. Fons, V. Pelechano, S. Abrahão.
“Conceptual Modelling of Web Applications: The
OOWS Approach.” Web Engineering. Vol. 4143. 2006.
pp. 277-302.

33.	 F. Valverde, P. Valderas, J. Fons, O. Pastor. A MDA-
Based Environment for Web Applications Development:
From Conceptual Models to Code. 6th International
Workshop on Web-Oriented Software Technologies.
Bucharest (Romania). 2007. pp. 164-178

34.	 Care Technologies. CARE Technologies. OlivaNova
Model Transformation Engines. Disponible en: http://
www.care-t.com/index.asp. Consultado en Abril 13 de
2010.

35.	 A. Kraus, A. Knapp, N. Koch. Model-driven
generation of web applications in UWE. Proceedings
of the International Workshop on Model-Driven Web
Engineering. Como (Italy). 2007. pp. 23-38.

36.	 A. Kraus. Model Driven Software Engineering for
Web Applications. PhD. Thesis. Ludwig-Maximilians-
Universität München. 2007. pp. 73-114.

37.	 M. Brambilla, S. Comai, P. Fraternali, M. Matera.
“Designing Web Applications with Webml and
Webratio.” Web Engineering: Modelling and
Implementing Web Applications. Vol. 4823. 2008. pp.
221-261.

38.	 S. Ceri, F. Daniel, M. Matera, F. Facca. “Model-driven
development of context-aware Web applications.”
ACM Trans. Internet Technol. Vol. 7. 2007. pp. 30-63.

39.	 E. Visser. “WebDSL: A Case Study in Domain-
Specific Language Engineering.” Generative and
Transformational Techniques in Software Engineering
II. Vol. 5235. 2008. pp. 291-373.

40.	 D. Groenewegen, Z. Hemel, L. Kats, E. Visser.
WebDSL: a domain-specific language for dynamic web
applications. Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems
languages and applications. ACM, Nashville. TN
(USA). 2008. pp. 779-780.

41.	 Z. Hemel, R. Verhaaf, E. Visser. “WebWorkFlow:
An Object-Oriented Workflow Modeling Language
for Web Applications.” Model Driven Engineering
Languages and Systems. Vol. LNCS 5301. 2009. pp.
113-127.

42.	 L. Kats, M. Bravenboer, E. Visser. Mixing source and
bytecode: a case for compilation by normalization.
Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and
applications. ACM, Nashville. TN (USA). 2008. pp.
91-108.

43.	 J. Cadavid, D. Lopez, J. Hincapié, J. Quintero.
A Domain Specific Language to Generate Web
Applications. Memorias de la XII Conferencia
Iberoamericana de Software Engineering (CIbSE
2009). Medellin (Colombia). 2009. pp. 139-144.

44.	 B. Selic. A Systematic Approach to Domain-Specific
Language Design Using UML. 10th IEEE International
Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC’07). Santorini
island (Greece). 2007. pp. 2-9.

45.	 P. Molina. Especificación de interfaz de usuario:
De los requisitos a la generación automática. PhD.
Thesis. Universidad Politécnica de Valencia. Valencia
(España). 2003. pp.113-225

46.	 Eclipse. Eclipse Foundation: Eclipse. Disponible en:
http://www.eclipse.org/. Consultado el Octubre 5 de
2009.

47.	 P. Fraternali, G. Rossi, F. Sánchez. “Rich Internet
Applications.” IEEE Internet Computing. Vol. 14.
2010. pp. 9-12.

48.	 OMG. MOF Model to Text Transformation Language
1.0. Jan. 2008. Disponible en: http://www.omg.org/
spec/MOFM2T/1.0/. Consultado en Junio 24 de 2010.

49.	 M. Brambilla, J. Preciado, M. Linaje, F. Sanchez.
Business Process-Based Conceptual Design of Rich
Internet Applications. Web Engineering, International
Conference on. IEEE Computer Society. Los Alamitos,
California (USA). 2008. pp. 155-161.

50.	 M. Linaje, J. Preciado, F. Sánchez. “Engineering Rich
Internet Application User Interfaces over Legacy Web
Models.” IEEE Internet Computing. Vol. 11. 2007. pp.
5 3-59.

