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Abstract

In a real world case scenario, customer demands are requested at any time 
of the day requiring services that are not known in advance such as delivery 
or repairing equipment. This is called Dynamic Vehicle Routing (DVR) with 
customer uncertainty environment. The link travel time for the roadway 
network varies with time as traffi c fl uctuates adding an additional component 
to the dynamic environment. This paper presents a model for solving the DVR 
problem while combining these two dynamic aspects (customer uncertainty 
and link travel time). The proposed model employs Greedy, Insertion, and 
Ant Colony Optimization algorithms. The Greedy algorithm is utilized for 
constructing new routes with existing customers, and the remaining two 
algorithms are employed for rerouting as new customer demands appear. A 
real world application is presented to simulate vehicle routing in a dynamic 
environment for the city of Taipei, Taiwan. The simulation shows that the 
model can successfully plan vehicle routes to satisfy all customer demands 
and help managers in the decision making process.
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Resumen

En un escenario real, los pedidos de los clientes son solicitados a cualquier 
hora del día requiriendo servicios que no han sido planifi cados con antelación 
tales como los despachos o la reparación de equipos. Esto es llamado ruteo 
dinámico de vehículos (RDV) considerando un ambiente con incertidumbre 
de clientes. El tiempo de viaje en una red vial varía con el tiempo a medida que 
el tráfi co vehicular fl uctúa agregando una componente adicional al ambiente 
dinámico. Este artículo propone un modelo para resolver el problema RDV 
combinando estos dos aspectos dinámicos. El modelo propuesto utiliza los 
algoritmos Greedy, Inserción y optimización basada en colonias de hormigas. 
El algoritmo Greedy es utilizado para construir nuevas rutas con los clientes 
existentes y los otros dos algoritmos son usados para rutear vehículos a 
medida que surjan nuevos clientes con sus respectivos pedidos. Además, se 
presenta una aplicación real para simular el ruteo vehicular en un ambiente 
dinámico para la ciudad de Taipei, Taiwán. Esta simulación muestra que el 
modelo es capaz de planifi car exitosamente las rutas vehiculares satisfaciendo 
los pedidos de los clientes y de ayudar los gerentes en el proceso de toma de 
decisiones.

Palabras clave: Heurísticas, ruteo dinámico de vehículos, incertidumbre 
de clientes, problema de ruteo de vehículos

Introduction
The Vehicle Routing Problem (VRP) has been 
widely studied because of its application in 
logistic and supply chain management areas [1-
6]. Generally, a VRP consists of planning routes 
for vehicles to serve a set of given demands. In 
many real world cases, customers request service 
when vehicles have already started their planned 
route. Successive requests compel service 
providers to adjust their dispatching plan several 
times a day to serve new customers in the same 
day. Since these customers are not predetermined, 
this type of dispatching plan yields a Dynamic 
Vehicle Routing Problem (DVRP) with customer 
uncertainty [7, 8]. In the literature, uncertainty 
situations include ambiguity in the amount of 
customer demand, vagueness in the presence 
of customers, or both [9]. The uncertainty 
in the amount of demand indicates that the 
demand of each customer is known only when 
the vehicle visits the customer such as in the 
garbage collection problem. The uncertainty in 
the presence of customers denotes that customer 

appearances are unknown in advance such as 
emergency calls. Many researchers have modeled 
the uncertainty problem by assuming demands 
or customer presence as a probabilistic function 
[2, 10, 11], which is denoted as a stochastic VRP 
(SVRP). To analyze the DVRP in a stochastic 
perspective is sometimes inappropriate when 
customers appear randomly anywhere on the 
network. Thus, other researchers have solved the 
DVRP with customer uncertainty by designing 
the routing procedure instead of assuming a 
stochastic behavior for uncertainty situations. For 
example, Khouadjia and colleagues [8] solved the 
DVRP using a population based (Particle swarm 
optimization) and a trajectory based (Variable 
neighborhood search) metaheuristic. Another 
study presented in [12] proposed an advanced 
particle swarm optimization algorithm to solve 
the VRP with uncertain demands and unknown 
distributions. Coslovich and colleagues [13] 
tackled the dial a ride problem with time windows 
and took the unexpected customers into account. 
Du and colleagues [14] analyzed the DVRP with 
customer uncertainty in the business to consumer 
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electronic commerce environment. Yet another 
study addressed the VPR problem with uncertain 
demands using Neuro Dynamic Programming 
(NDP) yielding approximate solutions [11]. The 
author analyzed two NDP algorithms (optimistic 
approximate policy iteration and rollout policy), 
and concluded that the latter generates higher 
quality solutions.

In addition to customer uncertainty, other studies 
consider the time dependent link travel time [6, 
7, 15, 16, 17]. Overall, models assume constant 
travel time on a link throughout the day or exploit 
simple procedures to adjust them. Unfortunately, 
these assumptions are weak approximations 
of real world conditions that include daily 
traffi c congestions. Travel times in urban areas 
fl uctuate due to more subtle variations resulting 
from various factors such as accidents, traffi c 
conditions, and weather conditions causing late 
arrivals to customers and additional associated 
costs. Therefore, the travel time of a link varies 
depending on the time the vehicle entered a link 
on a roadway network. This property affects 
the VRP signifi cantly while the time window 
constraints are taken into account.

Scarce studies have been published in the 
literature that combines customer uncertainty 
and time dependent link travel time [18, 19]. This 
research presents a model for solving the DVRP 
with heuristic algorithms while considering these 
two dynamic aspects in unison.

The remainder of the paper is organized as 
follows. The next section provides the problem 
statement description. Subsequently, the 
heuristics algorithms are proposed to solve the 
problem. Results of applying the models onto a 
simulated case are presented. Finally, conclusions 
and future work are discussed.

Problem statement
Customers place requests for pickup or 
delivery services through PC, PDA, Notebook, 
or Smartphones via Internet. These demand 
information are uploaded to the center information 

system of the service provider for further 
processing. A routing plan is achieved based 
on this information according to the embedded 
routing strategies of the center system. After a 
dispatching plan has been developed, new routes 
are sent out to the onduty drivers and they adjust 
their routes accordingly. For taking the uncertain 
demands into account while planning vehicle 
routes, the problem is divided into two stages: 
static and dynamic. The static part of the problem 
consists of handling customer requests that are 
known in advance. This is equivalent to the 
conventional VRP, where vehicles are dispatched 
from the depot, customers are served following a 
preplanned route, and eventually vehicles return 
to the depot without violating time windows and 
vehicle capacity constraints. The dynamic part of 
the problem consists of rerouting vehicles as new 
customer demands appear.

Figure 1 illustrates an example of the DVRP. 
The hollow circles indicate customers that are in 
the routing plan, but have not been served yet. 
The fi lled circles represent the newly appeared 
demands that have not been planned. The three 
vehicles are active vehicles, which are in the midst 
of their preplanned routes. Since these vehicles 
are not able to accommodate all unserved and 
newly appeared demands, the standby vehicle 
waiting at the depot will be dispatched to serve 
route 4.

The start nodes of the routes for the active 
vehicles are either nodes at their current location 
or nodes to which they are heading. These nodes 
are represented as depots for the active vehicles, 
generating a multidepot problem. In addition, 
since active vehicles have already serviced some 
demands, the capacity of each active vehicle 
is less than the original capacity and differs 
to other vehicles. Therefore, heterogeneous 
vehicle capacities are considered in the problem 
resolution.

This research also considers the time dependent 
link travel time, where each link has an associated 
weight function indicating the travel time. The 
path from customer i to customer j with least 
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travel time (i.e., shortest path) varies according 
to the departure time of the vehicle. The shortest 
path is computed between any pair of nodes 
assuming that time dependent link travel time 
network follows the First In First Out (FIFO) 
property [20]. According to this property, if 
vehicle A enters a link earlier than vehicle B from 
the same initial location to the same destination 
traveling on the same link, then vehicle A will 

always arrive before vehicle B independent 
from the speed variations during the travel. In 
order to maintain the FIFO property, a speed 
time relationship is employed for calculating the 
travel time for each link instead of a travel time 
enter relationship. If a roadway network obeys 
the FIFO property, then a modifi ed Dijkstra’s 
algorithm is used to determine the shortest path 
with minimum travel time [21].

Figure 1 An instance of the DVRP problem

Heuristic algorithms
For the static part of the vehicle routing process, 
vehicle dispatching is planned in advance 
according to the amount of customer demands 
and time window constraints. This is a general 
VRP, in which all vehicles depart from the depot 
and return after completing their planned route. 
An easy to implement algorithm seems to be 
more suitable for the static stage since rerouting 
is expected in the near future. Hence, this paper 
employs the Greedy algorithm to plan each 
vehicle route during the static part of the process 
due to its simplicity. This algorithm constructs 
feasible vehicle routes by forcing vehicles to visit 
as many customers as possible. While vehicles 
are located at the depot or visiting a customer, the 
algorithm determines which visible customer is 
to be served subsequently. Unserved customers 
are candidates to be visited by a vehicle within 
its time window without violating capacity 
constraints. The algorithm selects the closest 
visible customer to the vehicle’s current location. 

If there are no visible customers, then the vehicle 
is dispatched back to the depot and the route is 
completed.

After a period of time, new customer demands 
are requested and wait for service. In order to 
satisfy these newly appeared demands, a vehicle 
rerouting process is required. Therefore, the 
dynamic part of the problem is generated and 
consists of the following steps:

• New demands are inserted into the existing 
routes using the Insertion algorithm. This 
algorithm computes a new route by inserting 
nodes that represent new customer demands 
into a preplanned route without violating 
constraints. During the insertion process, 
a vehicle’s preplanned route is verifi ed to 
determine if a time period exists between a 
pair of nodes to serve additional customers 
that are not located on the route. In this 
study, the Nearest Insertion (NI) method 
is employed to insert a demand node into 
the nearest route. Most vehicle routes are 
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maintained and no new active vehicles are 
required when the number of new requests is 
relatively small for some time periods. This 
step is more economical when compared to 
rerouting all vehicles again. 

• If the Insertion algorithm is not able to 
incorporate newly appeared demands into 
the existing routes without violating vehicle 
capacities and time window restrictions, 
then the entire process of rerouting of 
vehicles is triggered again. The Ant Colony 
Optimization (ACO) algorithm is utilized 
in this process to calculate the number of 
standby vehicles needed while dispatching 
all vehicles and minimizing the total travel 
time.

Ant colony optimization algorithm

Ant algorithms were proposed by Dorigo and 
colleagues [22, 23], which inspired from the 
observation of ant colonies’ foraging behavior, as 
a multi-agent approach to diffi cult combinatorial 
optimization problems. These algorithms have 
been applied on several different problems such 
as quadratic assignment problem [24], allocation 
problem [25], travel salesman problem [22], and 
of course the VRP [6, 26-28]. This paper proposes 
a modifi ed metaheuristic ACO algorithm, based 
on the algorithm presented in [29], to solve the 
problem considering both customer uncertainty 
and time dependent link travel times. The problem 
is modeled as a multidepot, multicapacity VRP, 
which is a well known NP hard problem.

Model

Let G = (V, E) be a network, where V is a set of 
nodes, E is a set of links, and E  V x V. Each link 
has an associated weight indicating the travel time 
and is represented by a speed time function that 
describes a discrete or continuous relationship 
between travel speed and time. Therefore, the 
network is a time dependent link travel time 
network. A node is located at the depot, which 
corresponds to the start and end of the route. 
There are K vehicles situated at the depot ready to 

serve customers and with the assumption that all 
vehicles have the same capacity. These vehicles 
can only depart and return within a specifi c time 
period (Topen, Tclose), where Topen and Tclose denote 
the open and close of the depot, respectively. 
This is also known as the depot time window 
constraint, which describes the time period in 
which vehicles are allowed to serve customers. A 
number of customers C with C  V are scattered 
throughout the network and each customer has a 
determined amount of demand. Similarly to the 
depot, each customer has a time window [Li , Ui] 
for service, where Li and Ui indicate the lower and 
upper bound of the time window for customer i, 
respectively. In order to simplify the problem, all 
customers are assumed to be located exactly at 
the nodes.

Notation

AV:  number of active vehicle

SV:  number of standby vehicle

K:  Set of vehicles

:  travel time of link ij for vehicle k with 
entering time t

M:  set of unserved demands

N:  set of newly requested demands

0:  depot

Di:  demand of node i

Qk:  remaining capacity of vehicle k

:  arrive time of node i for vehicle k

Li:  lower bound of time window for node i

Ui:  upper bound of time window for node i

PTi:  processing time for node i

ST:  starting time of the rerouting process

Tclose:  close time of the depot

:  = 1 if link ij is traveled by vehicle k, 

 = 0 otherwise
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:  = 1 if node i is visited by vehicle k,

 = 0 otherwise

i,j :  customers or nodes

Mathematical formulation

The mathematical formulation is described as 
follows.

 (1)

s.t.

(2)

 (3)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

Equation (1) is the objective function of the 
mathematic formulation that consists of two 
objectives: minimizing the number of vehicles 
used and the total travel time in the rerouting 
process. Thus, the problem is modeled as a 

multiobjective programming. Equations (2) 
and (3) are the fl ow conservation constraints. 
Constraints (2)~(4) ensure that one node, except 
the depot, is visited once and only once by one 
vehicle. Equations (5) and (6) ensure that all 
vehicles return to the depot. Equation (7) is the 
capacity constraint. Since each active vehicle 
has different remaining capacities, Equation (7) 
ensures that the capacity of each vehicle will 
not be exceeded. Equations (8) and (9) are the 
time window constraints. Equation (8) ensures 
that each demand node is visited within its time 
window constraint and Equation (9) guarantees 
that all vehicles return to the depot before the 
close time of the depot. Equation (10) shows the 
decision variables constraints.

Solution

The ACO algorithm consists of a colony of artifi cial 
ants (vehicles) that assists in the determination of 
feasible solutions to diffi cult discrete optimization 
problems. These artifi cial ants are sent out from 
the nest (depot) to search for food and to establish 
trails mimicking real ants by depositing chemical 
traces (i.e., pheromones). Ants follow paths 
where pheromone concentrations are higher. 
The amount of pheromone that an ant deposits 
is reciprocal to the travel length, which indicates 
that shorter paths will contain higher amount of 
pheromone and, thus, a higher number of ants 
will select this path. In this study, pheromone is 
deposited according to the travel time instead of 
the travel length.

The procedure for generating the solution of the 
problem using the ACO algorithm is described 
as follows. A default amount of pheromone is 
associated with each link at the beginning of 
the algorithm. Ants choose links sequentially 
to travel from its current node to the next node 
without any restriction violations following the 
path fi nding scheme s, shown in Equation 11. 
If q is smaller than q0, then ants will select one 
of the visible nodes with the largest attraction 
Attij. Otherwise, ants will move according to the 
probability pij.
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 (11)

Where i is the current node that the ant located, 
j indicates other nodes, q0 is a preassigned fi xed 
real number with values between 0 and 1, q is a 
random number, Ωi corresponds to the collection 
of visible, unvisited nodes from node i, and Attij
denotes the attraction value of ant k from node i
to node j given by Equation 12.

 (12)

Where τij is the pheromone residual of the link 
between nodes i and j, ηij indicates the reciprocal 
of travel length between nodes i and j, and α, 
β, and γ are parameters for adjusting attraction 
values. The original equation did not take the 
travel time into account. However, Equation 12 
has been multiplied by the reciprocal of the travel 
time for ant k to travel from node i to node j at time 
t ( ), in order to eliminate unreasonable 
situations of high attractions when ant k has 
traveled for an excessive amount of time.

Equation 13 shows the probability pij computed 
as the ratio between the attraction from node 
i to node j and the summation of the attraction 
from node i to all visible nodes. If node j is not 
contained within the visible node set, then pij is 0.

 (13)

As ants construct routes, the amount of 
pheromone on each route is updated based on the 
quality of the solution obtained. The pheromone 
updating mechanism includes a local and a global 
pheromone updating mechanism. The local 
mechanism is computed immediately after an ant 
constructs a route (See Equation 14).

 (14)

Where ρ denotes the evaporation rate with 
values between 0 and 1, and τij is the pheromone 
residual on the path between nodes i and j. Let 

, where k represents the solution 
obtained by ant k and  indicates the total travel 
time of the solution route constructed by ant k. 
Equation 15 represents the global pheromone 
updating mechanism, which is employed to 
obtain the amount of pheromone on each link 
after completing each iteration.

 (15)

Where  denotes the amount of pheromone 
added on the path between nodes i and j. Let 

, where denotes 

the total travel time of the best solution obtained 
denoted as gb. This means that the current best 
solution or optimum route is used as the baseline 
to improve the solution. 

Figure 2 presents a fl ow chart with the ACO 
solution to the problem. A vehicle will yield a 
solution after completing a route and is denoted as 
one iteration. After all vehicles fi nish their routes, 
the global pheromone update scheme is triggered. 
This cycle is named an epoch. Parameters L 
and G are predefi ned constants that indicate the 
number of vehicles and the number of epochs, 
respectively. Therefore, there are a total of L 
G iterations. The initial amount of pheromone on 
each link is equal to 1, and parameter values for 
α, β, γ, and ρ are previously set by the algorithm. 
Initially, variables “a” and “e” are set to zero, 
in order to control the number of iterations and 
epochs. First, the algorithm dispatches a vehicle 
and calculates the attraction from this vehicle 
to all other visible customer demand nodes. If 
there are no visible nodes, then the vehicle is sent 
back to the depot. Otherwise, the vehicle travels 
based on the probability pij. This process will be 
repeated until all active vehicles are dispatched 
back to the depot. If none of the active vehicles 
are capable of serving the customers, then standby 
vehicles are dispatched until all customers are 
served. An iteration is considered complete after 



170

Rev. Fac. Ing. Univ. Antioquia N.° 64. Septiembre 2012

standby vehicle routes are constructed using the 
local pheromone mechanism update. The global 
pheromone is updated when all vehicles fi nish 
their routes, and one epoch is completed. The 

best solution will be continuously updated after 
each iteration and is recorded in variable gb. 
The algorithm will terminate when the number of 
epochs reaches the value of G.

Figure 2 Flowchart of the ACO rerouting process

Computational simulation
The proposed procedure for solving the VRP 
with uncertain demands is assumed to be under 
the environment of time dependent link travel 
time in a roadway network. This problem is 
completely different than conventional VRP, and 
the authors are not aware of any benchmarks for 
comparison. Thus, a scenario was designed to 
assess the procedure of solving the problem with 
customer uncertainty on a real roadway network 
considering time dependent link travel time.

The heuristic algorithms proposed in this study 
were implemented through a GUI application to 

simulate the problem. This application employed 
a digital map with the roadway network of the 
city of Taipei, Taiwan, which contains 18653 
links and 12241 nodes. In this simulation, it is 
assumed that the speed prediction for each link 
can be obtained from the Advanced Traveler 
Information System (ATIS) system. Three types 
of links are employed in this simulation and each 
has a speed time function to indicate their link 
weight, as shown in fi gure 3. Type A represents 
the light traffi c conditions, type C represents the 
heavy traffi c conditions, and type B denotes a 
traffi c condition between types A and C. 
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Figure 3 Relationships between speed and time for different types of traffi c conditions

The scenario of the computational simulation 
consists of one depot and 20 customers randomly 
located on the roadway network. The maximum 
capacity of each vehicle is equal to 200 units. 
The open and close times for the depot are set 
to 8 am and 4 pm, respectively. The initial 
demand and the time window constraint at each 
node are also randomly computed between 5 
and 15, and between 8 and 4 pm, respectively. 
Subsequently, additional customer demands 
equal to 40, 50, 60,…,300 are requested, in order 
to verify the response of the algorithm. A batch 
mode is employed to handle these demands in the 
simulation. Hence, vehicle rerouting is performed 

three times at 10 am, 12 pm, and 2 pm. Demands 
requested after 2 pm are not served within the 
same day and will be left for the next day. Table 1 
presents the results of the simulation, where CUS 
is the number of customers; VEH is the number of 
vehicles; LEN is the total travel length in meters; 
and TT is the travel time in minutes. Overall, this 
table shows that the number of vehicles required 
to satisfy customer demands increases as demand 
batches appear. Note that in this simulation, the 
vehicles served all customers without violating 
any time window constraints. Figure 4 illustrates 
the simulation results with fi ve vehicles routes 
serving 100 customers.

Table 1 Simulation result

CUS VEH LEN TT CUS VEH LEN TT
60 6 419347.6 527.8 200 17 914122 1523.0
70 6 459442.8 609.2 210 19 963048.6 2017.3
80 8 543778.1 670.0 220 20 933427.1 1098.3
90 9 545383.8 648.5 230 22 1109480 2488.9
100 5 243210.7 313.7 240 21 1135338 1725.9
110 11 649421.9 792.8 250 22 1151162 1898.3
120 12 816683.4 1281.2 260 25 1132454 1784.9
130 11 692202.9 862.9 270 24 1247042 2000.5
140 12 775282.6 1013.6 280 25 1217062 1642.1
150 14 855216.4 1496.2 290 25 1323368 2512.2
160 15 792761.3 971.1 300 28 1281540 1976.2
170 16 906827.7 1444.1 310 29 1313971 1737.9
180 17 867738.1 1359.7 320 28 1441968 1785.9
190 17 928322.3 1135.1
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Figure 4 Simulation vehicle routes for 100 customer demands

Conclusions
In light of the emerging mobile technologies and 
information systems, the seamless mobile and 
wireless connectivity between delivery vehicles 
and distribution facilities is paving the way 
for innovative approaches to real time vehicle 
routing and distribution management. Traditional 
solutions for VRP do not take the customer 
uncertainty and the real traffi c situation into 
account and are not suffi cient for many real world 
case scenarios. This paper presents a DVRP with 
customer demand uncertainty and time dependent 
link travel time. The procedure contains static and 
dynamic parts, which is modeled as a VRP with 
time windows, multidepot, and heterogeneous 
vehicle capacities. The static part of the problem 
was solved with the Greedy algorithm, and the 
dynamic part of the problem was solved by 

using Insertion algorithm and a modifi ed ACO 
algorithm. A simulation application with real 
roadway network was generated to support 
managers in modifying existing routes or 
dispatching standby vehicles when unforeseen 
customer demands are requested.

In this research, real time traffi c speed 
information was assumed to be known. If real 
time traffi c speed information is obtained and 
sent to the vehicle dispatching system, then 
the online operation precision is improved. If 
a good ATIS is available, then special traffi c 
conditions such as constructions, adverse weather 
conditions, incidents, and special events should 
be detected timely and dispatched to the system 
for advanced operations. In addition, the speed 
time relationship of each link should be collected 
by the ATIS as complete as possible to achieve 
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an improved vehicle routing. Future work will 
compare the results of the proposed model to 
other heuristic algorithms such as tabu search, 
simulated annealing, or generic algorithms. 
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