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Abstract 

This paper presents a design approach of robust active vibration control 
schemes for vehicle suspension systems using differential flatness, sliding 
modes and Generalized Proportional-Integral control techniques to attenuate 
undesirable vibrations induced by irregular road disturbances. Two control 
schemes are proposed: one employing position and velocity measurements 
and other requiring only position measurements. Integral reconstruction of 
the time derivatives of the flat output up to third order is proposed to avoid the 
use of velocity and acceleration sensors, as well as information of unknown 
road disturbances. 

----- Keywords: Active vehicle suspension system, sliding modes, 
differential flatness, generalized proportional-integral control
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Resumen

En este artículo se presenta un enfoque de diseño de esquemas de control 
activo robusto para sistemas de suspensión de vehículos, usando técnicas de 
control Proporcional-Integral Generalizado, modos deslizantes y planitud 
diferencial, para atenuar vibraciones indeseables inducidas por perturbaciones 
de terreno irregular. Se proponen dos esquemas de control: uno de ellos 
emplea mediciones de posición y de velocidad y el otro requiere únicamente 
mediciones de posición. Se propone la reconstrucción integral de las derivadas 
de la salida plana para evitar el uso de sensores de velocidad y de aceleración, 
así como la información de perturbaciones de terreno desconocidas. 

----- Palabras clave: sistema de suspensión activa de vehículo, 
modos deslizantes, planitud diferencial, control proporcional-integral 
generalizado

Introduction 
The main objective on the active vibration 
control problem of vehicle suspension systems is 
to get security and comfort for the passengers by 
reducing to zero the vertical acceleration of the 
body of the vehicle. An actuator incorporated to 
the suspension system applies control forces to the 
vehicle body for reducing its vertical acceleration 
in active or semi-active way. The topic of active 
vehicle suspension control system has been 
quite challenging over the years and we refer the 
reader to some of the fundamental works in the 
vibration control areaand the references therein 
[1]. Some research works in this field propose 
control strategies like LQR in combination with 
nonlinear backstepping control techniques [2], 
which require information of the state vector 
(vertical positions and speeds of the tire and car 
body). A reduced order controller is proposed 
in [3] to decrease the implementation costs 
without sacrificing the security and the comfort 
by using accelerometers for measurements of the 
vertical movement of the tire and car body. In 
[4], a controller of variable gain that considers 
the nonlinear dynamics of the suspension system 
is proposed. It requires measurements of the 
vertical position of the car body and the tire, and 
the estimation of other states and the profile of 
the road. In addition, some interesting semiactive 
vibration control schemes, based on Electro-
Rheological (ER) and Magneto Rheological (MR) 

dampers, have been proposed and implemented 
on commercial vehicles in [5, 6].

On the other hand, many dynamical systems 
exhibit a structural property called differential 
flatness. This property is equivalent to the 
existence of a set of independent outputs, called 
flat outputs and equal in number to the control 
inputs, which completely parameterizes every 
state variable and control input [7]. By means 
of differential flatness the analysis and design 
of controller is greatly simplified. In particular, 
the combination of differential flatness with 
sliding modes, which is extensively used 
when a robust control scheme is required, e.g., 
parameter uncertainty, exogenous disturbances 
and un-modeled dynamics [8], qualifies as an 
adequate robust control design approach to get 
high vibration attenuation level in active vehicle 
suspension systems. In this paper is proposed 
asuitable combination of differential flatness and 
sliding modes with the Generalized Proportional-
Integral (GPI) Control approach to design 
efficient and robust active vibration control 
schemes for vehicle suspension systems that only 
require information of the flat output.

GPI control, or control based on integral 
reconstructors of the unmeasured observable 
state variables, for the regulation and trajectory 
tracking tasks on time invariant linear systems 
was introduced by Fliess and co-workers in [9]
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as a generalization of classical PID control. This 
control design methodology has been extended 
to time-varying linear systems in [10] and, also, 
to a certain class of nonlinear systems [11]. The 
main objective is to avoid the use of traditional 
asymptotic state observers, or digital computations 
based on output samplings, therefore, the integral 
reconstructor-based feedback control laws are 
purely analog, requiring only measurements of 
the system output. The integral reconstruction 
of the state variables is carried out by means 
of elementary algebraic manipulations of the 
system model along with suitable invocation of 
the observability property. The purpose of the 
integral reconstructors is to get expressions for 
the unmeasured states in terms of inputs, outputs, 
and sums of a finite number of iterated integrals 
of the measured variables. In essence, constant 
errors and iterated integrals of such constant 
errors are allowed on these reconstructors. The 
current states thus differ from the integrally 
reconstructed states in time polynomial functions 
of finite order, with unknown coefficients related 
to the neglected and unknown, initial conditions. 
The use of these integral reconstructors in the 
synthesis of a state feedback controller needs 
suitable counteracting the effects of the implicit 
time polynomial errors. The destabilizing effects 
of the state estimation errors can be compensated 
by additively complementing a purely state 
feedback controller with a linear combination 
of a sufficient number of iterated integrals of 
the output tracking error, or output stabilization 
error. The closed loop stability is guaranteed by 
a simple characteristic polynomial assignment to 
the higher order compensated controllable and 
observable input-output dynamics. 

In this paper is presented a design approach of 
robust active vibration control schemes for vehicle 
suspension systems using differential flatness, 
sliding modes and Generalized Proportional-
Integral control techniques to attenuate 
undesirable vibrations induced by unknown 

irregular road disturbances. In the control problem 
formulation is assumed that these perturbations 
are not available to implement a control scheme. 
Two control schemes are proposed. The first one 
requires information of the time derivatives of 
the flat output up to third order or measurements 
of all the state variables (displacements and 
velocities). The second controller only requires 
information of the flat output; the main idea is 
the use of integral reconstruction of the non-
measurable state variables or the time derivatives 
of the flat output instead of state observers. This 
design approach results in robust active vibration 
control schemes against parameter uncertainties 
and exogenous disturbances. Simulation results 
are included to show the dynamic performance 
and robustness of the active control schemes 
proposed for a quarter-vehicle active suspension 
system.

Quarter-Car suspension systems

Mathematical model of passive 
suspension system

A schematic diagram of a two degrees-of-
freedomquarter-vehicle suspension system is 
shown in figure 1(a). The mathematical model of 
the passive suspension system is described by 

	 + − + −  ( ) ( ) = 0s s s s u s s um z c z z k z z 	 (1)

	 − − − − + −  ( ) ( ) ( ) = 0u u s s u s s u t u rm z c z z k z z k z z 	 (2)

where the sprung mass ms represents the mass of 
the car-body part, the unsprung mass mu denotes 
the mass of the assembly of the axle and wheel, 
cs is the damper coefficient of suspension, ks and 
tk  are the spring coefficients of suspension and 

the tire, respectively, zs is the displacementof 
the sprung mass, zu is the displacement of 
the unsprung mass and zr is the terrain input 
disturbance.
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Figure 1 Quarter-car suspension systems: 
(a) Passive Suspension System, (b) Active 
Electromagnetic Suspension System and (c) Active 
Hydraulic Suspension System

Mathematical model of active 
electromagnetic suspension system

A schematic diagram of a quarter-car active 
electromagnetic suspension system is illustrated 
in Figure 1(b). The electromagnetic actuator 
replaces the damper, forming a suspension 
with the spring [12]. The friction force of an 
electromagnetic actuator is neglected. The 
mathematical model of an electromagnetic active 
suspension system is given by 

	 + − ( ) =s s s s u Am z k z z F 	 (3)

	 − − + − − ( ) ( ) =u u s s u t u r Am z k z z k z z F 	 (4)

where FA
 is the electromagnetic actuator force, 

which is considered as the control input.

Mathematical model of hydraulic active 
suspension system

Figure 1(c) shows a schematic diagram of a 
quarter-car active hydraulic suspension system. 
The mathematical model of this active suspension 
system is given by

	 + − + − − +  ( ) ( ) =s s s s u s s u f Am z c z z k z z F F 	 (5)

− − − − + − −  ( ) ( ) ( ) =u u s s u s s u t u r f Am z c z z k z z k z z F F 	 (6)

where FA is the hydraulic actuator force and Ff is the friction force generated by the seals of the 
piston with the cylinder wall inside the actuator. 
This friction force has a significant magnitude  
(> 200N) and cannot be ignored [5, 12].

Defining the state variables x1 = zs, x2 = zs, x3 = zu 
and x4 = zu, one obtainsthe following state-space 
description:
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

	(7)

The net force provided by the hydraulic actuator 
as control input u = FA - Ff is the difference 
between the hydraulic force FA and the friction 
force Ff.

Sliding mode-differential flatness control 
of hydraulic suspension system

The hydraulic suspension system is controllable 
and, there fore, differentially flat [13] with a flat 
output constructed as a linear combination of the 
displacements of the body of the car and wheel  
[14, 15]:

	 1 3= +s uF m x m x 	 (8)

In our analysis zr is considered as an unknown 
exogenous perturbation signal due to irregular 
road surfaces with uniformly bounded magnitude 
for all 0t  , i.e., ( )

0
max

≥
≤rt

z t λ , which could 

be suppressed or at least attenuated by the sliding 
mode-based GPI control action. In fact, our 
design approach pursues to exploit the sliding 
mode control methodology for design of robust 
suspension system controllers with respect to 
unmodeled additive bounded perturbation input 
signals and parametric uncertainties. 

Then, all the unperturbed system variables can be 
parameterized in terms of the flat output and a 
finite number of its time derivatives as follow,
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From this differential parameterization, we get 
the following input-output differential equation: (4) (3) 3 52 4

1 1 1 1 1

1= − − − −F u F F F Fη ηη η
η η η η η

  	 (9)

where

η η η η η+ + +1 2 3 4 5= , = , = 1, = , =u s u s s u s s s

t t s t t s t s s

m c m c k m k c k
k k m k k m k m m

Now, consider the traditional sliding surface,

	 σ β β β+ + + 

(3)
2 1 0= F F F F 	 (10)

which is chosen so that the error dynamics 
restricted to σ = 0 is governed by the desired 
linear differential equation,

	 β β β+ + + 

(3)
2 1 0 = 0F F F F 	 (11)

The design gains β β2 0, ,  are selected to verify 
that the associated characteristic polynomial 

β β β+ + +3 2
2 1 0s s s  be Hurwitz. As a 

consequence, the error dynamics on the switching 
surface σ = 0  is globally asymptotically stable. 
The sliding surface σ = 0  is made globally 
attractive with the continuous approximation 
to the discontinuous sliding mode controller as 
given in [16], i.e., by forcing the system to satisfy 
the dynamics, 

	 [ ]σ µ σ γ σ− + = ( )sign 	 (12)

where μ, γ denote positive real constants and 
“sign” is the standard signum function. Indeed, for 

σ ≠ 0, and using the Lyapunov function 21
2

=V σ
,

we have that 2 < 0= = − −V σσ µσ µγ σ



. 

Therefore a sliding regime is guaranteed to exist 
on σ = 0 for all time t after the finite hitting 
time th [8]. Moreover, if the differentially flat 
linear vehicle suspension system dynamics is 
subjected to the bounded unknown perturbation 
input signal ξ (t), it easy to prove, using the 

Lyapunov function 21
2

=V σ  and choosing 

( )sup= > tW tµγ ξ , the asymptotic 

convergence of σ to the sliding surface σ = 0. Indeed, 

( )( )2 sup < 0= ≤ − − − tV W tσσ µσ ξ σ

 .

One then obtains from (9) the following sliding-
mode controller: 

	 η η η η η+ + + + 

(3)
1 2 3 4 5=u v F F F F 	 (13)

with

[ ]β β β µ σ γ σ− − − − + 

(3)
2 1 0= ( )v F F F sign

This controller requires measurements of all the 
state variables of the suspension system, zs, sz , 
uz  and uz  corresponding to the vertical positions 



109 

Active vibration control of vehicle suspension systems using sliding modes, differential flatness ... 

and velocities of the body of the car and the tire, 
respectively. 

In addition, the controller (13) can also be 
implemented for the active electromagnetic 
suspension system given by the equations (3) and 
(4), where the damper and the hydraulic actuator 
are replaced by an electromagnetic actuator, 
forming with the spring an oil-free suspension 
[12]. In this case, the control input u is the force 
FA supplied by the electromagnetic actuator, i.e., 
u = FA.

Sliding mode-gpi control of hydraulic 
suspension system

An integral input-output parameterization of 
the time derivatives of the flat output, is given, 
modulo initial conditions, by



 



( )


( )



( ) ( ) ( )

η ηη η
η η η η η

η ηη η
η η η η η

η ηη η
η η η η η

− − − −

− − − −

− − − −

∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫

 

 



(3)
3 52 4

1 1 1 1 1

2 23 52 4

1 1 1 1 1

3 2 33 52 4

1 1 1 1 1

1=

1=

1=

F u F F F F

F u F F F F

F u F F F F

These expressions are obtained by successive 
integrations of the equation (9). For simplicity, we 

have denoted the integral ( )φ τ τ∫0
t d  by φ∫  and 

( )σ σ φ σ σ σ−∫ ∫ ∫ 

1 1
10 0 0

nt
n nd d  by ( )φ∫

n  with n a 

positive integer.

The relationships between the state variables and 
the integrally reconstructed state variables are 
given by







+ + + + +

+ + + + +

+ + +

  

    

   

(3)(3) (3) (3)2

(3) (3)2

(3) 2

= (0) (0) 2 (0) (0) 2 (0)
1= (0) (0) (0) (0) (0)
2
1= (0) (0) (0)
2

F F F t F t F t F F

F F F t F t F t F F

F F F t F t F

where F(3) (0), (0)F  and (0)F  are all real constants 
depending on the unknown initial conditions.

The sliding surface inspired on the GPI control 
can be proposed as,

	 	 (14)

The last integral term yields error compensation, 
eliminating destabilizing effects, those of the 

structural estimation errors. The ideal sliding 
condition σ = 0  results in a sixth order dynamics,

	 	 (15)

The gains of the controller α5, ... , α0 are selected 
so that the associated characteristic polynomial 

α α α α α α+ + + + + +6 5 4 3 2
5 4 3 2 1 0s s s s s s  is 

Hurwitz. As a consequence, the error dynamics 
on the switching surface σ = 0  is globally 
asymptotically stable.

The sliding surface 
σ = 0  is made globally 

attractive with the continuous approximation 
to the discontinuous sliding mode controller 
as given in [16], i.e., by forcing to satisfy the 
dynamics, 

	
  σ µ σ γ σ− +


= [ ( )]sign 	 (16)
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where μ and γ denote real positive constants. As 
before, the sliding surface is globally attractive, 

   

2
< 0= − −σ σ µσ µγ σ



 for σ ≠ 0 .Then the

 following sliding-mode controller is obtained:

	 

 η η η η η+ + + + 

(3)

1 2 3 4 5=u v F F F F 	 (17)

with



 

( )
 α α α α α α µ σ γ σ− − − − − − − +∫ ∫ 

(3) 2

5 4 3 2 1 0= [ ( )]v F F F F F F sign

This controller requires only the measurement of 
the variables of the states zs and zu corresponding 
to the vertical displacements of the car body and 
the wheel, respectively.

Instrumentation of active 
suspension system

Measurements Required

The variables only required for implementation 
of the proposed Sliding Mode-GPI controller are 
the vertical displacement of the body of the car  zs, and the vertical displacement of the wheel zu. 
These variables are needed to be measured by 
sensors. On the other hand, for implementation 
of the proposed Sliding Mode-Differential 
Flatness controller, are needed to measure the 
vertical displacement of the body of the car and 
the wheels, as well as the velocities of the body 
of the car sz , and the wheel uz .

Using Sensors

In [17], the use of sensors in experimental vehicle 
platforms, as well as in commercial vehicles is 
presented. The most common sensors, used for 
measuring the vertical displacement of the body 
of the car and the wheels, are laser sensors. This 
type of sensor could be used to measure the 
variables sz  and sz  needed for implementation 
of the controllers. Accelerometers or other types 
of sensors are needed to get information of the 
velocity signals 

sz and 
uz . In the Sliding Mode-

GPI Control scheme, the velocity variables are 
estimated with the use of integral reconstructors 
from the knowledge of the control input, the flat 
output and the differentially flat system model.

A schematic diagram of the instrumentation of the 
active suspension system is illustrated in figure 2.

Figure 2 Schematic diagram of the instrumentation 
of the active suspension system: (a) Sliding Mode-
Differential Flatness Control, (b) Sliding Mode-GPI 
Control

Simulation results
The simulation results were obtained by means 
of MATLAB/Simulink®, with the Runge-Kutta 
numerical method and a fixed integration step of 
1 ms.

Parameters and type of road disturbance

The numerical values of the quarter-car 
suspension model parameters [18] chosen for the 
simulations are shown in table 1.
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Table 1 Vehicle suspension system parameters for a 
quarter-car model

Parameter Value
Sprung mass (ms) 282 [kg]
Unsprung mass (mu) 45 [kg]

Spring stiffness (ks)

Damping constant (cs)

Tire stiffness (kt)

The following trajectory was utilized to simulate 
the unknown exogenous disturbance excitations 
due to irregular road surfaces [18]

	
π−= 1 (8 )

2r
cos tz a 	 (18)

where a is the bump amplitude, which is set to be 
a = 0.11 [m] for 0.5 ≤ t ≤ 0.75, a = 0.55 [m] for 
3.0 ≤ t ≤ 3.25 and 0 otherwise.

The desired robust performance of the closed-
loop vehicle suspension system is to reduce as 
much as possible the car-body vibrations induced 
by the road surface perturbation.

Sliding mode-differential flatness 
controller performance

It is desired to stabilize the system in the positions 
zs = 0 and zu = 0. The controller gains (13) were 
obtained by forcing the closed-loop characteristic 
polynomial to be given by the following Hurwitz 
polynomial: 

	 ( ) ζ ω ω= + + +2 2
1 1 1 1( )( 2 )d n np s s p s s 	 (19)

with p = 100, ζ1 = 0.5, ωn1 = 90, μ = 95 and γ = 95. 
The simulation results are illustrated in figure 3. 
It can be seen a high vibration attenuation level 
of the active vehicle suspension system (car-body 
acceleration and position) compared with the 
passive counterpart. Moreover, one can observe 
the active suspension deflection response to 
compensate the road surface perturbation force, 
and that supt |x1 - x3| < a , where a is the bump 
amplitude.

 

 

Figure 3 Simulation results of Sliding Modebased Differential Flatness controller of hydraulic suspension system



112

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

Sliding mode-GPI controller performance

It is desired to stabilize the system in the positions 
zs = 0 and zu = 0. The controller gains (17) were 
obtained by forcing the closed-loop characteristic 
polynomial to be given by the following Hurwitz 
polynomial: 

( ) ζ ω ω= + + + +2 2 2
2 1 2 2 2 2( )( )( 2 )d n np s s p s p s s

with p1 = 90, p2 = 90, ζ2 = 0.9, ωn2 = 70, m = 95 
and γ = 95. The performance of the sliding mode 
based GPI controller is depicted in figure 4. One 
can see the high attenuation level of road-induced 
vibrationswith respect to passive suspension 
system.

 

 

Figure 4 Simulation results of Sliding Mode based GPI controller of hydraulic suspension system

Conclusions
In this paper we have presented a design 
approach of robust active vibration control 
schemes for vehicle suspension systems based 
on Generalized Proportional-Integral control, 
differential flatness and sliding modes. Two 
control schemes have been proposed to attenuate 
the vibrations induced by unknown exogenous 
disturbance excitations due to irregular road 
surfaces. Integral reconstruction is employed to 
get structural estimates of the time derivatives of 
the flat output, needed for the implementation of 
the controllers proposed. The simulation results 
show that the stabilization of the vertical position 

of the quarter of car is obtained within a period 
of time much shorter than that of the passive 
suspension system. The fast stabilization with 
amplitude in acceleration and position of the body 
of the car is observed. Finally, the robustness of 
the controllers to stabilize to the system before 
the unknown disturbance is verified.
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