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Abstract

A method for the kinematic analysis of a fourth class Assur group, using a 
combination of graphical and analytical methods, is presented in this paper. 
The solution is obtained through a method in which two special Assur points 
are used. A mechanism of 1 DOF with a fourth class group is considered as 
an example to develop the proposed method. The results of this method are 
in agreement with the results obtained by a dynamic simulation program. 
Since there are no solutions for fourth class structural groups in the literature, 
this method allows developing a complete modular procedure for the 
kinematic analysis of mechanisms, with the methodological advantages that 
this type of solution offers. 

----- Keywords: Kinematic analysis, fourth class Assur group, structural 
analysis

Resumen

En este artículo se presenta un método para el análisis cinemático de un 
grupo de cuarta clase, utilizando un método grafo-analítico. La solución 
es obtenida utilizando dos puntos especiales de Assur. Se utiliza como 
ejemplo un mecanismo de 1 GDL con un grupo de Assur de cuarta clase. 
Los resultados obtenidos coinciden plenamente con los resultados obtenidos 
al utilizar un programa de simulación dinámica. Ya que este tipo de tareas 
para los grupos estructurales de cuarta clase, no se resuelve en la literatura, el 
método propuesto permite el desarrollo de un análisis modular completo para 
el análisis cinemático de mecanismos, con las ventajas metodológicas que 
ofrecen este tipo de soluciones.

----- Palabras claves: Análisis cinemático, grupo de Assur de cuarta 
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Introduction
A planar mechanism can be described with the 
help of different modules such as the frame, the 
driver links, and Assur groups of second, third, 
fourth class, etc. [1]. The essential classification 
of mechanisms was proposed by L V Assur in 
1914. This scientist proposed and developed 
a method for the creation of mechanisms as a 
consecutive superposition of kinematic chains 
that have specific structural properties.

Mechanism assembly consists of connecting the 
group (all the joints that are external to the group) 
to a base mechanism. The joints are connected to 
some mobile links, which has a defined movement 
law, or to the structure of the mechanism. The 
kinematic analysis (positions, velocities, and 
accelerations) can be performed through the 
consecutive determination of each Assur group, 
when the movement laws of the driving links 
are given. This method is known as the modular 
method [2], in which the kinematic equations are 
formulated and solved separately for each module. 
The order of the solutions of the equations is 
defined by the structure of the mechanism. The 
analysis of positions for each Assur group consists 
of determining all the possible configurations, 
when the positions of the external joints and the 
lengths of the links are given. The solution for 
second, third and fourth class Assur groups are 
described in works such as [3-8].

The kinematic analyses for an Assur group 
consists of determining the angular velocities 
and accelerations of the links and the linear 
velocities and accelerations of the internal 
joints of the group. Kinematic analysis, using 
graphical methods, for second and third class 
Assur groups are described in several works [1, 
8, 9]. Analytical methods for second and third 
class groups are described in [3, 9]. Some authors 
propose numerical methods for the kinematic and 
dynamic analysis of multibody systems [10] based 
on natural coordinates. The numerical methods 
have contributed to the development of dynamic 
simulation computer programs. Buskiewicz [11] 

proposes an algorithm that compiles structural 
and kinematic analysis; this is numerically easy 
to implement. The kinematic analysis is based on 
standard kinematic equations that are functions of 
velocities and accelerations, allowing a modular 
and kinematic analysis for the different Assur 
groups that constitute the mechanism.

Kinematic analyses of a fourth class Assur group 
are studied in several papers [9-12]. For this 
group is also possible to use analytical methods, 
formulate the kinematic equations of the group, 
and then derive them with respect to time [13]. 
Once the Jacobian matrix is obtained, velocities 
and accelerations for the group are easy to 
determine by solving a linear equation system.

From the literature review it is concluded that 
the grapho-analytical kinematic solutions for 
the fourth class Assur groups practically do not 
exist in the specialized literature, that fact makes 
difficult to develop a complete modular method 
for this kind of task. 

A new method for the kinematic analyses 
of a fourth class Assur group, based on the 
combination of graphical and analytical methods, 
is proposed in this paper. Initially, a graphical 
procedure is used to determine the velocities and 
accelerations for points that are called special 
Assur points; there are two special points, one 
for each link with internal joints (mentioned in 
this paper as closure links) of the fourth class 
Assur group. A system of four linear equation is 
obtained from the kinematic diagrams (velocity 
or acceleration): two equations for each special 
point concerned with the relative velocities or 
the relative accelerations. The system of linear 
equation has four unknown variables that are the 
angular velocities or the angular accelerations of 
the group links. Once the angular velocities or 
accelerations for the links related to the group 
are obtained, the velocity or acceleration for any 
point that belongs to some of their links can be 
calculated. The proposed procedure is verified in 
this work by taking as examples one mechanism 
of a 1 DOF with a fourth class Assur group.
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Methodology
The determination of velocities and accelerations 
for a fourth class Assur group can be obtained 
using the Assur special point method. A fourth 
class Assur group, shown in figure 1.a, consists 
of two ternary links, called here drag members, 
two joints, which are an internal and an external 
joint, and two binary links, both being internal 
joints. The external joint of the ternary links, as 
shown in figure 1.a, are joints with links 1 and 
6 of the base mechanism. Given the velocities 
and accelerations of the external points of the 
group, joints B and E of figure 1, the kinematic 
analysis of a fourth class Assur group consists of 
determine the angular velocities and accelerations 
for the links of the group. 

The first step of the analysis consists of 
determining the special Assur points for the binary 
links of the group with internal joints, links 3 and 

5 (called in this paper closure links). The special 
Assur point of link 3 is obtained by extending 
line BC, which belongs to link 2, and ED, which 
belongs to link 4, to find the intersection point 
S3; this point is considered to belong to link 3. A 
similar procedure is followed to obtain point S5; 
this point is considered to belong to link 5. In this 
case, the point can be found by projecting line 
BG, which belongs to link 2, and line EF, which 
belongs to link 4.

Analysis of velocities

Now, it is possible to determine the velocities for 
points S3 and S5 using the velocity diagram shown 
in figure 1.b. Therefore, the segments pb and 
pe can be drawn from point p. These segments 
represent the given velocities of points B and E, 
at the chosen scale. The velocity S3v  of point S3 
is determined by the vectorial equations given by 
Eq.1 and Eq. 2: 
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Figure 1 Velocity and acceleration diagram of a fourth class Assur group
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	  	 (1)

	 S3 D S3D E DE S3D= + = + +v v v v v v 	 (2)

The last two vectors of each equation can be 
represented by the same line because both 
vectors are perpendicular to S3B and S3E, 
respectively; therefore, vector S3B CB S3C= +v v v  
is perpendicular to line S3B, and vector 

S3E DE S3D= +v v v  is perpendicular to line S3E.

Similarly, the vectorial equation for S3 can be 
formulated using Eq.3 and Eq. 4:

	 S3 B S3B= +v v v 	 (3)

	 S3 E S3E= +v v v 	 (4)

For representing graphically Eq. 3 and Eq. 4, 
a straight line can be drawn from point b on the 
velocity diagram, with the direction of the velocity 

S3Bv  (perpendicular to S3B). Similarly, from point 
e, a straight line can be drawn with the direction of 
the velocity S3Ev  (vector that is perpendicular to 
S3E). The intersection point of these two straight 
lines on the velocity diagram (point s3 from figure 
1.b) represents the end of the vector of the velocity 

S3v  of point S3. The magnitude of the velocity 
of this point can be obtained by multiplying the 
distance between points p and s3 by the velocity 
scale factor chosen, mv:

	 S3 3( )vv ps= µ 	 (5)

From the velocity diagram, it is possible to 
determine the relative velocities S3Bv  and S3Ev :

	 S3B 3 S3E 3( ); ( );v vv bs v es= µ = µ 	 (6)

These relative velocities depend on the angular 
velocities of the links that constitute the fourth 
class Assur group. To establish the corresponding 
equations, it is necessary to assume the directions 
for the angular velocities. The following relations 

can be obtained from the velocity diagram, shown 
in figure 2.b, and by assuming that the angular 
velocities of links 2 to 5 are clockwise.

	 2 CB 3 S3C 3( )vL L bsω + ω = µ 	 (7)

	 4 DE 3 S3D 3( )vL L esω + ω = µ 	 (8)

In Eq. 7, the direction of velocity S3Bv  is the same 
as the direction obtained if the angular velocities 
of links 2 and 3 were clockwise; therefore, the 
resultant velocity is positive. In the same way, 
the relative velocity S3Ev  of Eq. 8 has the same 
direction to the one obtained if the angular 
velocities for links 3 and 4 were clockwise.

The velocity S5v  of point S5, related to link 5, 
is determined by the formulation of the relative 
velocity equation with respect to points G and F, 
Eq. 9 and Eq. 10:

	 S5 G S5G B GB S5G= + = + +v v v v v v 	 (9)

	 S5 F S5F E FE S5F= + = + +v v v v v v 	 (10)

The last two vectors of each equation are located 
on the same line, because both vectors are 
perpendicular to S5B or to S5E; this means that 

vector S5B GB S5G= +v v v  is perpendicular to S5B 

and vector S5E FE S5F= +v v v  is perpendicular to 
S5E.

Similarly to the velocity vectorial equations for 
point S3, the vectorial equation system for S5 can 
be described through Eqs.11 and 12:

	 S5 B S5B= +v v v 	 (11)

	 S5 E S5E= +v v v 	 (12)

For the graphical representation of these 
equations, figure 1.b, a straight line can be drawn 
from point b on the velocity diagram with the 
direction of velocity S5Bv  (perpendicular to S5B). 
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Similarly, a straight line is drawn from point e 
with the direction of the vector for the velocity 

S5Ev  (perpendicular to S5E). The intersection 
point of these two straight lines on the velocity 
diagram (point s5 in figure 1.b) represents the end 
of the vector for the velocity S5v of point S5. The 
magnitude of the velocity of this point can be 
obtained by multiplying the length of line ps5 by 
the velocity scale factor:

	 S5 5( )vv ps= µ 	 (13)

Then, from the velocity diagram, it is possible to 
determine the relative velocities S5Bv  and S5Ev

	 S5B 5 S5E 5( ); ( );v vv bs v es= µ = µ 	 (14)

Similar to the analysis of the velocity diagram 
of point S3, the relative velocities S5Bv  and 

S5Ev  depend also on the direction of the angular 
velocities for links 2, 3, 4, and 5. Considering all 
the angular velocities clockwise, the following 
equations are given:

	 2 GB 5 S5G 5( )vL L bsω + ω = µ 	 (15)

	 4 FE 5 S5F 5( )vL L esω + ω = µ 	 (16)

In both equations, the relative velocities are 
positive because the directions of velocities S3Bv  
and S3Ev are the same as the direction obtained if 
the angular velocities for links 2, 3, 4, and 5 were 
clockwise. Solving the system of linear equation 
given by Eqs. 7, 8, 15, and 16 simultaneously, the 
angular velocities for the links 2, 3, 4, and 5 are 
determined.

Analysis of accelerations

The solution to the analysis of accelerations 
for a fourth class Assur group with two drag 
members can be obtained in a similar manner 
to the velocities solution. As in the analysis for 
velocities, it is necessary to make use of the 
special points S3, related to link 3, and S5, related 
to link 5.

Taking an arbitrary point π (figure 1.c) as a pole 
and as a starting point for segments pb and pe for 
the accelerations diagram, the segments pb and 
pe can be drawn; these segments represent the 
accelerations Ba  and Ea  at the chosen scale ma 
for points B and E. The acceleration S3a  of the 
special point S3 can be determined by using Eqs. 
17 and 18:

( ) ( ) ( )3 3 3 3 3

3 3 3 3 3

n t n t n t
S C S C S C B CB CB S C S C

n n t t n t
S B CB S C CB S C B S B S B

= + + = + + + +

= + + + + = + +

a a a a a a a a a

a a a a a a a a a
	 (17)

( ) ( ) ( )3 3 3 3 3

3 3 3 3 3

n t n t n t
S D S D S D E DE DE S D S D

n n t t n t
S E DE S D DE S D E S E S E

= + + = + + + +

= + + + + = + +

a a a a a a a a a

a a a a a a a a a
	 (18)

In Eqs. 17 and 18, the sums of the normal 
and tangential accelerations are shown as 
vectors 

3

n
S Ba , 

3

n
S Ea , 

3

t
S Ba  and 

3

t
S Ea , because the 

directions of their components are the same. The 
magnitudes for the relative normal accelerations 
are determined by:

	 	 (19)

The directions for these vectors can also be 
determined by the same methods already 
mentioned. As the direction of both tangential 
components, for each vectorial equation, are 
the same, it is not necessary to determine the 
magnitude of each components. To calculate the 
resultant of the sum of the tangential components, 
drawing vector action line for the tangential 
accelerations from the ends of the normal 
accelerations 

3

n
S Ba , 

3

n
S Ea is sufficcient. For this 

purpose, segments bnb3 and ene3 can be drawn from 
points b and e, obtained from the acceleration 
diagram; these are the representations for the 
accelerations 

3

n
S Ba  and 

3

n
S Ea  (at scale ma).

Then, straight lines are drawn in the direction of 
the tangential accelerations 

3

t
S Ba  and 

3

t
S Ea  from 

points nb3 and ne3, which are perpendicular to lines 
S3B and S3E, respectively. Point s3, where these 
two lines intersect, is the end of vector S3a ; the 
magnitude of the absolute acceleration of point S3 
is determined by:
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	 S3 3( )aa s= µ π 	 (20)

From the acceleration diagram, it is now possible 
to determine the magnitude of the relative 
accelerations 

3

t
S Ba  and 

3

t
S Ea :

	 3 3

t t
S B 3 3 S E 3 3( ); ( );a b a ea n s a n s= µ = µ 	 (21)

The senses for the relative tangential accelerations 
and the angular accelerations follow the same 
procedure described for the velocity case. These 
relative tangential accelerations depend on the 
angular accelerations of the links that constitute 
the fourth class group. For this case, all the 
angular accelerations are assumed clockwise. 
The following relations are obtained from the 
accelerations diagram:

	 2 CB 3 S3C 3 3( )a bL L n sα + α = µ 	 (22)

	 4 DE 3 S3D 3 3( )a eL L n sα + α = −µ 	 (23)

The tangential acceleration is positive in the 
former equation, because the direction of the 
acceleration 

3

t
S Ba  is the same as the one that the 

angular accelerations for links 2 and 3 would have 
if they were clockwise. In the second case, the 
relative tangential acceleration 

3

t
S Ea  has opposite 

direction to the one that would be obtained if 
the angular accelerations for links 3 and 4 were 
clockwise; this is the reason for the negative sign.

The acceleration S5a  from the special point S5 is 
determined by using Eqs. 24 and 25:

( ) ( ) ( )5 5 5 5 5

5 5 5 5 5

n t n t n t
S G S G S G B GB GB S G S G

n n t t n t
S B GB S G GB S G B S B S B

= + + = + + + +

= + + + + = + +

a a a a a a a a a

a a a a a a a a a
	(24)

( ) ( ) ( )5 5 5 5 5

5 5 5 5 5

n t n t n t
S F S F S F E FE FE S F S F

n n t t n t
S E FE S F FE S F E S E S E

= + + = + + + +

= + + + + = + +

a a a a a a a a a

a a a a a a a a a
	(25)

In Eqs. 24 and 25 the sums of the normal and 
tangential accelerations are shown as resultant 
vectors 

5

n
S Ba , 

5

n
S Ea , 

5

t
S Ba , and 

5

t
S Ea , as the 

directions of their components are equal. The 

magnitudes of the normal accelerations are 
determined as usual, making use of Eq. 26:

	 	 (26)

The direction of the normal acceleration 
vectors is also determined by the same methods 
already mentioned. In the acceleration diagram, 
tangential accelerations are drawn from the ends 
of the normal accelerations

5

n
S Ba and 

5

n
S Ea . The 

directions of these vectors are perpendicular 
to the vectors of the normal accelerations. For 
this purpose, segments bnb5 and ene5 are drawn 
starting on points b and e. These segments are 
obtained from the acceleration diagram and are 
the representations for the accelerations 

5

n
S Ba  and 

5

n
S Ea .

Then, straight lines are drawn from points nb3 and 
ne3 in the direction of the accelerations 

5

t
S Ba  and 

5

t
S Ea , which are perpendicular to S5B and S5E 

respectively. Point s5, which is the intersection 
point of these two lines, is the end of vector S5a  
from the resultant acceleration of point S5, whose 
magnitude is determined by:

	 5S 5( )aa s= µ π 	 (27)

Repeating the procedure for the relative 
accelerations of point S3, the magnitude of 
the relative accelerations 

5

t
S Ba  and 

5

t
S Ea  are 

determined from the acceleration diagram, 
multiplying by the acceleration scale factor

	 5 5

t t
S B 5 5 S E 5 5( ); ( );a b a ea n s a n s= µ = µ 	 (28)

Now, these relative tangential accelerations 
depend on the angular accelerations of the links 
that constitute the fourth class group. Taking into 
account that all the angular accelerations are 
assumed clockwise, the following relations are 
obtained from the accelerations diagram:

	 2 GB 5 S5G 5 5( )a bL L n sα + α = −µ 	 (29)
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	 4 FE 5 S5F 5 5( )a eL L n sα + α = µ 	 (30)

In Eqs. 29 the relative tangential accelerations 
5

t
S Ba  are opposite to one that angular accelerations 

of links 2 and 5 were clockwise. For that reason, it 
is necessary to write the negative sign in Eqs. 29.

From the simultaneous solution of the systems of 
linear equation given by Eqs. 22, 23, 29, and 30, the 
angular accelerations for the links that constitute 
the fourth class group can be determined.

Results

In the present section, a mechanism R – (RRP – 
RRR) of 1 DOF is considered as example. Figure 
2.a shows the representation of a mechanism 
comprised by driving link 1, fixed link 6, and a 
fourth class group (links 2, 3, 4, and 5). Links 2 
and 4 are the ternary links of the group, and joints 
B and G are the joints that connect the group to 
the base mechanism. Links 3 and 5 join to the two 
drag links. 

Figure 2 Example of the mechanism of study

The lengths of the links are: LAG = 275 mm, LAB 
= 100 mm, LBE = 500 mm, LEF = 300 mm, LGD 
= 300 mm, LFG = 150 mm, and LFD = 180 mm; 
the angular velocity of link 1 is w1 = 1 rad/s. The 
additional lengths required for the analysis of 
velocities and accelerations are obtained from 
the positions diagram. The additional lengths 
are the distances measured from the joints to the 
special points S3 and S5: LBS3 = 248.0601 mm, 
LDS3 = 481.9848 mm, LFS5 = 436.2923 mm, and 
LES5 = 155.1123 mm.

For the kinematic analysis of the fourth class 
Assur group, it is necessary to determine the 

special point S3, which belongs to link 3, and 
point S5, which belongs to link 5. Link 3 has a 
prismatic joint with link 2 and one rotation joint 
with link 4. The procedure to locate the special 
point requires a modification with respect to the 
case in which the link with internal joints has 
only rotation joints. The special point of link 3 
must be such that, when formulating the relative 
velocities equation, the unknown velocities are 
parallel. Observing that the relative movement 
between links 2 and 3 is parallel to link 3, the 
special point must be located on a line that is 
perpendicular to link 2 and that intercepts point B. 
Point S3 is located on the intersection between a 
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line that is perpendicular to the relative movement 
between links 2 and 3 and the projection of line 
GD of link 4; point D represents the rotation joint 
between links 4 and 3. Point S2 is the point of link 
2 concurrent to point S3. 

The binary link 5 joins with the ternary links 
(2 and 4) with rotation joints. Point S5 is the 
intersection point when line BE related to link 2 
and line GF related to link 4 are projected.

Analysis of velocities: Figure 2.b shows the 
velocities diagram of the mechanism. 

The solution for the driving link is:

	 B A BA= +v v v  	 (31)

BA 1 BA 1rad/s 100mm 10mm/sLω= ⋅ = ⋅ =v  	 (32)

The equations for the velocity of point S3 related 
to link 3 are obtained using the equation of 
relative velocities from joints S2 and D:

( )
( )

S3 S2 S3S2 B S2B S3S2 B S2B S3S2

S3 D S3D G DG S3D G DG S3D

v v

v v

= + = + + = + +

= + = + + = + +

v v v v v v v

v v v v v v v
	 (33)

The velocities vS2B and vS3S2 are parallel, because 
vS2B is perpendicular to line BS2, and vS3S2 is 
parallel to link 2. As BS2 is perpendicular to link 
2, they can be drawn together as is presented in 
Eq. 33. A similar procedure is given for velocities 
vDG and vS3G, which are perpendicular to line DG.

For link 5, special point S5 has to be determined, 
by projecting lines BE and GF. The procedure 
to determine the velocity of point S5 is the same 
as the one followed for point S3; that is, using 
relative velocities from points E and F:

( )
( )

S5 E S5E B EB S5E B EB S5E

S5 F S5F G FG S5F G FG S5F

v v

v v

= + = + + = + +

= + = + + = + +

v v v v v v v

v v v v v v v
	 (34)

Point S5 is chosen so that the velocities vEB and 
vS5E become parallel, as vFG and vS5F.

Figure 2.b shows the velocities diagram, which 
is useful to solve the velocities at points S3 and 
S5. The distance between points s3 and b (from 
the velocities diagram) gives the sum of the 
relative velocities S2Bv  and S3S2v . Assuming 
clockwise angular velocities for links 2 and 3 the 
relative movement between links 2 and 3 from 
left to right (observed from link 2), the following 
equation results:

S2B S3S2 2 BS2 S3S2 3bs 59.3891mm/svv v L vω µ+ = − + = ⋅ = 	 (35)

where the distance between points b and s3 
is represented by line 3bs ; its magnitude is 
obtained by multiplying it by the scale actor mv. 
If the direction of the angular velocity of link 2 
is assumed clockwise, then the direction of the 
relative velocity S2Bv  is opposite to the resultant 
velocity 3bs . A Similar procedure is followed for 
the other velocities:

DG S3D 4 DG 3 DS3 3gs 138.2264mm/svv v L Lω ω µ+ = − = ⋅ = 	(36)

If the angular velocities of links 3 and 4 are 
assumed clockwise, the relative velocities DGv  
and S3Dv  have opposite directions. Then, in Eq. 
36, the latter relative velocity vS3D is negative. 
Next, the equations for the relative velocities 
related to point S5 can be formulated as:

EB S5E 2 EB 5 ES5 5bs 21.4233mm/svv v L Lω ω µ+ = + = ⋅ = 	 (37)

FG S5F 4 FG 5 FS5 5gs 119,3355mm/svv v L Lω ω µ+ = + = ⋅ = 	 (38)

In the linear equation systems given by Eqs. 35, 
36, 37 and 38, the unknown variables are the 
angular velocities w2, w4, and w5 and the relative 
velocity between links 2 and 3, S3S2v . This system 
of equations can now be solved. The distances 
LBS3, LES5, and LFS5 can be taken from the positions 
diagram. The solution for the system of equations 
gives the following results:

w2 = 0.0086 rad/s, w4 = 0.4746 rad/s, w5 = 0.1104 
rad/s, vS3S2 = 61.5254 mm/s.
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Analysis for accelerations: Figure 2.c represents 
the acceleration diagram for the mechanism.

The first step consists of solving the driving link.

	
n t

B A BA BA= + +a a a a 	 (39)

	
t

A BA 0= =a a 	 (40)

( )2n 2 2
BA 1 AB 1 rad/s 100 mm 100 mm/sa Lω= ⋅ = ⋅ = 	 (41)

The direction of the acceleration n
BAa  is from 

point B to point A. Next, the accelerations of 
point S3, related to link 3, and S5, related to link 
5, are determined.

( )c n t c
S3 S2 S3S2 S3S2 B S2B S2B S3S2 S3S2

ρ ρ= + + = + + + +a a a a a a a a a
	
(42)

where ( )2n 2 2
S2B 2 BS2 0.0086rad/s 248.0601mm 0.0183mm/sLω= ⋅ = ⋅ =a , 

the direction is from point D to E
t
S2B 2 S2BLα= ⋅a , that is perpendicular to line BS2

c 2
S3S2 2 S3S22 2 0.0086rad/s 61.5254mm/s 1.0582mm/svω= ⋅ = ⋅ ⋅ =a ,

the direction of this component is obtained 
by rotating the vector vS3S2 through of angle of 
90° in the direction of the angular velocity w2 
(the direction is opposite to that of the component

n
S2Ba ).

S3D
ρa  is parallel to link 2.

In Eq. 42, the accelerations t
DEa  and S3S2

ρa  are 
unknown. The components n

S2Ba and c
S3S2a are 

parallel due to the method to find point S3 (this 
point is located on line DE). A similar case occurs 
with the components t

DEa  and S3S2
ρa . Making use 

of this condition, Eq.42 can be formulated as:

c n t n t
S3 B S3S2 S2B S2B S3S2 B S3B S3Ba a a aρ= + − + + = + +a a a a a 	(43)

Figure 2.c shows the representation for 
n c
S2B S3S2+a a  through line bns3b. As this component 

has opposite direction, its total magnitude can 
be obtained by subtracting both components in 
the direction of line bs3. The resultant tangential 
acceleration t

S3Ba  (perpendicular to the normal 
acceleration) is represented through point ns3b. A 
second equation is determined for point S3:

( )n t n t n t
S3 D S3D S3D G DG DG S3D S3D= + + = + + + +a a a a a a a a a 	(44)

where

( )2n 2 2
DG 4 DG 0.4746 rad/s 300mm 67.5735mm/sLω= ⋅ = ⋅ =a , 

from D to G
t
DG 4 DGLα= ⋅a , that is perpendicular to DG

( )2n 2 2
S3D 3 S3D 0,0086 rad/s 481,9848mm 0,0356mm/sLω= ⋅ = ⋅ =a , 

from S3 to D
t
S3D 3 S3DLα= ⋅a , perpendicular to line S3D

In this equation, the tangential accelerations are 
unknown. Due to the method used to find point 
S3 (this point is located on line DG), the normal 
components n

DGa  and n
S3Da and the tangential 

components t
DGa  and t

S3Da are parallel. Making 
use of this condition, Eq. 44 can be expressed as:

3 3

n n t t n t
S3 G DG S3D DG S3D G S G S Ga a= + + + + = + +a a a a a a a 	(45)

The normal acceleration 
3

n
S Ga  is represented 

through the segment gns3g on the accelerations 
diagram. Here, the normal accelerations are 
subtracted by each other and the resultant 
acceleration can be found. The component 

3

t
S Ga  

is represented through a line drawn from point 
ns3e, perpendicular to the normal component 

3

n
S Ga . The point of intersection of the lines that 

represent the relative tangential accelerations is 
the point of the acceleration of point S3, S3a .

Two equations are needed to find the acceleration 
S5 (S5 belongs to link 5). These equations are 
taken from the relative accelerations between 
points S5 and E, and between points S5 and F:

( )n t n t n t
S5 F S5F S5F G FG FG S5F S5F= + + = + + + +a a a a a a a a a 	(46)

where

( )2n 2 2
FG 4 FG 0.4746rad/s 150mm 33.7869mm/sLω= ⋅ = ⋅ =a , 

the direction of this acceleration is given by line 
FG

t
FG 4 FGLα= ⋅a , that is perpendicular to line FG
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( )2n 2 2
S5F 5 S5G 0.1104 rad/s 436.2923mm 5.3176mm/sLω= ⋅ = ⋅ =a , 

with direction from S5 to F
t
S5F 5 S5FLα= ⋅a , that is perpendicular to line S5F

Due to the parallelism condition, Eq. 46 can be 
reduced to:

n n t t n t
S5 G FG S5F FG S5F G S5G S5Ga a= + + + + = + +a a a a a a a 	 (47)

where n n n
S5G FG S5F= +a a a  is represented through 

line gns5g; the magnitude is obtained by adding 
the normal components from F to G, and the 
tangential acceleration t t t

S5G FG S5Fa a= +a  is 
represented from point ns5g, and it is perpendicular 
to the direction of the normal acceleration.

Taking relative accelerations between points E 
and S5:

( )n t n t n t
S5 E S5E S5EF B EB EB S5E S5E= + + = + + + +a a a a a a a a a 	(48)

where ( )2n 2 2
EB 2 EB 0.0086rad/s 500mm 0.037mm/sLω= ⋅ = ⋅ =a , 

from E to B
t
EB 2 EBLα= ⋅a , perpendicular to line EB

( )2n 2 2
S5E 5 S5E 0.1104 rad/s 155.1123mm 1.8905mm/sLω= ⋅ = ⋅ =a , 

from S5 to E
t
S5E 5 S5ELα= ⋅a , perpendicular to line S5E

Making use of the parallelism condition, Eq. 48 
can be formulated as:

n n t t n t
S5 B EB S5E EB S5E B S5B S5Ba a= + + + + = + +a a a a a a a 	(49)

where n n n
S5B EB S5E= +a a a  is represented through 

line bns5b; the magnitude is obtained by adding 
the normal components from E to B, and the 
tangential acceleration t t t

S5B EB S5Ba a= +a  is 
represented from point ns5b, and it is perpendicular 
to the direction of the normal acceleration.

Figure 2.c represents the graphical procedure 
for the accelerations of points S3 and S5. 
The expressions for the relative tangential 
accelerations are obtained from the accelerations 
diagram. To determine the equations, the 

angular accelerations for links 2, 3, 4, and 5 are 
assumed to be counterclockwise, and the relative 
acceleration S3S2

ρa  from left to right.

t t 2
EB S5E 2 EB 5 S5E s5b 5n s 158.2219 mm/saa a L Lα α µ+ = + = ⋅ = 	(50)

t t 2
FG S5F 4 FG 5 S5F s5g 5n s 137.7597 mm/saa a L Lα α µ+ = + = ⋅ = 	(51)

t 2
S2B S3S2 2 S2B S3S2 s3b 3n s 40.3939 mm/saa a L aρ ρα µ+ = + = ⋅ = 	(52)

t t 2
DG S3D 4 DG 3 S3D s5g gn s 6.173 mm/saa a L Lα α µ+ = − = ⋅ = 	(53)

In the system of linear equations given by Eqs. 
50 to 53, it is necessary to analyze the directions 
of the tangential accelerations in order to assign 
the matching sign. In these set of equations, the 
variables are: the angular accelerations a2, a3 = 
a2, a4, and a5 and the relative acceleration S3S2aρ . 
Solving the set of equations yields: 

a2 = a3 = 0.2663 rad/s2, a4 = 0.4485 rad/s2, a5 = 
0.1616 rad/s2, and S3S2aρ = -25.6695 m/s2

Conclusions 
A method that uses a combination of analytical 
and graphical methods to perform the kinematic 
analysis of a fourth class Assur group was 
presented in this paper. Special Assur points, 
which are points that belong to the links with 
internal joints, are used in the proposed solution. 

An example that comprised a mechanisms 
R – (RRR – RRR) was presented to show the 
application of the proposed method; the solution 
for this example was verified using a commercial 
software and classical analytical methods. The 
results obtained demonstrate the reliability of the 
proposed method.

The developed method can be used for the 
kinematic analysis of planar mechanisms with 
one, two, or three degrees of freedom, including 
such groups. This method allows developing a 
modular method for the kinematic analysis of 
mechanisms. This is especially appropriate for 
pedagogical purposes.
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