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Abstract

The objective of this work is to present the implementation of a topological-
shape sensitivity formulation in a BEM analysis for simultaneous heat
and mass transfer optimization problems. The proposed approach uses a
topological derivative in order to estimate the sensitivity to create a hole in
the domain of the problem. Thus, it is evaluated at internal points, and the
ones showing the lowest values are used to remove material by opening a
circular cavity. As the iterative process evolves, the original domain has holes
progressively punched out until a given stop criteria is achieved. Since the
sensitivities for each of the differential equations are different, a penalization-
type approach has been used to weight the sensitivities associated to each
problem. This allows the imposition of distinct penalization factors for each
problem, according to specified priorities. The results obtained showed good
agreement with solutions available in the literature.

---------- Keywords: Shape optimization, potential problems, boundary
elements, topological derivative, mass transfer

Resumen

El objetivo de este trabajo es presentar la aplicacion de una formulacion para el
analisis de sensibilidad de forma y topologia utilizando elemetos de contorno
en problemas de optimizacion involucrando transferencia simultanea de
calor y masa. El enfoque propuesto usa la derivada topologica para estimar la
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sensibilidad a crear un agujero en el dominio de definicion del problema. De
este modo, la misma se evalua en puntos internos y aquellos que presentan los
valores mas bajos se utilizan para eliminar material mediante la apertura de
una cavidad circular. A medida que el proceso iterativo evoluciona, el dominio
se modifica progresivamente con la incorporacidén de mas agujeros hasta que
se alcanza un criterio de parada determinado. Puesto que las sensibilidades
de cada una de las ecuaciones diferenciales son diferentes, un enfoque tipo
penalizacion ha sido utilizado para ponderar las sensibilidades asociadas
a cada problema. Esto permite la imposicion de factores de penalizacion
distintos para cada problema, de acuerdo a prioridades especificadas. Los
resultados obtenidos mostraron una buena concordancia con soluciones

disponibles em la literatura.

---------- Palabras clave: Optimizaciéon de forma, problemas potenciales,
elementos de contorno, derivada topolégica, transferencia de masa

Introduction

Materials classified as porous are widely used
in many applications in the engineering field.
In the last years some efforts have been done
in order to increase the material efficiency in
different areas. A porous medium was defined
by Kaviany [1] as a mixture of a heterogeneous
solid matrix with its void with fluids. As
a structural material a porous media has
mechanical properties such as elasticity and
strength.

The term “porous materials” is usually reserved
to materials such as fibers, ceramic, concrete
and porous rock as well. This kind of material
is frequently present in a wide variety of
devices or components. There are numerous
scientific and engineering applications for
porous materials. Some examples should be
listed in order to give a panoramic view of
the usage of these materials. For example,
for Chemical engineering this material is
found in reactors and static mixers, For Civil
engineering, the concrete and the aquifers [2]
(which consist of sand, gravel and fractured
rock) are typical examples of porous materials,
for mechanical engineering a layout of heat
exchangers [3] and micro channel cooling [4]
also can be modeled as a porous media, for
biomedical engineering a good example are the
bones, lungs and kidneys. In Dondero et al. [5]

a numerical methodology for the computation
of the effective thermal conductivity (ETC)
of random micro-heterogeneous materials
using representative volume elements and the
Fast Multipole Boundary Element Method
(FMBEM) was introduced. This methodology
was applied to solve a two-dimensional foam-
like microstructure consisting of a random
distribution of circular isolated holes. The final
results showed that the proposed numerical
methodology is effective for the computation
of the ETC of random micro heterogeneous
materials.

Obviously there are many others applications
which are impossible to be cited herein. With
this brief review was possible to expose the
extension of the problems that involves the
porous materials. In this sense the main objective
of this work is focused in presenting a numerical
methodology to combine heat and mass transfer
designs in a resulting optimal solid shape for
both problems. Materials which are in charge of
transferring heat and mass simultaneously should
be classified as porous materials. A strategy
of compromise [6] that attributes weights to
the respective equations will be employed in
order to establish a relationship between both
problems. A well-known topological derivative
(D,) approach [7, 8] was used to evaluate the
sensitivities, as an alternative to the traditional
homogenization methods [9]. The boundary
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element method (BEM) was chosen to provide
the numerical solution. Since the BEM does
not require domain meshes, a significant
reduction in the computational cost during the
iterative optimization process can be achieved,
in comparison to other traditional numerical
methods. As the efforts will be straight to
the solution of multi-objective optimization
problems using the proposed methodology,
this work will be structured as: Firstly, the
D, formulation for the Poisson equation is
presented. Next, the optimization procedure
employed herein for multi-criteria problems
detailed. In order to access the formulation, a

aB,

(a)

The local value of D, at a point (x ) inside the
domain for this case is evaluated by:

L p(Q)-p(Q)
Dy() =lim == (1)

Where y(Q) and y(e) are the cost function
evaluated for the original and the perturbed
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case of simultaneous two-dimensional heat and
mass transfer is optimized for mass reduction
and discussed.

Topological derivative

A topological derivative for Poisson Equation
is applied in this work. A simple example of
applicability consists in a case where a small
hole of radius (€) is open inside the domain. The
concept of topological derivative consists in to
determine the sensitivity of a given function
cost () when this small hole is increased or
decreased (figure 1).

(b)
Figure 1 Topological derivative original concept: (a) Original Domain €2 and (b) Perturbed domain €2,

domain, respectively, and f is a problem
dependent regularizing function. By equation
(1) it is not possible to establish an isomorphism
between domains with different topologies.
This equation was modified introducing a
mathematical idea that the creation of hole
can be accomplished by single perturbing an
existing one whose radius tends to zero, figure
2.



aB,
(a)

This allows the restatement of the problem
in such a way that it is possible to establish a
mapping between each other [10].

5 ()’e) = lim W(Q€+5€) — W(Qg)
' e=0 f(Qg+6g)_ f(QE)

)
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(b)

Figure 2 Topological Derivative with a new point of view. (a) Original Domain €2 and (b) Perturbed domain €2,

when the hole increase or decrease. It is also
important to notice the both Eq. 1 e Eq. 2 are
equivalent, as presented in [10].

The D, for the steady state heat transfer will be
briefly reviewed herein. In the case of linear heat
transfer, the direct problem is stated as:

Where 6¢ 1s a small perturbation on the holes’s Solve {u, | - kAu, = b} on &3, ®)
radius. Equation (2) gives a shape sensitivity Subjected to
ug = ; on FD
du, —
_k £ — on I
poaal N 4)
—kaug =h(u.-u.) on I,
on
where
h(e,B,y)= a(ug—ag)tﬁ kaug +q |+¥ kaug +h (u,—ul) |=0 5
on on )
Dirichletb.c. Newmannh.c. Robinb.c.
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Is a function which takes into account the type
of boundary condition on the holes to be created

(u aug = g are the temperature and flux on the
< on 9

hole boundary, while u’ and 4 are the hole’s
internal convection parameters, respectively).

Taking a general form for a cost function written
as

w(Q,)= [¢o,(,)dQ, + [ (u,)dT, ()
QT FT

Where 1t is a parameter associate to the shape
change velocity, i.e., x_ (x) = x + v (x). The
sensitivity of the cost function with respect to t
can be derived from the Gateaux derivative.

¥ (Q,)-¥(Q,
Ly(q,) i ) O (41)
dr =0 70 T

W py)=0 on B (7)

Therefore the problem should be re-stated as:

Evaluate: i‘I’(QT) =0
dt

Subject to

ar(ur’nf):/f(nr) vnT € ﬂrl VTZO (8)

Where a_ is a continuous, coercive bilinear
form, / is a continuous linear functional and
B, is the space of the admissible perturbation
functions for the perturbed domain . Using

the total potential energy as a cost function
(@, (u,)=4a,(u,,u,)~1,(u,)), the a, and [,

T

functional are written as:

a, (u,,n,):= J- kVu,-VndQ+

Q

£

[ hundr+ | hfun.ddn
r,

A,
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I(n.)= [ bn.dQ-|gn.dr -
Q T

£

[ hu.ndT— [ ndoA+y [ hu.ndon
T,

aAsﬁs aAs

Considering Eq. (8) one can derive the D,
expression particularized for the three classical
boundary conditions prescribed on the holes.

Neumann boundary condition

For this case the eq. (5) is particularized as (a =
0, =1,y = 0) and the D, is obtained by taking
the limit:

|
21'(e) ©)

Jdu Jdu 2

k| == |-k| == |-2bu, ——q.u, | dQ

j[ (ar) (an) e gqf”f] ¢

Qe

DT()%) = _Lilrol

where t and n are the tangential and normal
directions respectively.

Both cases of Neumann boundary conditions
must be considered:

7. =2 = gcom /(O =-7 (10
n o,
_ au ' —
7. =—= #0com/'(&)==27m (11)
on 2,

For homogeneous and non-homogeneous cases
respectively.

Dirichlet boundary condition

For this case the eq. (5) is particularized as (a =
1, =0,y = 0) and the D, is obtained by taking
the limit:

lim
021 (e)

2 2 (12)
| [k(aug) —k(a”f) —2bu8] dQe
e ot on
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Being the conditions

- )
U, =1 el 20 (13)
ot 20,
27
Used along with f'(€) =——.
h e

Robin boundary condition

In this case one has (a = 0, f =0, y = 1) and the
D, is obtained by taking the limit:

A . 1
S PV

J k (%) - k(%) —2bu, —ghf (us —2u,, ) dQe
ot on £

Qe

(14)

Now the regularizing function for this case is

f(e) =-2me.

Afterwards table 1 summarizes the final
expressions for topological derivative, after
apply the respective regularizing function for
each boundary condition, under consideration in
Eq. (9), Eq. (12) and Eq. (14). It is also important
to inform that the same formulas presented as
table 1 are used for determining the sensitivity of
a domain governed by the Laplace equation.

Table 1 Topological derivative for the three b.c. prescribed on the holes

Boundary condition on the hole

Topological derivative

Evaluated at

Neumann homogeneous boundary condition
(@=0,p=1,y=0)

Neumann non-homogeneous boundary condition
(@=0,p=1,y=0)
Robin boundary condition
(@=0,=0,vy=1)

Dirichlet boundary condition
(@=1,=0,y=0)

Dirichlet boundary condition
(@=1,=0,y=0)

D, ( x )=kVuVu—-bu xe QuUT
D,( x)=—q.u xe QuT
Dy (%)= (u, —u,.) xe QuUT
D.( % ):—lk(u—;g) e Q
2
D.( x ) = kVuVu —bu. xel

It is also important to take attention that D, is
evaluated by different expressions for interior
and boundary points. Another remark relies on
the fact that the expressions presented as Tab.1
are deduced taking the total potential energy as
cost function.

Multi-criteria optimization
procedure

The optimization of problems under more than
one cost function is becoming quite common

in engineering practice. For instance, in the
electronic industry the miniaturization of
components are leading to excessively slender
designs, which demands new and efficient
cooling devices, usually base on porous media.
The successful design of such components
imply in the optimization of both, heat and mass
transfer. This technology presents two basic
advantages [11]: (a) the porous heat sink provides
more than 10 times the contact area of a smooth
surface; and (b) the irregular structures of the
porous heat sinks, at sufficient high velocities,
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causes irregular fluid flow, increasing the thermal
dispersion conductivity. This is a typical case
where the heat conduction would lead to an
optimum design, while the convection would
lead to another one. Therefore, it is necessary to
combine both optimization problems in a single
one. Clearly, the adoption of one (single criteria)
design could result in a less efficient performance
of the product from the other criteria(s) point(s)
of view.

In engineering design practice, it is usual for a
thermal solid to be required to satisfy one of the
following optimality criteria:

A Asuniform mass transfer rate as possible;
B Asuniform heat transfer rate as possible;

C Maximum possible efficiency in both criteria
A e B, simultaneously.

From the optimization point of view, the first
two criteria mean the extremization of a single
objective function. The satisfaction of criterion C
needs the satisfaction of multiple design criteria,
which is the goal of this work. After separate
BEM heat and mass analysis, the heat flux and
mass densities are determined at internal points.
These values are used to evaluate the topological
derivative. In order to estimate the relative
material usage efficiencies at an internal point,
two dimensionless factors are introduced as:
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where %iu is the mass flux efficiency factor,
D;M |i is the mass flux topological derivative at

is maximum value of

max

internal point i, and D’
D) | . Aheat flux efficiency factor & is derived

accordingly. During the optimization process the
basic goal is to remove material where if is less
efficient. However, it may happen that for multi-
criteria optimization (C), internal points with
low heat fluxes does not necessarily will have
low mass fluxes. In such cases it is necessary
to apply a strategy to generate a compromise
between both phenomena. Rosvany et al. [6]
proposed a strategy of compromise in terms of
weighted sums of ¢, and @), :

a =w,a, +w,a, (16)

Where w,, and w,, are the weighting factors for
the heat and the mass problems respectively. It is
important to note that

wy, +w, =1 (17)

The weighting factors provide a meaningful
way of assigning different levels of importance
to each problem. Therefore, when w =1 and
w, = 0 the criteria A is obtained as a special case,
while w = 0 and w, = I reduces the problem to
a simple mass transfer optimization (criteria B).
Figure 3 depicts a scheme in order to illustrate the
multi-criteria optimization procedure.
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—

Initial Design
BEM

DT

Optimized design

Figure 3 Schematic view of multi-criteria optimization

Numerical example linear discontinuous elements will be adopted
due the irregular boundaries resulted from the
optimization process. The boundary conditions
are depicted in figure 4. The heat transfer problem
has a high temperature of 25°C at the right upper
comer and a low temperature of 23°C at the mid
lower side. The mass transfer problem has a high
potential of 2 kg mol/m* on the upper left corner
and a low potential of 1 kg mol/m’ on the mid

The algorithm used in this work, for performing
the numerical calculations, was developed
using Matlab. This algorithm is composed by
the subroutines: BEM (solver), D (sensitivity
and geometric removal material) and multi-
criteria procedure, as well. Using this algorithm,
a porous square domain of dimension 20 " 20 is

submitted to simultaneous heat and mass transfer. lower side. The remaining boundary is insulated
The geometry is discretised with 40 boundary a5 wel] a5 all the holes open during the process.

elements integrated with 6 Gauss points. The 1y, conductivity and diffusivity coefficient
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are set as 1W/m°C and 1 m?¥s, respectively.
A regularly spaced grid of internal points was
automatically generated, taking into account the
radius of the holes created during each iteration.
The radius was taken as a fraction of a reference
dimension of the domain (» = al_ )). Usually
[ . = min(height, width) was adopted. The
objective in all cases is to minimize the material
volume. The current volume of the domain (4)
was checked at the end of each iteration until a

2 kg mol/m®

reference value is achieved (4, = 4, where 4,
represents the initial volume). This numerical
example will be studied with o = 0.4 and
a, = 0.6, to illustrate a case where a higher
priority is imposed to one of the problems. The
values of o, and o, should be adjusted according
to the priority set by the designer. Three internal
control points were chosen in order to check
temperature, mass concentration, heat and mass
flux as the process evolves.

25°C

2kgmol/m®>  25°C

Mass _|_

Heat

Mass
j— &
Heat

1 kg mol/m®

Figure 4 Initial boundary conditions

Fig. 5 illustrates the behavior of the topological
derivative values calculated for mass (figure 5a)
and heat transfer (figure 5b) inside the domain
before the optimization process be initialized.
Figure 5c represents the topological derivatives
values for both problems obtained by equation

(7).

Figure 6 depicts the topology evolution during
the iterative process. It is clear the material
removal where it is less necessary, according to
the weighting factors used. The process iteration
was halted when a remaining volume of 50 %
was achieved. As explained before, three internal
points of control were chosen (p,(10,6),p,(4.4,14)
and p, (15.6,14)), to account the internal physical
parameters. A mean of the temperature and mass
of the boundary elements were considered too.

Figure 7 and 8 show the history of temperature and
heat flux at the three internal points. Analyzing
the heat flux graph, it is possible to verify that
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23°C
1 kg mol/m®

the gradient at the points p, and p, are increasing
as the process evolves, while at point p, there is
a visible decrease of the gradient value. In figure
7, the point p, shows an increase of temperature
due to the decrease of the gradient at that location.
It is evident that the region which presents less
efficiency is being removed. Consequently, the
flux is maximized along the path connecting the
points p, and p,. figure 9 and 10 depict the history
of mass concentration and mass flux at the three
internal points. The mass flux at the points p, and
p, drops after iteration 56, while it simultaneously
increases at the point p,. This occurs because after
iteration 56 the D, values at the internal points
are gradually homogenized, making difficult to
select locations with conspicuous lower values.
The final geometry resulted in asymmetric
Y-shaped design, with material concentrated at
the right hand side, due to the weighting factors
imposed. However, the mass flux is maximized
from the point p, to p,.
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Figure 5 Initial D, maps for w,, = 0.4 and w,, = 0.6
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Figure 6 Topological evolution
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Figure 8 Heat flux evolution per iteration for p,, p, and p,
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Figure 9 Mass evolution per iteration for p,, p, and p,
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Figure 10 Mass flux evolution per iteration for p,, p, and p,

Conclusions

The goal of this work was to extend the
application of topological-shape sensitivity
analysis to optimization problems governed
simultaneously by two different equations, i.e.,
heat and mass transfer. In order to achieve this,
a compromise optimization scheme was used,
relying on topological derivative results for
the problem. The BEM was used to provide
the numerical solution. It is important to
point out that D_ has the potential total energy
as an implicit cost function. Therefore, the
regions which store energy less efficiency are
progressively removed. The final topology
obtained for the numerical case showed the
weighting factors influence for both problems
(mass or heat transfer). It was shown that
the present methodology can deliver optimal
designs of solids in problems submitted to
multi-criteria. It is also interesting to note
the importance in specifying the priorities for
both problems in order to reach physically
meaningful solutions for materials porous.
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