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Abstract 

shape sensitivity formulation in a BEM analysis for simultaneous heat 
and mass transfer optimization problems. The proposed approach uses a 
topological derivative in order to estimate the sensitivity to create a hole in 
the domain of the problem. Thus, it is evaluated at internal points, and the 

circular cavity. As the iterative process evolves, the original domain has holes 
progressively punched out until a given stop criteria is achieved. Since the 
sensitivities for each of the differential equations are different, a penalization-

----------Keywords:

Resumen

El objetivo de este trabajo es presentar la aplicación de una formulación para el 
análisis de sensibilidad de forma y topologia utilizando elemetos de contorno 
en problemas de optimización involucrando transferencia simultanea de 
calor y masa. El enfoque propuesto usa la derivada topológica para estimar la 
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este modo, la misma se evalua en puntos internos y aquellos que presentan los 
valores más bajos se utilizan para eliminar material mediante la apertura de 
una cavidad circular. A medida que el proceso iterativo evoluciona, el dominio 

se alcanza un criterio de parada determinado. Puesto que las sensibilidades 
de cada una de las ecuaciones diferenciales son diferentes, un enfoque tipo 
penalización ha sido utilizado para ponderar las sensibilidades asociadas 
a cada problema. Esto permite la imposición de factores de penalización 

resultados obtenidos mostraron una buena concordancia con soluciones 
disponibles em la literatura.

---------- Palabras clave:

Introduction

In the last years some efforts have been done 

by Kaviany [1] as a mixture of a heterogeneous 

a structural material a porous media has 
mechanical properties such as elasticity and 
strength. 

The term “porous materials” is usually reserved 

devices or components. There are numerous 

porous materials. Some examples should be 

the usage of these materials. For example, 
for Chemical engineering this material is 
found in reactors and static mixers, For Civil 
engineering, the concrete and the aquifers [2] 

for mechanical engineering a layout of heat 
exchangers [3] and micro channel cooling [4] 
also can be modeled as a porous media, for 
biomedical engineering a good example are the 

a numerical methodology for the computation 
of the effective thermal conductivity (ETC) 
of random micro-heterogeneous materials 
using representative volume elements and the 
Fast Multipole Boundary Element Method 

methodology is effective for the computation 
of the ETC of random micro heterogeneous 
materials.

Obviously there are many others applications 

extension of the problems that involves the 
porous materials. In this sense the main objective 

methodology to combine heat and mass transfer 
designs in a resulting optimal solid shape for 

transferring heat and mass simultaneously should 

(DT
sensitivities, as an alternative to the traditional 
homogenization methods [9]. The boundary 
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the numerical solution. Since the BEM does 

reduction in the computational cost during the 
iterative optimization process can be achieved, 
in comparison to other traditional numerical 

the solution of multi-objective optimization 
problems using the proposed methodology, 

DT formulation for the Poisson equation is 
presented. Next, the optimization procedure 
employed herein for multi-criteria problems 
detailed. In order to access the formulation, a 

mass transfer is optimized for mass reduction 
and discussed.

Topological derivative
A topological derivative for Poisson Equation 

concept of topological derivative consists in to 
determine the sensitivity of a given function 

Figure 1  and (b) Perturbed domain 

The local value of DT at a point ( �̈ ) inside the 
domain for this case is evaluated by:

ö

ð

ø ÷ ø ÷
�ø ÷ ´·³

ø ÷
ÌÜ ¨

º
ã  (1)

evaluated for the original and the perturbed 

domain, respectively, and f is a problem 
dependent regularizing function. By equation 
(1) it is not possible to establish an isomorphism 

mathematical idea that the creation of hole 
can be accomplished by single perturbing an 

2.
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Figure 2  and (b) Perturbed domain 
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radius. Equation (2) gives a shape sensitivity 

important to notice the both Eq. 1 e Eq. 2 are 
equivalent, as presented in [10].

The DT

transfer, the direct problem is stated as:

 Solve {u  | - k u b} on (3)

Subjected to 
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of boundary condition on the holes to be created 

( ô
«

« ¯
²
ã

«  and 
½¸ are the hole’s 

internal convection parameters, respectively). 

as 

ø ÷ ø ÷ ø ÷õã ¼«¼«  (6)

Where  is a parameter associate to the shape 
change velocity, i.e., x (x) = x + v (x). The 

can be derived from the Gâteaux derivative.

ø ÷
ø ÷ ø ÷

ø ÷
ð

ð ð
´·³ ô ô ð

¼
¸

¼

ã

ã
ã  on  (7)

Therefore the problem should be re-stated as:

Evaluate: ø ÷ ðã�
¼

¼

Subject to 

 (8)

Where a  is a continuous, coercive bilinear 
form, l  is a continuous linear functional and 

 is the space of the admissible perturbation 
functions for the perturbed domain . Using 
the total potential energy as a cost function 

Considering Eq. (8) one can derive the DT
expression particularized for the three classical 
boundary conditions prescribed on the holes. 

Neumann boundary condition 
For this case the eq. (5) is particularized as 

and the DT
the limit:

 (9)

directions respectively.

Both cases of Neumann boundary conditions 
must be considered:

 com  (10)

ð�ã
²

«
¯  com  (11) 

For homogeneous and non-homogeneous cases 
respectively. 

For this case the eq. (5) is particularized as 
 and the DT

the limit:

 (12)
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Being the conditions

ð�ã
¬

«
««  (13)

²́

î
÷øù ãº .

In this case one has  and the 
DT

 (14)

f'( ) = - 2 .

expressions for topological derivative, after 
apply the respective regularizing function for 
each boundary condition, under consideration in 
Eq. (9), Eq. (12) and Eq. (14). It is also important 
to inform that the same formulas presented as 
table 1 are used for determining the sensitivity of 
a domain governed by the Laplace equation.

Table 1

Topological derivative Evaluated at

�ø ÷
Ì
Ü ¨ µ « « ¾« �̈

�ø ÷
Ì
Ü ¨ ¯ « �̈

÷ �̈

ø ÷ï
�ø ÷

î
Ì
Ü ¨ µ « « �̈

�ø ÷
Ì
Ü ¨ µ « « ¾« �̈

DT is 
evaluated by different expressions for interior 

the fact that the expressions presented as Tab.1 

cost function. 

Multi-criteria optimization 
procedure 

The optimization of problems under more than 
one cost function is becoming quite common 

in engineering practice. For instance, in the 
electronic industry the miniaturization of 
components are leading to excessively slender 

cooling devices, usually base on porous media. 
The successful design of such components 
imply in the optimization of both, heat and mass 

more than 10 times the contact area of a smooth 
surface; and (b) the irregular structures of the 
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dispersion conductivity. This is a typical case 

lead to another one. Therefore, it is necessary to 
combine both optimization problems in a single 
one. Clearly, the adoption of one (single criteria) 

of the product from the other criteria(s) point(s) 

In engineering design practice, it is usual for a 
thermal solid to be required to satisfy one of the 

A  As uniform mass transfer rate as possible;

B  As uniform heat transfer rate as possible;

A e B, simultaneously.

objective function. The satisfaction of criterion C 
needs the satisfaction of multiple design criteria, 

mass densities are determined at internal points. 
These values are used to evaluate the topological 
derivative. In order to estimate the relative 

³¿¨
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Ì· ··
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internal point i, and 
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ÌÜ  is maximum value of 
Ó

Ì
·

Ü ·

Ø
 is derived 

accordingly. During the optimization process the 

to apply a strategy to generate a compromise 

proposed a strategy of compromise in terms of 
·

Ø  and ·

Ó :

· · ·

Ó Ó Ø Ø© ©ã õ   (16)

Where wH and wM
the heat and the mass problems respectively. It is 
important to note that

ïÓ Ø© ©õ ã  (17)

wM = 1 and 
wH = 0 the criteria A is obtained as a special case, 

wM = 0 and wH = 1 reduces the problem to 
a simple mass transfer optimization (criteria B). 
Figure 3 depicts a scheme in order to illustrate the 
multi-criteria optimization procedure.
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Figure 3

Numerical example

using Matlab. This algorithm is composed by 
the subroutines: BEM (solver), DT (sensitivity 
and geometric removal material) and multi-

a porous square domain of dimension 20 ´ 20 is 
submitted to simultaneous heat and mass transfer. 

due the irregular boundaries resulted from the 
optimization process. The boundary conditions 

has a high temperature of 25°C at the right upper 

3 on the upper left corner 
3 on the mid 
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are set as 1W/m°C and 1 m2/s, respectively. 

radius of the holes created during each iteration. 

dimension of the domain (r = lref)). Usually 
lref
objective in all cases is to minimize the material 
volume. The current volume of the domain (Af) 

reference value is achieved (Af A A
represents the initial volume). This numerical 

M = 0.4 and 
H

priority is imposed to one of the problems. The 
values of M and H should be adjusted according 
to the priority set by the designer. Three internal 

temperature, mass concentration, heat and mass 

Figure 4 Initial boundary conditions

Fig. 5 illustrates the behavior of the topological 

before the optimization process be initialized. 
Figure 5c represents the topological derivatives 
values for both problems obtained by equation 
(7). 

Figure 6 depicts the topology evolution during 
the iterative process. It is clear the material 

1(10,6), p2(4.4,14) 
and p3 (15.6,14)), to account the internal physical 
parameters. A mean of the temperature and mass 

the gradient at the points p1 and p2 are increasing 
3 there is 

7, the point p3
due to the decrease of the gradient at that location. 

points p1 and p2

1 and 
p2
increases at the point p3. This occurs because after 
iteration 56 the DT values at the internal points 

from the point p1 to p3.
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Figure 5 Initial DT maps for wM = 0.4 and wH = 0.6

Figure 6 Topological evolution
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Figure 7 Temperature evolution per iteration for p1, p2 and p3

Figure 8 1, p2 and p3

Figure 9 Mass evolution per iteration for p1, p2 and p3
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Figure 10 1, p2 and p3

Conclusions

application of topological-shape sensitivity 
analysis to optimization problems governed 

heat and mass transfer. In order to achieve this, 

relying on topological derivative results for 

the numerical solution. It is important to 
point out that DT has the potential total energy 
as an implicit cost function. Therefore, the 

the present methodology can deliver optimal 
designs of solids in problems submitted to 
multi-criteria. It is also interesting to note 
the importance in specifying the priorities for 
both problems in order to reach physically 
meaningful solutions for materials porous.
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