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Abstract

forces is presented using the dynamic formulation. The proposed method is 

effects of the end gravity force, translational and rotational inertias along the 
member. Analytical results are intended to capture the limit on the range of 
applicability of the static or Euler’s method in the stability analysis of slender 

columns is presented.

--------- Keywords:

Resumen

cualquier combinación de fuerzas compresivas axiales de gravedad y no 
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formulación dinámica. El método propuesto es general y captura el pandeo 

en voladizo. Los efectos de la fuerza de gravedad y las inercias traslacionales 
y rotacionales a lo largo del elemento se analizan cuidadosamente. También 
se presentan resultados analíticos que capturan el límite del rango de 
aplicabilidad del método estático o de Euler en el análisis de estabilidad de 
columnas esbeltas en voladizo y la transición de inestabilidad estática (con 

la comparación entre las ecuaciones características de estabilidad de columnas 

---------- Palabras clave:

Introduction
The static and dynamic stabilities of slender 
beam-columns subjected to non-conservative 

of great importance in mechanical, aeronautical, 
structural and aerospace engineering. The 

such as those by [1-3]. It has also been presented 

those by [4-6]. The stability problem has also 

topic has been extensively studied by numerous 

presented herein. For instance, [10] studied the 
stability of a clamped-elastically restrained 

the instability of a cantilever beam and a simply 
supported plate under both conservative and non-
conservative loads. [12] presented an algorithm to 
determine the free vibration frequencies of beams 
subjected to conservative and non-conservative 
static loads. [13] studied the effects of an elastic 

non-classical stability problems of cantilever 

pressure and the applicability of the dynamic 
stability method.

presented experimental and theoretical results 
and the effects of lumped external damping on 

subjected to a triangularly sub-tangential force. 
[19] developed the stability equations of the 

of applicability of the static approach on non-
conservative problems. Recently, [20] studied the 

and dynamic stability of an elastically restrained 

The main objective of this publication is to present 
the closed-form eigenvalue equation for the 

including the effects of an axial gravity load 
applied at the top end, and the translational and 
rotatory inertias of the column itself. A sensitivity 

input parameters.
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Structural model
Consider a prismatic element that connects points A 

1. It is assumed that: 1) the beam-column AB is 

modulus E; 2) its centroidal axis is a straight line; 3) 
is subjected to a combination of a gravity axial force 

P0, and a non-conservative axial force Pf, applied 
at the free end B; 4) its transverse cross section is 

A, principal 
moment of inertia I about its plane of bending, and 
uniform mass per unit of length m
of gyration r
rotations, and strains along the beam are small, so 
that the principle of superposition is applicable.

Figure 1

Governing equations and general 
solution

The transverse and bending equilibrium equations 

are: 

 (1)

 (2)

M = EI( 2 y / x2), y / x and 
substituting (1) into (2) after differentiation, the 

y can be obtained: 

 (3)

Assuming exponential variations of the 
y(x, t) = Y(x)eiwt Y

substituting into Eq. (3), the differential equations 
adopts the form:

 (4)

 (5)

 (6)

 (7)

 (8)
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Eqs. (6-8) are the rotational inertia, translational 
inertia and non-conservative/gravity force 
parameters, respectively.

case of  = 0 (static stability). Notice that the 
net effect of the rotatory inertia is to reduce 
the total axial load capacity of the column. The 

homogeneous differential equation, is of the 
form:

 (9)

After substituting Eq. (9) into the governing Eq. 
(4), a fourth-degree polynomial is obtained:

 (10)

 (11)

 (12)

 (13)

Therefore, the solution for Y is:

Y(x) = C1 sin x/L) + C2 cos x/L) 

+ C3 x/L) + C4 x/L)
(14)

shear force, V, and bending moment, M, along 

 (15)

 (16)

 (17)

Eqs. (14-17) are given in terms of four constants 
C1, C2, C3 and C4
four boundary conditions as described next.

forces

1(a) are:

Using Eqs. (14-17) and the four boundary 

characteristic equation for the dynamic stability 

 (18)

Eq. (18) indicates that the dynamic stability 
of a cantilever column subjected to combined 
gravity and non-conservative force depends on 
seven variables: m, r, , L, E, Pf and P0. On the 
other hand, the static stability equation for this 

RI = TI
= 0. Then, Eqs. (12) and (13) become  and zero, 
respectively, and the static stability equation 
becomes:
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P
to the Euler load P* 2 EI/(4L2) versus the 
corresponding natural frequency normalized 

 along 
the horizontal axis for different values of Pf / P0
and r/L *

frequency of the member as a cantilever beam 
P0 = Pf = r/L 

Pf / P0 varies from zero (i.e., Pf = 0 corresponding 
P0

P0
Pf
columns) for seven different values of r/L  (= 0, 
0.15, 0.30, 0.50, 0.57, 0.75 and 1, respectively). 
Values of r/L < 0.15 represent common 
reinforced-concrete members. Higher values of 
r/L can be obtained for short elements as in the 

piers deteriorated by a collision, and gusset plates 

the column material and cross section geometry, 
special care is needed for these column cases as 

 (19)

Eq. (19) is identical to those proposed by [1] (p. 
103) and by [19].

forces

Using Eqs. (14-17) and the four boundary 
conditions just described, the characteristic 
equation for the dynamic stability of the column 

column corresponds also to the Reut column.

Effects of gravity load, translational and rotational 

columns

P = P0 + 
Pf Pf P0, the natural frequency 

 and the ratio r/L
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Figure 2 Variations of P / P* * for different values of Pf /P0 and r/L

Figure 3 Variations of P / P* Pf  /P0 for different values of  * and r/L
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Figure 4 P / P* (at 
r/L for different values of Pf /P0

P / P*

the ratio Pf /P0 for different values of * and for 
six different cases of r/L  (= 0, 0.15, 0.30, 0.50, 
0.75 and 1, respectively). The set of Figures 2 
and 3 represent the traces or curves on the (P / 
P*, *) and (P / P*, Pf  /P0) planes of the surfaces 
generated by Eq. (18) in a 3D orthogonal system 
of axis P / P*, Pf /P0 and *, respectively, for 
different values of r/L.

axial load P = P0 + Pf
r/L for eight 

different values of Pf /P0 (= 1.01, 1.20, 1.40, 1.60, 

axial load P

P* 2 EI/
(4L2

modes of vibration become identical to each 
other.

horizontal axis / * indicated by points A and B 

P0 = Pf =

r/L = 0:  and 2 = 
6.267 *

in the technical literature [22, 23]. Figure 2(g) 
r/L = 1 the natural frequencies are 

1
*

2
*. Those values 

represent reductions of 59% and 80% in the 

gyration is increased from zero to L.

The vertical axis P/P

member and, as expected, these are not affected 
by the ratio r/L 
g) indicate that for Pf  0 = 0: P1 = P* 2 EI/
(4L2)  and P1 = 9P*

reported in technical literature for cantilever 
columns subjected to gravity load only [24]. The 

P/P*

Pf /
P0 ä 1 can be obtained from Eq. (19).

Figures 2(a-g) indicate that for 0 < Pf /P0 < 1, the 
axial load P reduces the natural frequencies, and 
the presence of the non-conservative force Pf has 

P
as claimed by [2] (p. 103). Note that in the range 

* < 0.25 and for 0 < Pf / P0 < 0.8, both 
inertias (translational and rotational) have little 
effect on the load capacity P
Pf / P0 > 0.8 the load capacity P is highly affected 
by both inertias.

Figures 2(a-g) also indicates that: a) the transition 
from static instability to dynamic instability 
occurs for Pf / P0

mode become identical to each other P1 = P2 = 
P* 2 EI/L2

by [19]; b) for Pf / P0 > 1, the column reaches a 
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Pf / P0 > 1 at an axial 
load P

member become identical to each other. For 
* = 3.135 and P / P*

to r/L = 0 and Pf / P0
155) reported identical values for this particular 
case. The value of P = 8.126P* = 20.05EI / L2

r / L increases.

Pf / P0 > 1 is the common 
*

the corresponding value of P/P* decreasing as 
P/P* becoming zero at the 

* r/L
2(e). Notice that point C for r/L

Pf / 
P0 P/P* = 6.50.

P/P*

ratio Pf / P0
*. Note that 

the curve corresponding to the static case (i.e. 
* = 0) remains unchanged for any value of r/L. 

This curve is identical to that presented recently 
by [16] in terms of effective length factor K.

Figures 3(a-d) indicate that for the curves 
*

the value of P/P*) is independent of the ratio Pf
/ P0 and remains constant for each value of r/L

P/P* = 6.50, 6.05, 4.70, 1.50 and 0 
corresponding to r/L = 0, 0.15, 0.30, 0.50 and 

* = 2 in 

P
r/L and Pf / P0 P can be 

*. For instance 

r/L
values of P

* < 1. This range is reduced as r/L increases 
r/L = 1 

* < 0.41. The 

since they represent the values of Pf / P0
P are identical 

same value). Also notice that the value of P at 
* or r/L

increase.

* on the variation of P/P*

respect to Pf / P0 for each value of r/L. For instance 
for r/L

*

mode increases as Pf / P0
* < 2 the axial load of the 

Pf / P0 increases; 
* > 2 the 

as Pf / P0 increases. Note that in the second and 
third ranges there is a single solution for P/P* for 
any value of Pf / P0

* P/P*

some values of Pf / P0 as described previously.

P/P* versus r/L
Pf / P0. 

decreases as r/L 
the range 0 < r/L < 0.5 and for large values of 
Pf / P0. The presence of the gravity load reduces 

P/P* r/L 
< 0.125 but alleviates the negative effects of 

comparing the curves corresponding to Pf / P0 = 
1.01 and Pf / P0

P
r/L > 0.2. 

Therefore, the effects of the gravity load on the 
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and rotational inertias of the column.

Summary and conclusions

The effects of an end gravity force, translational 
and rotational inertias along the member on the 

and discussed using the dynamic formulation. 
The proposed method and eigenvalue equations 

subjected to any combination of gravity and non-

applied at the free end.

that: 1) the characteristic equations that include 
the effects of an end gravity force, translational 

are identical to each other; 2) the dynamic 
method, as proposed herein, gives the correct 
solution to any combinations of gravity and non-
conservative forces. The dynamic method also 
captures the limit on the range of applicability 
of the Euler’s method; 3) the transition from 
static instability (zero frequency) to dynamic 

Pf / P0 = 1 and the critical 

axial load Pf is larger than the gravity load P0 (i.e. 
Pf / P0

column become identical. Important features of 
the effects of end gravity force, translational and 
rotational inertias on the stability of Reut and 

out at the National University of Colombia, 
Structural Stability Group (GES) of the School 
of Mines at Medellin.
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