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Abstract

The stability of Reut and Beck columns subjected to any combination of
gravity and non-conservative (fixed-line or follower) compressive axial
forces is presented using the dynamic formulation. The proposed method is
general capturing the static (or divergence) buckling as well as the dynamic
(flutter) instability of cantilever columns. Special attention is given to the
effects of the end gravity force, translational and rotational inertias along the
member. Analytical results are intended to capture the limit on the range of
applicability of the static or Euler’s method in the stability analysis of slender
cantilever columns, and to define the transition from static instability (with
zero frequency) to dynamic instability (“flutter”). Finally, the comparison
between the characteristic stability equations of slender Reut and Beck
columns is presented.

--------- Keywords: Columns, buckling, dynamic stability, static stability,
flutter, non-conservative loads, Beck and Reut columns

Resumen

Se presenta la estabilidad de las columnas de Reut y Beck sometidas a
cualquier combinaciéon de fuerzas compresivas axiales de gravedad y no
conservativas (fuerza fija a lo largo de una linea o seguidora) utilizando la
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formulacion dinamica. El método propuesto es general y captura el pandeo
estatico (o divergencia) y la inestabilidad dinamica (“flameo™) de columnas
en voladizo. Los efectos de la fuerza de gravedad y las inercias traslacionales
y rotacionales a lo largo del elemento se analizan cuidadosamente. También
se presentan resultados analiticos que capturan el limite del rango de
aplicabilidad del método estatico o de Euler en el analisis de estabilidad de
columnas esbeltas en voladizo y la transicion de inestabilidad estatica (con
frecuencia cero) a inestabilidad dinamica (“flameo™). Finalmente se presenta
la comparacion entre las ecuaciones caracteristicas de estabilidad de columnas
esbeltas de Reut y Beck.

---------- Palabras clave: Columnas, pandeo, estabilidad dinamica,
estabilidad estatica, flameo, fuerzas no conservativas, columnas de

Beck y Reut.

Introduction

The static and dynamic stabilities of slender
beam-columns subjected to non-conservative
end loads like those produced by jet engines or
rockets and cantilevered pipes conveying fluid are
of great importance in mechanical, aeronautical,
structural and aerospace engineering. The
problem of follower forces on slender columns
has been the main subject of many textbooks
such as those by [1-3]. It has also been presented
in several state-of-art review papers such as
those by [4-6]. The stability problem has also
been verified experimentally by [7, 8] while
numerical verifications using the finite element
program LS-DYNA were presented by [9]. This
topic has been extensively studied by numerous
researchers from different points of view, but
due to space limitations just a few of them are
presented herein. For instance, [10] studied the
stability of a clamped-elastically restrained
column subjected to a partially follower force
using the Timoshenko approach. [11] studied
the instability of a cantilever beam and a simply
supported plate under both conservative and non-
conservative loads. [12] presented an algorithm to
determine the free vibration frequencies of beams
subjected to conservative and non-conservative
static loads. [13] studied the effects of an elastic
Winkler and rotatory foundations on the stability
of a pipe conveying fluid. [14] discussed several
non-classical stability problems of cantilever
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columns filled with liquid or subjected to gas
pressure and the applicability of the dynamic
stability method.

The post-buckling behavior of the Beck column
was presented by [15] showing the effect of a tip
mass with rotatory inertia. [16] studied the effects
of an elastic foundation on the Beck column. [17]
presented experimental and theoretical results
and the effects of lumped external damping on
the dynamic stability of the Beck column. [18]
investigated the effect of a single crack on the
divergence buckling and flutter of a column
subjected to a triangularly sub-tangential force.
[19] developed the stability equations of the
generalized Euler column showing the range
of applicability of the static approach on non-
conservative problems. Recently, [20] studied the
influence of an attached end mass on the static
and dynamic stability of an elastically restrained
Beck column.

The main objective of this publication is to present
the closed-form eigenvalue equation for the
dynamic stability of both Reut and Beck columns
including the effects of an axial gravity load
applied at the top end, and the translational and
rotatory inertias of the column itself. A sensitivity
study is carried out showing the transition from
static instability (with zero frequency) to dynamic
mnstability and the interactions between the seven
input parameters.



Structural model

Consider a prismatic element that connects points A
(perfectly clamped end) and B (free end), see figure
1. It is assumed that: 1) the beam-column AB is
made of a homogenous linear elastic material with
modulus E; 2) its centroidal axis is a straight line; 3)
is subjected to a combination of a gravity axial force

0,
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|
'p

“Deflected
Shape

(a) (b)
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P, and a non-conservative axial force Pf, applied
at the free end B; 4) its transverse cross section is
doubly symmetric with a total area A, principal
moment of inertia / about its plane of bending, and
uniform mass per unit of length m, with a radius
of gyration r; and 5) all transverse deflections,
rotations, and strains along the beam are small, so
that the principle of superposition is applicable.
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Figure 1 Structural model of cantilever column under gravity and non-conservative forces: (a) Reut column;
(b) Beck column; and (c) differential element (forces, moments and deformations)

Governing equations and general
solution

The transverse and bending equilibrium equations
of the differential element shown in figure 1(c)
are:

oV _ 0%

"o )
oM dy _ ,0%0 )
x VTP T e

Knowing that: M = EI(¢* y / 0x*), 0 = 0y / Ox and
substituting (1) into (2) after differentiation, the
following equation in terms of y can be obtained:

aty

El—+P—=
6x4+ 0x2 +

0%y _ 0%

— 2 0% (%) _
Moz =M 5a(5z) =0 )

Assuming exponential variations of the
bending deflection [i.e., y(x, ¢) = Y(x)e™, with Y
representing the shape function associated with
the lateral deflection along the member| and
substituting into Eq. (3), the differential equations
adopts the form:

d*y  ¢2d’y T,

i T Ea =0 X
where:
¢? = PL*/EI + R} (5)
R? = mw?r?l?/El (6)
T? = mw?L*/EI (7)
P = Py+ Py = ¢?El/L* — Mw?r? (8)
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Egs. (6-8) are the rotational inertia, translational
inertia and non-conservative/gravity force
parameters, respectively.

Eq. (8) was also used by [19] for the particular
case of @ = 0 (static stability). Notice that the
net effect of the rotatory inertia is to reduce
the total axial load capacity of the column. The
solution to Eq. (4), which is a linear fourth-order
homogeneous differential equation, is of the
form:

Y(x) = ce™ 9

After substituting Eq. (9) into the governing Eq.
(4), a fourth-degree polynomial is obtained:

2 2
s O e I (10)
whose solutions are:
m = +il/L; +a/L (11)

where:

A=j¢yz+f¢w4+ﬁ (12)
a:j—¢yz+{¢w4+nz (13)

Therefore, the solution for Y is:

Y(x) = C, sin(hx/L) + C, cos(hx/L)
(14)
+ C, sinh(ax/L) + C, cosh(ow/L)

Once Eq. (14) is obtained, the bending slope, 0,
shear force, V, and bending moment, M, along
the member can be obtained as follows:

c A (Ax)
stm I

o) = C A </1x)
X) = 12COS T
(15)

a ax a ax

+C3 Zcosh (T) + Cy Zsmh (T)
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Ve )_EI c o </1x> c No? ()lx)
x) = 77 [Co—-cos | 2 -sin (7

(16)

6, % cosh () - 6, oomn ()]

EI] N /I N Ax
M(x) = T C; —sin <—) + C,—cos <—>

L L L L
(17)
—Cs %zsinh (%) —C, afzcosh (%)

Egs. (14-17) are given in terms of four constants
C,, C,, C, and C, which must be determined using
four boundary conditions as described next.

Dynamic stability of a cantilever column
subjected to gravity and fixed-line
forces

The boundary conditions of the column of figure
1(a) are:

Atx=0: Y(0)=0;and®(0) =0

Atx=L: V(L) =0;and M(L) = (P;/P)(¢* — R}Y(L)
Using Egs. (14-17) and the four boundary
conditions just described, the following
characteristic equation for the dynamic stability
of the column of figure 1(a) is obtained:

(a* + AN cosAcosha + 2T — Typ?sindsinha
1 i
+ (Pr/P)(¢* — R}) (13)
[¢p2(1 — cosAcosha) + 2T;sindsinha] = 0

Eq. (18) indicates that the dynamic stability
of a cantilever column subjected to combined
gravity and non-conservative force depends on
seven variables: m, r, ®, L, E, Pf and P,. On the
other hand, the static stability equation for this
particular case can be obtained by making R = T,
= (. Then, Egs. (12) and (13) become ¢ and zero,
respectively, and the static stability equation
becomes:



cosp = —P¢ /P, (19)

Eq. (19) is identical to those proposed by [1] (p.
103) and by [19].

Dynamic stability of a cantilever column
subjected to gravity and follower
forces

The boundary conditions of the column shown in
figure 1(b) are:

Atx=0: Y(0)=0;and©(0) =0

Atx=L: V(L) =—(P;/P)(¢? — RDO(L);and M(L) = 0
Using Egs. (14-17) and the four boundary
conditions just described, the characteristic
equation for the dynamic stability of the column
of figure 1(b) is found to be identical to Eq. (18).
Consequently, the dynamic stability of the Beck
column corresponds also to the Reut column.

Effects of gravity load, translational and rotational
inertias on the dynamic stability of reut and beck
columns

Variations of the total buckling load P = P+
P, with the ratio P /P, the natural frequency
o and the ratio /L were calculated and plotted

Reut and Beck columns: effects of end gravity force, translational and rotational inertias

using Eq. (18). Figures 2, 3 and 4 show the
influence of the gravity load, translational and
rotational inertias on the buckling loads of
both columns of figures 1(a) and 1(b). Note on
figures 2(a-g) that the vertical axis shows the
total buckling load P normalized with respect
to the Euler load P* = w* EI/(4L%) versus the
corresponding natural frequency normalized
with respect to w* = (1.875)%\/EI/(7mL*) along
the horizontal axis for different values of P P,
and /L, respectively (where o is the first natural
frequency of the member as a cantilever beam
with P = P = r/L = 0). In figures 2(a-g) the ratio
P,/ P, varies from zero (i.e., P, = 0 corresponding
to the Euler column with only gravity load P,
being applied) to infinity (i.e., P, = 0 with only
P, being applied corresponding to Reut and Beck
columns) for seven different values of #/L (=0,
0.15, 0.30, 0.50, 0.57, 0.75 and 1, respectively).
Values of #/L < 0.15 represent common
reinforced-concrete members. Higher values of
r/L can be obtained for short elements as in the
case of columns weakened by the development
of a plastic hinge during an earthquake, bridge
piers deteriorated by a collision, and gusset plates
exposed to pack rust or pitting [21]. Depending on
the column material and cross section geometry,
special care is needed for these column cases as
shear deformations become significant.
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Figure 3 Variations of P/ P with P, /P for different values of w/w’and r/L
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Figure 4 Variation of the peak value of P / P~ (at
Flutter) with /L for different values of P, /P,

Figures 3(a-f) show the variation of P/ P" with
the ratio Pf/PO for different values of /o’ and for

six different cases of r/L (=0, 0.15, 0.30, 0.50,
0.75 and 1, respectively). The set of Figures 2

and 3 represent the traces or curves on the (P /

P’, o/w’) and (P/ P, P,/P) planes of the surfaces
generated by Eq. (18) i 1n a 3D orthogonal system

of axis P/ P, P /P, and olo’, respectively, for
different values of r/L.

Figure 4 shows the variation of the maximum
axial load P= P+ P, (when the phenomenon of
flutter starts to occur) with the ratio /L for eight
different values ofP /P,(=1.01,1.20, 1.40, 1.60,
1.80, 2, 6 and oo, respec‘uvely) The maximum
axial load P, which corresponds to the peaks of
the curves shown in figures. 2(a-g), is normalized
with respect to the classical Euler load P* == EI/
(4L%). Each peak in the curves of figures 2(a-g)
corresponds to the phenomenon of flutter when
the natural frequencies of the first and second
modes of vibration become identical to each
other.

---------------------------------------------------- Reut and Beck columns: effects of end gravity force, translational and rotational inertias

Based on the curves shown in figures 2, 3 and 4,
the following conclusions can be drawn:

The intersections of the curves with the
horizontal axis ®/®" indicated by points A and B
in figures 2(a-g) represent the natural frequencies
corresponding to the first and second mode of
vibration of a cantilever beam (with P = P, =
0). For example, figure 2(a) indicates that for
r/L = 0: w;= w*= (1.875)%/EI/(ML*) and &>
6.267w" which are identical to those repor‘[ed
in the technical literature [22, 23]. Figure 2(g)
shows that for 7/L = 1 the natural frequencies are
®, = 0.410 0" and ©, = 1.249 ®". Those values
represent reductions of 59% and 80% in the
first and second natural frequencies in perfectly
clamped cantilever beams when the radius of
gyration is increased from zero to L.

The vertical axis P/P* in figures 2(a-g) represent
the static buckling loads (i.e., ® = 0) of the
member and, as expected, these are not affected
by the ratio 7/L . For example, figures 2(a-
g) indicate that for P,/ P = 0: P = P"=n’ El/
(4L*) and P, = 9P° Wthh are 1dentlca1 to those
reported in techmcal literature for cantilever
columns subjected to gravity load only [24]. The
intersections of the curves with the vertical P/P*
axis for the cases of static buckling when 0 <P,/
P, <1 can be obtained from Eq. (19).

Figures 2(a-g) indicate that for 0 < P/P0 <1, the
axial load P reduces the natural frequencies, and
the presence of the non-conservative force P, has
a stabilizing effect increasing the buckling load P
as claimed by [2] (p. 103). Note that in the range
0<ao/ o <0.25and for 0 < Pf/P0 < 0.8, both
inertias (translational and rotational) have little
effect on the load capacity P. However, when
P /P> 0.8 the load capacity P is highly affected
by both inertias.

Figures 2(a-g) also indicates that: a) the transition
from static instability to dynamic instability
occurs for P,/ P =1 when the critical loads
correspondlng to the first and second buckling
mode become identical to each other P, = P, =

P'=w EI/L*). This feature was fully discussed
by [19]; b) for P,/ P, > 1, the column reaches a
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state of dynamic instability (i.e., with ® > 0) with
the buckling load depending on the inertias (both
translational and rotational); and c) flutter starts
to take place only when P, / P, > 1 at an axial
load P corresponding to the peaks of the curves
in figures 2(a-g) and the natural frequencies of
the first and second modes of vibration of the
member become identical to each other. For
instance, flutter occurs at /" =3.135 and P/ P*
= 8.126 as indicated by such peak corresponding
to #/L = 0 and Pf/P0 = o in figure 2(a). [24] (p.
155) reported identical values for this particular
case. The value of P = 8.126P" = 20.05EI / I*
was also reported by [1]. Notice that the load and
frequency at which flutter occurs are reduced as
r/ L increases.

An interesting feature shown by all curves in
figures 2(a-e) with P, / P, > 1 is the common
point C which occurs exactly at o/e’ = 2 with
the corresponding value of P/P* decreasing as
/L increases and with P/P* becoming zero at the
intersection of the curves with the horizontal axis
o/®" (point B) when »/L = 0.57 as shown in figure
2(e). Notice that point C for 7/L = 0 in figure 2(a)
is also the peak of the curve corresponding to P /
P, = 1with a value of P/P" = 6.50. ‘

Figures 3(a-f) show the variation of P/P* with the
ratio P, / P, for different values of m/m". Note that
the curve correspondmg to the static case (i.e.
/0" = 0) remains unchanged for any value of /L.
This curve is identical to that presented recently
by [16] in terms of effective length factor K.

Figures 3(a-d) indicate that for the curves
corresponding to o/®” = 2, the buckling load (or
the value of P/P") is independent of the ratio P
/ P, and remains constant for each value of r/L
as follows: P/P* = 6.50, 6.05, 4.70, 1.50 and 0
corresponding to #/L = 0, 0.15, 0.30, 0.50 and
0.57. The horizontal lines given by o/o’ = 2 in
figures 3(a-d) correspond to point C described
previously and shown in figures 2(a-e).

Note that when determining the buckling load
P using figures 3(a-d), for a given set values of
/L and P / P, two different values of P can be
obtained for ceITaln ranges of ®/m". For instance
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when using figure 3(a) for /L = 0 two different
values of P can be obtained within the range 0 <
o/®" < 1. This range is reduced as /L increases
[see figures 3(b-f)]. For instance, for /L = 1
this range is reduced to 0 < o/0” < 0.41. The
maximum points marked as D on the curves
within these ranges are of special significance
since they represent the values of P,/ P, where
the two values of the buckling load P are identical
to each other (i.e., when the loads corresponding
to first and second buckling modes become the
same value). Also notice that the value of P at
point D is reduced significantly as w/a" or »/L
increase.

Figures 3(a-f) show that there are three different
ranges of w/®" on the variation of P/P* with
respect to P /P, for each value of /L. For instance
for #/L= 0 [see figure 3(a)] within the first range
0 < o/w" <1 the axial load of the first buckling
mode increases as P,/ P, increases; within the
second range 1 < w/®" < 2 the axial load of the
first buckling mode decreases as P,/ P, increases;
and finally within the third range w/®" > 2 the
axial load of the first buckling mode increases
as P, / P, increases. Note that in the second and
thlrd ranges there is a single solution for P/P" for
any value of P,/ P. Whereas in the first range
of w/®’, there are two solutions for P/P* within
some Values of Pf/ P, as described previously.

Figure 4 shows the variation of the peak values of
P/P" versus /L when the phenomenon of flutter
starts to take place for different values of P, /P,
Note that in general the critical load at ﬂutter
decreases as 7/L increases, particularly within
the range 0 < 7/L < 0.5 and for large values of
P, / P,. The presence of the gravity load reduces
the peak values of P/P" within the range 0 < r/L
< 0.125 but alleviates the negative effects of
the rotational inertia of the member making the
curves in figure 4 less steep. For example when
comparing the curves corresponding to P,/ P, =
1.01 and P,/ P, = o, the presence of the grav1ty
load i 1ncreases 51gn1ﬁcantly the peak value of P
at which flutter occurs for values of /L > 0.2.
Therefore, the effects of the gravity load on the
dynamic stability of the columns of figures 1(a)



and (b) are coupled together with the translational
and rotational inertias of the column.

Summary and conclusions

The effects of an end gravity force, translational
and rotational inertias along the member on the
stability of Reut and Beck columns were presented
and discussed using the dynamic formulation.
The proposed method and eigenvalue equations
are general capturing the static buckling (or
divergence) as well as the dynamic instability
(“flutter) of slender cantilever columns and
subjected to any combination of gravity and non-
conservative (fixed-line or follower) axial forces
applied at the free end.

Analytical results obtained from the two cases
presented (Reut and Beck columns) indicate
that: 1) the characteristic equations that include
the effects of an end gravity force, translational
and rotational inertias of Reut and Beck columns
are identical to each other; 2) the dynamic
method, as proposed herein, gives the correct
solution to any combinations of gravity and non-
conservative forces. The dynamic method also
captures the limit on the range of applicability
of the Euler’s method; 3) the transition from
static instability (zero frequency) to dynamic
instability occurs when Pf/ P, =1 and the critical
loads corresponding to the first and second static
buckling mode become identical to each other;
and 4) flutter starts to take place when the follower
axial load P, is larger than the gravity load P, (i.e.
P /P, >1.0) and when frequencies corresponding
to the first and second modes of vibration of the
column become identical. Important features of
the effects of end gravity force, translational and
rotational inertias on the stability of Reut and
Beck columns were fully discussed herein.
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