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Abstract

HMMs are statistical models used in a very successful and effective form 
in speech recognition. However, HMM is a general model to describe the 
dynamic of stochastic processes; therefore it can be applied to a huge variety 
of biomedical signals. Usually, the HMM parameters are estimated by means 
of MLE (Maximum Likelihood Estimation) criterion. Nevertheless, MLE has 
as disadvantage that the distribution it is wanted to adjust is the distribution of 
each class, besides the models and/or data of other classes do not participate 
in the parameter re-estimation, as a result, the ML criterion is not directly 
related to reduce the error rate; it has led to many researchers to choice other 
training techniques known as discriminative training, including maximum 
mutual information (MMI) estimation. In this work, we carry out an EEG 
classification in order to compare HMM trained with both ML estimation 
and MMI estimation. The obtained results show a better performance in all 
database used.

----- Keywords: Hidden Markov models, discriminative training, MMI, 
biosignals

Resumen

Los modelos ocultos de Markov (HMM) son modelos estadísticos usados 
de forma efectiva en procesamiento del habla. Aunque, siendo orientado al 
análisis de procesos estocásticos puede ser aplicado a una alta variedad de 
tareas relacionadas con el proceso e identificación con señales biomédicas. 
Tradicionalmente, los parámetros HMM son estimados bajo el criterio 
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de máxima verosimilitud (entrenamiento generativo). Sin embargo, la 
estimación en este caso tiene como desventaja que la distribución que se 
quiere ajustar es la distribución de cada clase, y además los modelos y/o 
datos de otras clases no participan en la re-estimación de los parámetros, 
como consecuencia, el criterio MLE (Maximum Likelihood Estimation) 
no esta relacionado directamente con el objetivo de reducción de la tasa 
de error, lo que ha llevado a muchos investigadores a optar por técnicas 
de entrenamiento conocidas como entrenamiento discriminativo, en el que 
se encuentra la estimación de máxima información mutua. Este trabajo se 
realiza una comparación entre las técnicas de entrenamiento generativo y 
discriminativo para casos concretos de detección de patologías en señales 
de voz, fonocardiografía y electroencefalografía. Los resultados obtenidos 
muestran un mejor desempeño de la técnica discriminativa sobre la generativa 
en todas las bases de datos usadas.

----- Palabras clave: Modelos ocultos de Markov, entrenamiento 
discriminativo, MMI, bioseñales

Introduction
Although stochastic classif﻿iers have been 
employed mostly in speech recognition, their 
use can be extended to other biosignals tasks 
[1]: (i) detection of speech pathology and vocal 
dysfunctions [2], (ii) first and second heart sound 
detection and classification of different cardiac 
diseases by phonocardiography (PCG) [3], (iii) 
identification of human movements as well as 
pattern recognition by electroencephalography 
(EEG) [4]. However, the recognition 
performance strongly depends on the quality of 
the features extraction and its fit to the classifier. 
In conventional features extraction algorithms, 
discriminant analysis is one of the most promising 
choices for confusing classifying patterns (as it is 
the case of biosignal classes that manifest patterns 
with similar structures) where the classifier can be 
represented for instance by a set of discriminant 
functions. Nonetheless, computation of those 
functions requires complete knowledge of all 
relevant values of the probability density function 
(pdf) which is rarely acquired in practice, and the 
main goal of designing a classifier eventually is 
turned into by using the available training samples 
to estimate the class-conditional pdf P(x)|Ci) as 
accurately as possible. In turn, the estimation of 
P(x)|Ci) can be simplified by representing this 

density as a functional form, which consists of 
several adjustable parameters of a given model. 
Then, the estimation of the probability density 
becomes a problem of estimating parameters of 
the underlying function. One of the most common 
methods to overcome this issue is Maximum 
Likelihood Estimation (MLE) [5], that is a non-
discriminative training method, and it had become 
the comparison baseline in implementation of the 
pattern recognition systems.

Non-discriminative classifiers (referred as 
generative or informative classifiers [6] aim 
at building a model to represent the training 
samples for each class. Given an unknown 
sample, classification is carried out by choosing 
the model that best fit the data. Examples 
of non-discriminative classifiers are Hidden 
Markov Models (HMM) and Gaussian Mixture 
Models; classically, these classifiers rely on non-
discriminative training methods such as MLE, 
when the model of each class is trained separately 
by using its own samples. HMMs work well 
in pathology detection because the biosignal 
recordings are the progression of biological 
events that can map themselves to states. This 
time alignment helps in the recognition.

Most researches in HMM have focused on 
the estimation problem, since there is no any 
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approach to solve analytically the model which 
maximizes the probability of the observation 
sequence [7]. Different discriminative training 
criteria had been proposed mainly for speech 
recognition. Among them the Maximum Mutual 
Information (MMI) and Minimum Classification 
Error (MCE) criteria. MMI estimation aims at 
finding the parameter set which maximizes the 
mutual information between the samples and their 
correct categories. MMI [8] estimation derives 
from the basic concept of mutual information and 
MCE [9], which focuses directly on minimizing 
the empirical classification error; both methods 
include the information of all classes to be 
recognized in the training process.

As commonly known, when samples distribution 
are required to be classified, these should be 
described by an accurate statistical model 
implying that the size of the training set tends to 
be unbounded, then the MLE training outperforms 
the discriminative training methods. Actually, the 
real data are scattered and there is a small number 
of records or samples [10].

This work focuses on applying a discriminative 
training criterion to the non-discriminative 
HMM classifiers with the aim of improving 
the recognition performance. Although HMM 
are used successfully and effectively in speech 
processing, the model can be generalized for 
stochastic processes and may thus be applied to 
a large variety of biomedical signals [11]. Since 
the classification of biosignals share similar 
characteristics with speech recognition [4], the 
goal of the present work is to verify whether 
discriminative training technique shows a better 
performance than generative approach (as it 
happens in speech pathological detection or 
speech recognition [12]) in training of EEG and 
PCG signals as well as in Voice signals. The 
discriminative training algorithm used in this 
work to estimate the HMM parameters is an 
approximation of the MMI objective function 
that is a maximization technique similar to EM 
algorithm, carried out by a simple modification 
of the standard Baum-Welch algorithm [13].

Approximated MMI algorithm 

The MMI training of a model is performed over 
a given training set made up of the observations 
O = (O1,...,OU) and their respective labels 

 = (w1,... wu..., wU), where each wu ∈ (W1,...Wv,...WV) 
and V is the classes number. Each class W1 is 
associated to a HMM, denoted by θ = {A,B,π} 
[7].

The MMI objective function is given by [13]
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[13], which is equivalent to use the MAP 
(Maximum a Posteriori) criterion to associate one 
observation with a label.
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MMI and ML can be related through of 
H-criterion, which is an interpolation between 
the MMI and ML objective functions [12]:

	 (4)

where k is described as a weighting exponent that 
usually is 1. For H = 1 this is equivalent to MMI 
(equation 1) and for H = 0 it is equivalent to the 
ML criterion [12].

Motivated by (equation 3 and 4), the following 
objective function is introduced, called the 
approximated MMI criterion (herein, just MMI):
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Note that H (equation 4) has been changed to λ 
(equation 5). Now, it is possible describe the new 
re-estimation procedure for each parameter, υ, in 
the following way:
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where N(υ) and D(υ), referred to as accumulators, 
are calculated using the original training set Av. 
Likewise, ND(υ) and DD(υ), called discriminative 
accumulators, are computed according to the set 
Bv obtained by recognition [13].

The new algorithm is developed by two following 
steps [13]:

•	 Approximation: Performing recognition on 
the training set to obtain the Bv sets. Using 
these sets, the approximated MMI objective 
function J(θ) (equation 5) can be calculated.

•	 Maximization: Maximizing the objective 
function J(θ) using re-estimation formulas 
(equation 6).

Experimental setup
The experiments are performed on 3 different 
biosignal databases (EEG, PCG and Voice), 
comparing both training methods (ML and MMI). 
The accuracy is measured using a k-folds cross 
validation strategy. Namely, 10 folds have been 
used, splitting the 70% of the files for training 
classifier, and the remaining 30% for validation. 
The HMM topology is full connection-type, and 
each class is modeled by a HMM with 3 states 
and with diagonal covariance matrices. Besides, 
HMM is trained with 2, 3 y 5 Gaussian Mixtures 
(GM) output distributions, the number of states 
is fixed, it is due to the amount of degrees of 
freedom (Number of states, number of GM 
per state and the parameter λ), it makes that 
the number of possible combinations and the 
computational cost be too high, furthermore in 
our experiments we found if the number of states 
is high the algorithm does not work well, and the 
performance of the system is not good. 

MLE is applied over the training set, and it is taken 
as the initial condition, the system performance is 
measured and it is taken as reference point, after 
that it is applied an iteration of Approximation 
and ten of maximization as suggested in [13]. 
Parameter λ is fixed individually according to 
each database. For all databases, it is found that 
when λ increases, values of variances and transition 
probabilities become negative. In this case, they 
are replaced by their ML values (e.g. λ = 0) [13], 
because the optimization method does not take into 
account the constrains and when they fail the model 
is not suitable and it has to be replaced.

EEG signals

The EEG signals are taken from Clinic of 
Epileptology of the University Hospital of Bonn. 
The database is formed by 5 sets (enumerated 
from A till E), each of them is composed by 100 
EEG segments of a single channel that are labeled 
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in 3 classes. The A and B sets are superficial 
EEG recordings (scalp) from five healthy people 
(normal class). The C, D and E sets refer to 
EEG pre-surgery diagnosis recordings as part of 
pathological activities (say pathological class). 
All EEG signal are acquired with a 128-channel 
system that are digitized at 173.61Hz with 12 bit 
resolution. We chose a single set of each class, 
normal and pathological, the chosen sets were A 
and C, respectively.

The EEG features extraction is based on a 
variance decimation methodology proposed in 
[14]. Estimation residuals of Kalman smoothing 
are used to compute the variance of the random 
process, as follow:
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where x[k] is the EEG signal, 
[ ]( )22 , 1ξbσ= −g M kN  is a Gaussian 

smoothing window when weight is time-variant 
according to the speed signal, b is an empirical 
constant value and M is the number samples to 
estimation [14].

PCG signals

The PCG database used in this work is made 
up of 22 de-identified adult subjects, who gave 
their informed consent, and underwent a medical 
examination. A diagnosis was carried out for 
each patient and the severity of the valve lesion 
was evaluated by cardiologists according to 
clinical routine. A set of 16 patients were labeled 
as normal, while 6 were with evidence of systolic 
murmur, caused by valve disorders. Besides, 8 
recordings corresponding to the four traditional 
focuses of auscultation (mitral, tricuspid, aortic 
and pulmonary areas) were taken for each 
patient in the phase of post-expiratory and post-
inspiratory apnea. Each record lasted 12 s. and 
was obtained from the patient standing in dorsal 
decubitus position. The recording time could 
not be extended more because patients suffering 
cardiac problems were unable of keeping both 

post-inspiratory and post-expiratory apnea for a 
longer period. After visual and audible inspection 
by cardiologists, one of the four signals was 
randomly picked up, taking into consideration 
that most of the time murmurs do not necessary 
show up for all focuses at once, unless they 
are very intense (which is an evidence of 
their harmfulness). An electronic stethoscope 
(WelchAllyn® Meditron model) is used to 
acquire the HS (Heart Sound) simultaneously 
with a standard 3-lead ECG (since the QRS 
complex is clearly determined, DII derivation is 
synchronized as a time reference). Both signals 
are sampled with 44.1 kHz rate. Tailored software 
is developed for recording, monitoring and 
editing the HS and ECG signals.

Application of TFR (Time Frequency 
Representation) to enhanced murmurs indicates 
that their time-frequency dynamics is far from 
being stationary, as it is implicitly assumed 
in many studies. Besides, if one demands to 
characterize also the dynamics of HS process, 
this would require a time-resolved (e.g., event-
related) spectral analysis. Therefore, it is not only 
the spectral decomposition per se which is of 
interest, but rather a variety of measures derived 
from TFR. 

Generally speaking, dynamic measures derived 
from TFR that have a wide acceptance for 
characterizing a HS [15,16] can be estimated by 
two methods; the ones based on computing of 
conditional moments of TFR, taking into account 
the condition of correct time and frequency 
marginals , and the subband methods based on 
filter-bank calculation.

A filter-bank applied on TFR (both Short Time 
Fourier Transform-STFT and Wavelet Transform-
WT) and taking into account that TFR eliminates 
the use of smoothing window that is necessary 
to calculate MFCC [2], 12 MFCC are calculated 
with 24 filters, moreover it is applied a smoothing 
on the contours by using a 16-order low-pass FIR 
filter, with cut-off frequency of 60Hz. Choice of 
number of MFCC contours to be considered is 
made as a compromise between informativity 
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(measured by entropy) versus consistency of 
estimation (measured as estimate deviation)

Voice signals

Kay-Elemetrics and UPM databases of voice 
disorders (described in [17]) were used to test the 
proposed methodology. From Kay-Elemetrics a 
set of 173 pathological and 53 normal speakers 
has been taken, the recorded material is the 
sustained phonation of /ah/ vowel from patients 
with a variety of voice pathologies: organic, 
neurological, and traumatic disorders [18]. UPM 
stores 239 pathological voices with a wide variety 
of organic pathologies (nodules, polyps, edemas, 
carcinomas, etc), and 201 normal voices. The 
dataset contains the sustained phonation of the 
/a/ Spanish vowel with a sampling rate of 50 kHz 
and 16-bits of resolution. Each recorded voice 
(observation) was uniformly windowed employing 
40 ms length window with 50% of overlapping. 
Within each window 16 features were computed. 
These measures are: 12 Mel Frequency Cepstrum 
Coefficients (MFCC) [19], the Harmonics to Noise 
Ratio (HNR) [20], the Glottal to Noise Excitation 
Ratio (GNE) [21], the Normalized Noise Energy 
(NNE) [22], and the Energy of the frame, as well.

Results
EEG signals

The figure 1(a) shows the recognition rate versus 
λ, by using 3 GM. The continuous line represents 
the ML baseline. In this case, best results were 
obtained for λ = 0.5, where the accuracy was 
81.5%. In this figure, notice that when λ increases 
until its best performance, its behavior becomes 
to decrease, for this reason, λ was restricted to 
lower values (λ < 0.7). Similar results were found 
to 2 and 3 GM. 

The obtained complete results with EEG signals 
are summarized in table 1. It is possible to see that 
for all GM the algorithm yielded an improvement 
over ML estimation. The improvement decreases 
while increases the number of GM, nevertheless, 

we can see that 3 GM performs slightly better 
than 2 GM. However 3 GM have less dispersion 
and the iteration number is lower than 2 GM. 

Table 1 Best results - EEG database 

GM ML MMI λ Iteration
2 76.1% ± 6.0 82.8% ± 6.5 0.3 5
3 76.0% ± 3.2 81.5% ± 4.6 0.5 3
5 73.8% ± 6.1 74.3% ± 13.3 0.3 1

The best performance for EEG signals was 
obtained with 2 GM, however the difference with 
3 GM is approximated 1%, therefore we should 
taking into account the other obtained parameters 
as standard deviation and the iterations number 
and thus we can concluded that the best modeling 
is given for 3 GM, since both values are minor.

PCG signals 

As same as in EEG signals, behavior of λ becomes 
to decrease, in a quicker way even to lower 
values than EEG case (λ < 0.35).The results on 
PCG database are divided in two main groups: 
features extraction by means of WT and STFT.

Wavelet Transform

The figure 1(b) shows the recognition rate versus 
λ with the features obtained with WT set, by 
using 2 GM. Notice that when λ > 0.3 MMI 
performance is less than baseline ML. Similar 
results were found for 2 and 5 GM. 

The table 2 summarized the obtained results. 
Better performances are always obtained to the 
MMI-trained model. The highest accuracy in this 
case was 91.0% with 2 GM.

The table 3 summarized the obtained results to 
the smoothed WT. In comparison with the table 
2, notice that the results in MMI training are 
very similar, with a best performance achieve of 
90.6% in the case of 2 y 3 GM, the difference 
between both is that the iteration number is less 
with the smoothed contours WT.
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Table 2 Best results - PCG (contours WT)

GM ML MMI λ Iteration
2 85.0 % ± 2.0 91.0 % ± 3.0 0.05 3

3 84.4% ± 3.6 90.0% ± 3.3 0.05 3

5 83.5% ± 4.1 88.25 % ± 2.8 0.1 1

Table 3 Best results - PCG (smoothed contours WT)

GM ML MMI λ Iteration
2 86.4% ±3.6 90.6% ±3.0 0.1 1

3 87.2% ±2.5 90.6% ± 2.5 0.1 2

5 85.0% ± 2.7 88.9% ±3.9 0.1 1

Short time frequency transform

In tables 4 and 5, the results for contours STFT and 
smoothed contours STFT are given, respectively. 
The results show clearly the MMI training method 
always improves the recognition rate. The best 
performance is achieved in smoothed contours in 
the case of 3 GM, with the lower iteration numbers 
(2). All best results are obtained with λ = 0.1.

Table 4 Best results - PCG (contours STFT)

GM ML MMI λ Iteration

2 85.4% ± 3.9 89.0% ± 
2.57 0.1 1

3 86.5% ± 2.8 88.6% ± 1.5 0.1 4
5 87.8% ± 3.0 90.0% ± 2.3 0.1 2

In general we can say that in PCG database the 
best results are obtained with λ < 0.1, and a 
iteration number less than or equal 4.

Table 5 Best results - PCG (smoothed contours 
STFT)

GM ML MMI λ Iteration

2 85.4% ± 3.2 89.5% ± 2.7 0.1 3

3 90.9% ± 1.3 92.58% ± 0.82 0.1 2

5 86.4% ± 2.2 89.5% ± 2.0 0.1 2

Voice Ssgnals 

In this part we show the results to both UPM and 
Kay-Elemetrics databases. The λ value also was 
restricted and iterates by steps of 0.025. 

The figure 1(c) and (d) show the recognition rate 
versus λ, to UPM and Kay-Elemetrics database, 
respectively. In this figure, we also notice that 
when λ increases until its best performance, its 
behavior becomes to decrease. Similar results 
were found to 2 and 3 GM. The figure for Kay-
Elemetrics database is omitted because, its 
behavior is similar to UPM database.

In a similar way the algorithm was tested with two 
voice databases (described in section III-C). The 
results are shown in table 6 that correspond to the 
evaluation of the classification system with the 
UPM database, it is showed that the best results are 
reached with 3 GM to the discriminative case when 
λ = 0.175 and 3 iterations are carried out, however in 
all cases the discriminative algorithm outperforms 
the ML training for λ values between 0 < λ < 0.6.

Table 6 Best results - UPM

GM ML MMI λ Iteration
2 73.25% ± 4,4 75.6% ± 1,7 0.45 5

3 77.87% ± 2,4 80.6% ± 3,0 0.18 3

5 74.5% ± 4,7 77.8% ± 3,3 0.35 7

Table 7 shows the obtained results with Kay-
Elemetrics database, in this case the best results 
are reached when employ 2 GM were employed 
(λ= 0.35L=0.35) and the range for all GM of the 
λ values is between 0 < λ < 0.7. 

Table 7 Best results - Kay-Elemetrics

GM ML MMI λ Iteration
2 92.5% ± 

2.05
95.4% ± 

2.13
0.35 3

3 93.2% ± 
2.51

95.0 % ± 
1.58

0.45 2

5 90.1% ± 
3.86

94.1 % ± 
2.85

0.58 3
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Despite of the accuracy achieved with the UPM 
database is lower than the accuracy obtained for 
Kay-Elemetrics database, the methodology showed 
to be consistent and it can be applied adequately to 
outperform the achieved results with a classification 
system based on HMM trained with ML.

The lower performance obtained with UPM 
database might be due to the diversity in the 
pathological class. This database has a large 
number of pathologies, hence the classes’ 
variability is higher, and perhaps the evaluated 
features are not enough to model it correctly.
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Figure 1 Performance vs. λ. (a) EEG (b) PCG (contours WT) (c) Voice (UPM database) (d) Voice (Kay-Elemetrics 
database)

Conclusions
The discriminative training method for HMM 
based on the MMI criterion outperforms the 
performance of a classification system for the 
detection of pathologies in biosignals. This 
method consists on an approximation of the 
MMI objective function by using the similarity 
with the H-Criterion objective function, which 
is optimized by using a modified version of the 
BW algorithm, and it is carried out by means of 

an additional term that is weighted by a value λ, 
this term is usually referred as a discriminative 
accumulator. The algorithm has two major steps: 
Approximation, which is the derivation of the 
algorithm’s criterion, and Maximization, which 
is similar to the MLE method to estimate the 
parameters of a HMM.

Testing of the discriminative MLE algorithm 
for three different types of biomedical databases 
(EEG, PCG and Voice) show that the operation 
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range of λ parameter depends on the signals 
nature used for training. It is because the 
structure of randomness of the data and the 
source of the processes that it is wanted to 
model is different. Though the range turns to 
be different on dependence of biosignal type, 
suggested algorithm shows an advantage since 
for all considered database a better performance 
is achieved.

As future work, the use of other discriminative 
training criteria should be considered to compare 
between them and the training algorithm presented 
in this work, as well the use of contingency 
matrices and performance curves (ROC - curve, 
DET – curve) to improve the quality and clarity 
of the results of the validation phase.
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