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Abstract

This paper shows optimization results for a group of standard functions. 
When the optimization algorithm PSO is hybridized with the simplex 
traditional algorithm (SX, Nelder-Mead) in two different ways, i. e. the 
alternating interaction hybrid (PSOSX(AIH)) and the parametric evolution 
hybrid (PSOSX(PEH)), markedly noticeable effects are observed in both the 
computing time and the accuracy and precision of their results during the 
optimization process.

----- Keywords: Optimization, particle swarm optimization, simplex, 
hybrids

Resumen

En el presente artículo se muestran los resultados de optimización, utilizando 
un grupo de funciones estándar. Al hibridizar el algoritmo de optimización 
PSO (Particle Swarm Optimization) con el algoritmo simplex tradicional 
(SX, Nelder-Mead) de dos formas diferentes, esto es, el híbrido de interacción 
alternante o secuencial (PSOSX(HIA) ) y el híbrido de evolución paramétrica 
(PSOSX(HEP)), se observan efectos marcados en sus tiempos de cómputo 
y en la exactitud y precisión de la respuesta durante una operación de 
optimización.

----- Palabras clave: Optimización, enjambre de partículas, simplex, 
híbridos

*  Autor de correspondencia: teléfono/fax: + 57 + 7 + 634 40 00, ext. 2366, correo electrónico: crcorrea@uis.edu.co (R. Correa).



246

Rev. Fac. Ing. Univ. Antioquia N.° 53. Junio 2010

Introduction
The PSO algorithm as optimization strategy 
makes part of the so denominated evolutionary 
computing whose development seems to have 
been strengthened by the observation of natural 
phenomena, the social and individual behavior 
of animal species among which we find bees, 
ants, birds and most recently cockroaches, [1-
4]. This method has rapidly evolved due, among 
other things to the varied and ever-demanding 
applications in which it has shown its worth; 
being largely welcomed in the academic 
community most likely by the simplicity of the 
algorithm and by its efficiency in the search of the 
global optimum in a great variety of optimization 
problems with or without restrictions. PSO 
was born in 1995 and as today there is an 
innumerable quantity of variants that make it 
full of features, as guaranteed convergence, 
usage ease in discontinuous search spaces and 
parallel programming, among other abilities [5-
7]. The first text fully dedicated to PSO, as far 
as we know, only appeared in 2006 [8], though 
the initial version of this PSO algorithm came 
into existence 11years earlier, [9]. Proof of its 
unprecedented diffusion is clearly seen on the 
internet; there are now hundreds of thousands 
of virtual pages, some really good, where the 
PSO algorithm and its new modifications are 
explained. Similarly, there were approximately 
89 doctoral dissertations as of October 2008, and 
144 as of May 2009, related to its applications to 
different fields of knowledge, [10]. Likewise, on 
the internet several virtual meeting sites dedicated 
to report work on this field can be easily found 
which allow people to stay up-to-date and in direct 
contact with the people and groups that tackle this 
issue. Furthermore, there is scientific literature 
about reports from researchers that have matched 
the PSO algorithm with other algorithms of 
artificial intelligence, [11]. The current article is 
closely related with two optimization algorithms 
the result of hybridizing the original PSO with 
the already known SX, without restrictions 
optimization method of the 60´s [12]. Although 
both algorithms have been reported in the 

scientific literature in an independent way, there is 
not any comparative study, [13,14]. In this article 
their particular topology is defined and the results 
of several simulations are compared by using 
four functions typically found in the evaluation 
of optimization algorithms because they have a 
given level of difficulty for the location of their 
global optimum. As far as computing time and 
accuracy is concerned, the existence of a clear 
difference between them is proved in spite of the 
fact that they both are the result of hybridizing 
the same algorithms, that is, the PSO algorithm 
and the SX method, and the fact that one of them 
is strongly dependent on the initial conditions. 
These aspects are discussed in the following 
sections.

Fundamentals

In this section some concepts related with the 
SX method, the original PSO and with two of 
the possible hybrids of the latter are included. 
Given the fact that the SX is such a widely 
known algorithm in the optimization process of 
functions without restrictions and the fact that it 
has been modified by several authors throughout 
the time, it will not be presented in detail, making 
the corresponding referrals, [12]. However, it 
will be described in order to make it easier for 
the reader to remember this simple but very 
effective algorithm. It is good to keep in mind 
that the large majority of commercial computing 
programs already feature this algorithm as a 
basic routine. This method is classified as one 
of optimization of local search for functions 
without restrictions whose gradient is unknown; 
it requires the supposition of the initial points 
of the object function to get started. Then it is 
assumed that if there is not enough information 
for the appropriate selection of these points, the 
risk of not finding the optimum value increases. 
This method has another weakness which lies 
in the fact that a minimum or maximum can be 
found, but there is no guarantee it is the global 
optimum we are looking for, since it only uses 
local information and in the case of stationary 
points, its convergence can be seriously at stake.
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The algorithm performs several operations with 
geometric (vectorial) interpretations evaluating 
a function of N variables and initially creating 
a figure denominated simplex in N dimensions 
that have N + 1 vertices. The objective function 
is measured at each of those points. Once the 
start points are ready, which for the case of two 
dimensions are three, we can proceed to calculate 
the objective function at each of those points 
(vertices); the algorithm progresses in sequence 
classifying, at each iteration, these evaluations in 
the objective function as the optimum, the good 
one, and the worst. In parallel the best descending 
direction is selected (minimization) based on 
several rules pre-established [12]. At the end of 
the iterations, the minimum of the function is 
expected to be achieved. On the other hand, the 
PSO algorithm classified within the great family 
denominated swarm intelligence was created 
by Eberhart and Kennedy and was born as a 
modeling tool during the study of social behavior 
of some animal species, [9]; it is considered as 
an evolutionary meta-heuristic strategy. Since 
its conception and given its heuristic nature no 
further explanation or mathematical fundamentals 
were proposed and its authors clearly established 
that many of its results that in the end formed this 
algorithm were basically obtained by trial and 
error techniques. As time went by, approximately 
14 years, and with the participation of several 
researchers, the original algorithm started to 
evolve over time to become currently available in 
a large quantity of variants, [2]. Clerc [8] pointed 
out, three years after the reporting of the creation 
of the PSO algorithm, some facts that became 
noteworthy in the discussion leading to facilitate 
the diffusion of this method in the engineering 
field; its analogy with a spring-mass system and 
the representation in space of states in both sides, 
the one related with mathematical aspects that 
were useful to define a factor that could, in most 
cases, guarantee its convergence. This algorithm 
features the following: Evolutionary by nature 
and based on a population of particles, it requires 
to be initialized with a population of random 
solutions, it searches for the optimum both locally 
(sub-domains) and globally, it features a memory 

in terms of a weight factor or variable inertia over 
time, it sets forth the interchange of information 
based on cognitive and social coefficients, it is 
a non-linear method of optimization that does 
not require you to know the derivatives of the 
objective function. It is applied to problems with 
objective functions without restrictions and it is 
valid for both continuous and discreet problems 
(modified PSO).

The algorithm

The algorithm starts from the hypothesis that each 
particle (point within the domain of the objective 
function that is set forth as a possible solution) is 
“ thrown into flight ”, as some authors describe, 
into the search space (swarm of N particles) 
guided by the particle that has so far found 
the best solution and that works as the leading 
function of the swarm. The particles evolve 
bearing in mind the best solution found in their 
path and in that of the leader. The proceeding also 
takes into account the best value reached by some 
of the surrounding particles. In each iteration, 
the particles modify their speed towards the best 
surrounding solution considering the information 
from the leader. For the reader eager to know the 
details of the interpretation from a Newtonian 
point of view of mechanics, which wasn´t exactly 
the initial interpretation, might go over the given 
references, [6,7,10]. Either in this way or as 
proposed by Eberhart and Kennedy, we get to the 
same two expressions that wrap up the original 
PSO for a particle which needs vectorial notation 
to be applied to the swarm as a whole. Therefore, 
the particles evolve according to the following set 
of matrix-based equations rendering the original 
PSO algorithm expressed as follows:

 

  (1)

    (2)

in which each one of its components represents:  
the velocity matrix M x N of each particle in time 
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t; w the inertia factor;  the velocity matrix M 
x N of each particle in time t - 1; C1 the cognitive 
parameter; rand1 an independent random number 
with uniform probability between 0 and 1;  
the matrix M x N  storing the best position of each 
particle in time t - 1 (best individual position);  
the matrix M x N storing the best position of each 
particle in time t - 1; C2 the social parameter; rand2 
an independent random number with uniform 
probability between 0 and 1;  the matrix 
M x N storing the best position achieved by the 
swarm in time t - 1 (the best position of the leader), 
and  the matrix M x N storing the position of 
each particle in time t. In order to program this 
algorithm, the variable change t = k + 1is made.

The PSO and SX hybrids

Given the flexibility of the original PSO 
algorithm, it is possible to hybridize it with 
other optimization strategies in order to achieve 
more precise results, without sacrificing either 
computing time or precision. It is interesting to 
find out how hybridization though performed 
through the very same method, that is, the SX 
method, can certainly be made in at least two 
ways which is basically the core of the present 
article; The Alternating Interaction Hybrid (AIH) 
and the Parametric Evolutionary Hybrid (PEH). 
Each one it is explained as follows:

The alternating interaction hybrid (AIH)

In this hybrid, at the end of each iteration of the 
PSO algorithm, the SX method is used staring 
from the solutions set obtained in such iteration, 
in order to get a better local solution; the next 
iteration with the PSO algorithm begins with 
the solutions set improved by the SX method, 
and so on and on. Given this calculus scenario, 
it is expected to get a better solution that entails 
a not very high cost of computing time which 
has to be estimated for each application in 
particular. A hybrid application like this was 
reported in [13], in the design of an adaptive 
recurrent fuzzy controller embedded in a FPGA 
(Field Programmable Gate Array), to be used 

in water tank´s temperature control; it was used 
specifically in the controller´s off-line training 
phase. In their article, the authors assume for 
the weight factor w a unit value and 0.8 for the 
convergence factor. Independently from using 
a numeric algorithm such as the SX method, 
this kind of hybrids do not lose their heuristic 
features, since they require the selection of a set 
of parameters obtained through trial and error 
valid for the particular conditions of the problem.

Parametric evolutionary hybrid, (PEH)

One of the objectives of this hybrid algorithm 
PSOSX(PEH), is to incorporate an auto-configured 
search strategy that guarantees the optimum (or 
the quasi optimum) of the parameters of the PSO 
algorithm through the SX method, in such a way 
that it assures success in the independent search 
of the particularities of the problem studied. The 
central idea of this hybrid lies in the fact that the 
SX method algorithm can select the values of the 
parameters (N,w,C1,C2) contained in the space of 
parameters so that they ensure an almost optimum 
configuration for the PSO algorithm to perform 
the evaluation of the objective function in each 
iteration. Within this heuristic, each vertex of the 
SX method remains defined by the coordinates 
(N,w,C1,C2). In this point the PSO algorithm 
takes the values of the heuristic parameters 
determined by the SX method and validates the 
objective function according to the equations 
(1) and (2). Consequently, each point found 
by the SX method, product of any reflection, 
contraction, expansion or reduction, is defined 
by an independent exam characterized by the 
vector Xi (Ni,wi,Ci1,Ci2), i = 1,...,m + 1, where m 
is the number of parameters of the PSO algorithm 
and Ni is the whole number that represents the 
swarm´s size. This last variable was included 
in order to estimate its optimum value. This 
proceeding, hypothetically, improves the PSO 
algorithm´s search capacity and besides that, 
it makes the heuristic parameters independent 
due to the fact that it performs a search directed 
by almost optimum parameters automatically. 
In the following section, a series of computing 



249 

Topology effect of two PSO and simplex hybrids

tests are included leading to compare the relative 
performance of this two hybrids by using various 
functions whose optimum is known in advance.

Experimental evaluation
In this excerpt only the results with the two 
hybrids are reported leaving aside the simulations 
with other variants of the PSO algorithm. In the 

same manner only a few results are reported 
since various dimensions, functions and numbers 
of iterations were used. In order to evaluate both 
computing time and accuracy for the hybrid 
algorithms PSOSX (AIH) and PSOSX (PEH), 
four functions were selected whose equation and 
optimal value are theoretically known. These 
equations appear on table 1.

Table 1 Selected functions for hybrid-testing

Name
(Dimensions) Mathematical expression Optimum

((coordinates);value)

Venter
(2)

((0;0); 1000)

Rosenbrock
(2)  ((1;1); 0)

B2
(2)

((0;0); 0)

Booth
(2)

((1;3); 0)

In the first series of tests, the number of iterations 
was changed, leaving C1= C2 = Cab= 2.0  and 
w =1.0. Then, the same type of testing was 
performed on the two hybrids, that is, keeping the 
number of initial iterations in two and later in 35. 
After that, the respective error values, standard 
deviation, and the mean were tabulated. To finish, 
a second test was made leaving the number of 
iterations constant, and changing Cab and w. For 
this case, the same results analysis was made as 
in the first series. The results for two functions 
are presented below, but the results for the four 
functions selected for this study are resumed in 
the conclusions section. All the experiments were 
carried out using a DELLTM INTEL Core 2 DuoTM 
2GHz computer, having Windows VistaTM as the 
operative system.

Experiments changing the number of 
iterations

Venter function

For this function, see table 2. The difference in 
computing time in the two hybrids is noticeable, 
basically because its difference increases without 
a visible factor; as the iterations increase, the two 
hybrids reach the same optimum value.

Booth function

It is noticeable that even for a few iterations, 
table 3, the best global of each topology shows 
the exact response of the function. This can be 
attributed to the fact that the optimum of this 
function is easily differentiated, there are no local 
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minimum or maximum values near the optimum 
that may interfere in the search process, and 
because the initial location of the particles is near 

the origin. Once again, the optimization time of 
the PEH hybrid is quite greater than that of the 
AIH hybrid.

Table 2 Optimization of the Venter function, time t is in seconds

No. Iterations
PSOSX (AIH) PSOSX (PEH)

t x1 x2 f(x1; x2) t x1 x2 f(x1; x2)

2 0.4571 0 0 1000 1.1498 0 0 1000

5 1.1659 0 0 1000 2.7788 0 0 1000

8 1.7693 0 0 1000 4.3927 0 0 1000

10 2.2374 0 0 1000 5.4676 0 0 1000

13 2.9699 0 0 1000 7.2291 0 0 1000

15 3.4069 0 0 1000 8.2747 0 0 1000

20 4.5453 0 0 1000 10.9502 0 0 1000

25 5.6339 0 0 1000 13.6619 0 0 1000

30 6.7152 0 0 1000 16.3485 0 0 1000

35 7.9460 0 0 1000 19.1094 0 0 1000

Table 3 Optimization of the Booth function, time t is in seconds

No. Iterations
PSOSX (AIH) PSOSX (PEH)

t x1 x2 f(x1; x2) t x1 x2 f(x1; x2)

2 0.4633 1 3 0 1.1979 1 3 0

5 1.1841 1 3 0 2.8856 1 3 0

8 1.8795 1 3 0 4.5880 1 3 0

10 2.2715 1 3 0 5,6874 1 3 0

13 2.9987 1 3 0 7.4017 1 3 0

15 3.4007 1 3 0 8.5073 1 3 0

20 4.6204 1 3 0 11.188 1 3 0

25 5.4877 1 3 0 13.804 1 3 0

30 6.6111 1 3 0 16.563 1 3 0

35 7.8377 1 3 0 19.521 1 3 0

Rosenbrock function

The results shown on table 4 are similar to those 
found on the previous table, possibly due to the 

fact that the Rosenbrock function´s difficulty 
level is similar to that of the Booth function, 
for which, the behavior of the hybrids was quite 
similar.
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Table 4 Optimization of the Rosenbrock function, time t is in seconds

No. Iterations
PSOSX (AIH) PSOSX (PEH)

t x1 x2 f(x1; x2) t x1 x2 f(x1; x2) 

2 0.4832 1 1 0 1.2299 1 1 0

5 1.0179 1 1 0 2.7546 1 1 0

8 1.6582 1 1 0 4.2761 1 1 0

10 2.0318 1 1 0 5.3111 1 1 0

13 2.6729 1 1 0 6.7972 1 1 0

15 3.0748 1 1 0 7.8782 1 1 0

20 4.3114 1 1 0 10.456 1 1 0

25 5.2027 1 1 0 13.022 1 1 0

30 6.1511 1 1 0 15.708 1 1 0

35 8.1402 1 1 0 19.476 1 1 0

Analysis of the generated response

The main results of the optimization of these 
functions are presented below, but emphasizing 
on the response´s error in relation to the optimum 
known in advance; likewise, the standard 
deviation, and the mean of the coordinates of 
the independent variables that correspond to the 
optimum found are presented.

Venter function

As it was expected in the Venter function, the 
absolute error of the hybrid is zero, because in 
all cases, the exact response to the optimization 
problem was found. The results shown have a 
standard deviation of zero in both cases, mostly 
due to the fact that the responses did not change 
in all the tests presented on table 5. For the case of 
the mean, it is zero because all the values found 
in the tests were zero. It is good to point out that 
on the following tables the values that appear on 
the last row were applied to the coordinate set (x1; 
x2) reported by the hybrids and that correspond to 
the position of the global optimum.

For the Booth function, the mean had the value of 
1 for x1, and, 3 for x2, which are the coordinates 
where the global optimum of the function is found.

Table 5 Optimization of the Venter function

PSOSX (AIH) PSOSX (PEH)
No. Iterations Error No. Iterations Error

2 0 2 0
5 0 5 0
8 0 8 0
10 0 10 0
13 0 13 0
15 0 15 0
20 0 20 0
25 0 25 0
30 0 30 0
35 0 35 0

Standard 
deviation Mean Standard 

deviation Mean

(0;0) (0;0) (0;0) (0;0)

Rosenbrock function

The results of table 6 are similar to those found for 
the rest of the functions, with the only difference 
that for this case, the optimum of the Rosenbrock 
function is found at the point 1;1, thereof, the values 
of the mean in both hybrids reach such value.
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Table 6 Optimization of the Rosenbrock function

PSOSX (AIH) PSOSX (PEH)

No. Iterations Error No. Iterations Error

2 0 2 0

5 0 5 0

8 0 8 0

10 0 10 0

13 0 13 0

15 0 15 0

20 0 20 0

25 0 25 0

30 0 30 0

35 0 35 0

Standard 
deviation Mean Standard 

deviation Mean

(0;0) (1;1) (0;0) (1;1)

Variation of parameters Cab and w

Next, some other tests were run keeping the 
number of iterations fixed and at a value of 8, and 
then the parameters Cab and w were varied.

Venter Function

For this type of test, see table 7, the value of Cab  
remained constant and equal to two, and w was 
varied; a slight decrease in the response times was 
observed specially in the case of PSOSX(PEH), 
bearing in mind that the maximum number of 
iterations allowed was 8. The values of the mean, 
the standard deviation did not change, given the 
fact that the global optimums were found.

Function B2

The data of table 8 show the effect of changing 
both parameters. Although the values of f(x1;x2)are 
very close to zero, it is clearly seen that for some 
values of these parameters, the response drastically 
changed in each hybrid in different ways.

Table 7 Optimization of the Venter function changing  w and keeping Cab constant. Time t is given in seconds

w Cab

PSOSX (HIA) PSOSX (HEP)

t x1 x2 f(x1;x2) t x1 x2 f(x1;x2)
0.1 2 1.8660 0 0 1000 4.3908 0 0 1000

0.2 2 1.8530 0 0 1000 4.5132 0 0 1000

0.3 2 1.8179 0 0 1000 4.3964 0 0 1000

0.4 2 1.8414 0 0 1000 4.3818 0 0 1000

0.5 2 1.8590 0 0 1000 4.5630 0 0 1000

0.6 2 1.8929 0 0 1000 4.4830 0 0 1000

0.7 2 1.8143 0 0 1000 4.4324 0 0 1000

0.8 2 1.8188 0 0 1000 4.5319 0 0 1000

0.9 2 1.8419 0 0 1000 4.3789 0 0 1000

1.0 2 1.8268 0 0 1000 4.4442 0 0 1000

PSOSX (HIA) PSOSX (HEP)

Standard deviation Mean Standard deviation Mean

(0;0) (0;0) (0;0) (0;0)
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Table 8 Optimization of the function B2 changing  and Cab. Time t is in seconds.

w Cab

PSOSX(AIH) PSOSX (PEH)

t x1 x2 f(x1;x1) t x1 x2 f(x1;x2) 

0.1 1.5 1.7515 0.61858 -1.5466e-5 0.41293 4.2912 -0.00383 0.000509 0.000218

0.2 1.6 1.7562 2.3198e-5 -1.8325e-5 1.8985e-8 4.3631 0.008956 0.020273 0.014881

0.3 1.7 1.7938 1.2505e-5 2.4923e-5 2.3100e-8 4.2861 6.490e-5 0.000140 7.2700e-7

0.4 1.8 1.8037 3.2306e-5 -2.1632e-5 3.0665e-8 4.3409 0.000634 0.006964 0.001633

0.5 1.9 1.7825 5.2419e-5 2.3417e-5 5.7774e-8 4.3589 0.005419 0.004250 0.001027

0.6 2.0 1.8517 -4.7050e-6 0.000185 1.1511e-6 4.4859 0.001545 0.001791 0.000141

0.7 2.1 1.8764 -1.7132e-5 -9.262e-6 7.0852e-9 4.5543 -0.000844 0.011096 0.004138

0.8 2.2 1.8578 4.0882e-5 0.000394 5.2420e-6 4.5201 -0.009274 0.014328 0.008108

0.9 2.3 1.8917 -4.2655e-5 -2.4653e-7 2.6063e-8 4.5518 -0.019995 -0.008822 0.008322

1.0 2.4 1.8456 -2.9450e-5 -1.4009e-5 1.9014e-8 4.4793 -0.004366 -0.024189 0.019781

PSOSX(AIH) PSOSX (PEH)

Standard deviation Mean Standard deviation Mean

(0.19561; 0.00013418) (0.061865; 5.4869e-5) (0.0080663; 0.012486) (-0.0021691; 0.0026343)

In the results of the PSOSX(AIH), it is observed 
that for w = 0.6 and Cab = 2.0, the value of  
f(x1;x2) noticeably changed with respect to the 
other values; pretty much the same happens 
when w = 0.8 and Cab = 2.2. These records are 
approximately 20 times larger than the rest, 
showing in this way a noticeable difference 
when it comes to the quality of the response. By 
analyzing the results of the PSOSX(HPE), it 
is quite evident that for w = 0.3 and Cab = 1.7, 
the value of f(x1;x2) became more precise and 
accurate (within 10-7). These results prove that 
for each of these topologies, the start parameters 
should do not be necessarily the same because 
due them, each hybrid becomes more efficient 
(faster) searching for the answer to the problem. 
Once the tests were concluded with the four 
selected functions, it was observed that for some 
of them (peculiarly function B2) the responses 
to the optimization process were affected by the 
variations of these parameters. This is leading to 
conclude that the parameters Cab and w are neither 

the optimal values nor the same for both hybrids 
and it leads to the thought that for each typology 
and problem, these initial values are determining 
factors when it comes to finding a response 
that complies with the necessary requirements 
of accuracy and reproducibility in a requested 
computing time.

Comparative analysis of the hybrids

In this section and as a demonstrative example, 
the graphic that appears on the left shows the 
results with the hybrid PSOSX(AIH), and to the 
right those with the hybrid PSOSX (PEH).

Venter function, 2D

Now by using 35 iterations, figure1, it is seen 
how the hybrids get closer to the optimum. In 
the PSOSX(PEH) case, for example, the track of 
the particles getting closer to the response can be 
seen. This snapshot shows how the PSOSX(AIH) 
could make all of its particles reach the optimum 
in contrast with the PSOSX(PEH).
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Figure 1 Hybrids optimizing the Venter function, 
history of 35 iterations; the search space was [-6;6]. 
(a) PSOSX (HIA), (b) PSOSX (HEP)

In figure 2 six graphics are observed that compare 
the results of the optimization process of the 
two hybrids for this function. In such figure the 
location of the solutions found stands out for 
each hybrid, which overlap the origin. This figure 
consolidates the location of the coordinates of the 
optimum, the distance in function of the number of 
iterations and also in function of computing time. 
Distance was defined as the difference between 
the experimental solution and the theoretical 
solution previously known. It is observed that 
the optimum of the function obtained through the 
use of PSOSX(AIH) (left side of the figure), is in 
position (1;1); from the number two iteration of 

35 preset, it was found and it took an average of 
7.5 seconds. Likewise, the PSOSX(PEH) (right 
side of the figure) found the same coordinates 
in eight iterations, but it took an average of 20 
seconds. The parameters Cab = 2.0 and w = 1.0 
were set; the population size was 50 particles and 
the search space remained in an interval of [-6;6].
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Figure 2 Hybrids optimizing the Venter Function, 35 
iterations; search space was [-6;6]. N is the number of 
iterations and t is time in seconds. (a) PSOSX (HIA), 
(b) PSOSX (HEP)

Function B2

On the other hand when this function and the two 
hybrids were used, once again the dispersion of 
particles in the search space [-6;6] was revealed 
by the end of the optimization process when the 
maximum number of iterations was two. Now, 
when the number of iterations is increased to 35 
(figure 3), it indicates it is an appropriate number 
given the excellent location of the function´s 
optimum.

In a more detailed analysis, it was observed how 
with both hybrids the optimum was reached 
but the catch of some particles still lingering 
in values relatively distant to it, that is, by the 
end of the 36 iterations, there is a number of 
particles located in points that do not relate to 
the global optimum.
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Topology effect of two PSO and simplex hybrids
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Figure 3 Displacement of particles towards the 
optimum with the hybrids PSOSX (AIH) and (PEH) 
optimizing function B2, 35 iterations. (a) PSOSX (HIA), 
(b) PSOSX (HEP)

Analysis and conclusions
The PSOSX hybrids proved excellent accuracy, 
precision and robustness (reaching the global 
optimum in all of the problems that they were 
applied to). The experimental results revealed 
that hybrid algorithms, that is, the PSOSX(AIH) 
and the PSOSX(PEH) surpass the basic 
algorithm, so generating good quality solutions. 
The number of iterations plays an important role 
when accuracy and precision in the answer is 
required; as the number of iterations increase, 
greater precision is obtained, but also longer 

computer time is required. From the tests 
conducted, it was observed that the initial values 
of the parameters (Cab and w), notably influence 
optimum search process of the function as in 
any other numerical method, but it was also 
observed that there are appropriate values these 
parameters have for each hybrid. This leads to the 
conclusions that despite using any value for these 
parameters (obviously within the predetermined 
ranges), good results are achieved, but there are 
better values for each hybrid and perhaps for 
each problem to tackle. One point that must be 
considered worthy of attention and is related to 
both hybrids is the computational performance 
of the SX method (Nelder-Mead); for the studied 
cases it was observed that if the initial particles 
are way too dispersed, the computing time, and 
the quality of the response are adversely affected. 
It was observed that the PSOSX(AIH) can find 
answers with better accuracy and precision more 
quickly that the PSOSX(PEH), as long as the 
necessary iterations are conducted so the Simplex 
can converge efficiently. The excessive increase 
in the number of particles for each dimension 
consequently brought around the increase in the 
computing time of the initial positions, making 
the search inefficient. This observation had a 
contrast with the hypothesis that the possibility 
of finding the answer quickly improves if 
there are more particles in the space, therefore 
fewer iterations and less time are required. The 
PSOSX(PEH) has a greater advantage over the 
PSOSX(AIH), in the sense that if inappropriate 
initial values are introduced, the Simplex can 
correct that mistake and so increase the efficiency 
of the basic PSO avoiding its divergence. All this 
brings around possible consequences of course, 
such as prolonged computing times. Through 
the proposal of the new PSOSX(PEH) topology, 
it was concluded that it is certainly an effective 
tool in cases where “time is not a key issue”, 
such as projects that do not need an immediate 
answer but do need accuracy as a must. The stop 
criterion used for the computational tool was the 
comparison among the global best consecutives 
where the tolerance among them had to be less 
than or equal to 10%. Though there are other 
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stop criteria that were discarded, it was observed 
how the criterion of the maximum number of 
iterations ended up wasting time in cases where 
just 8 or fewer iterations were enough to achieve 
the global optimum values. By comparing the 
results obtained for all the trial functions, it can 
be finally concluded that PSOSX(AIH) can reach 
answers of better quality (accuracy and precision) 
than those of PSOSX(PEH) in almost half of 
the time, aspect that sets the difference when it 
comes to complex problems in which computing 
time and the use of resource are a constraint.
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