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Abstract

This paper presents a new approach for solving constraint optimization 
problems (COP) based on the philosophy of lexicographical goal 
programming. A two-phase methodology for solving COP using a multi-
objective strategy is used. In the first phase, the objective function is 
completely disregarded and the entire search effort is directed towards 
finding a single feasible solution. In the second phase, the problem is treated 
as a bi-objective optimization problem, turning the constraint optimization 
into a two-objective optimization. The two resulting objectives are the 
original objective function and the constraint violation degree. In the first 
phase a methodology based on progressive hardening of soft constraints is 
proposed in order to find feasible solutions. The performance of the proposed 
methodology was tested on 11 well-known benchmark functions.

----- Keywords:  Evolutionary algorithms, multi-objective algorithms, 
constraint optimization.

Resumen

Este artículo presenta un nuevo enfoque para resolver problemas de 
optimización restrictos (POR) basado en la filosofía de programación 
lexicografita de objetivos. En este caso se utiliza una metodología de dos 
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fases usando una estrategia multi-objetivo. En la primera fase se concentra 
el esfuerzo en encontrar por lo menos una solución factible, descartando 
completamente la función objetivo. En la segunda fase se aborda el problema 
como bi-objetivo, convirtiendo el problema de optimización restricta a un 
problema de optimización irrestricto de dos objetivos. Los dos objetivos 
resultantes son la función objetivo original y el grado de violación de las 
restricciones. En la primera fase se propone una metodología basada en el 
endurecimiento progresivo de restricciones blandas para encontrar soluciones 
factibles. El desempeño de la metodología propuesta es validado a través de 
11 casos de prueba bastante conocidos en la literatura especializada.

----- Palabras clave: Algoritmos evolutivos, algoritmos multi-objetivo, 
optimización restricta. 

Introduction
Evolutionary algorithms (EA) have been widely 
used in the solution of optimization problems. 
These techniques, compared with the traditional 
nonlinear programming methods, handle a 
smaller amount of information (gradients, 
and Hessians, among others), are of easy 
implementation, and constitute useful tools for 
global search. Additionally, they have a smaller 
probability of converging to a local optimal 
solution, and are able to obtain good quality 
results in problems of great size [1]. Many 
researchers have developed a great amount of 
EA to solve constraint optimization problems 
(COP). The different methodologies found in the 
literature to handle with COP can be classified in 
four main groups: 1) methods based on penalty 
functions, 2) methods based on the preference 
of feasible solutions instead of the non feasible 
ones, 3) hybrid methods, and 4) methods based 
on multi-objective optimization. This last group 
is currently of great scientific interest and 
becomes the state-of-the-art of the constraint 
optimization algorithms. A detail description of 
these methodologies is out of the scope of this 
paper. For a more in dept reading, the interested 
reader is referred to [2, 3] and [4].

Most of the real world problems involve equality 
and inequality constraints. The general problem 
formulation with continuous parameters and 
constraints is defined in [5] as shown in (1):

	 (1)

The objective function f  is defined on the 
search space nS ⊆ ℜ , and the set F S⊆  defines 
the feasible region. The feasible region F  is 
restricted by a set of m  constraints ( 0≥m ) 
with q  inequality constraints ( )jg X , and m q−  
equality constraints ( )jh X .

The application of multi-objective evolutionary 
algorithms (MOEA) has additional advantages 
compared to other optimization methods, 
especially when solving COP. Some of these 
advantages are [6]:

–	 Constraint problems can be handled in a 
natural fashion. That is, it is not necessary 
to formulate artificially penalized objective 
functions, and additionally penalty parameters 
are not needed. These parameters introduce a 
subjective component to the problem solution.

–	 In real world problems, it is unusual to 
find rigid or hard constraints. Therefore, a 
constraint violation margin (soft constraints) 
is permitted as long as an important 
improvement in the objective function is 
obtained.
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–	 MOEA allow obtaining a set of solutions, 
denominated Pareto-Optimal-Front (POF), 
with the best commitments between the 
objective functions involved in the problem. 
Thus, it is possible to find solutions that 
violate constraints marginally. Figure 1 
shows a non-dominated set of solutions in 
the f v−  space, where f is the original 
objective function value, and v  is the 
constraint violation index. In this scheme, 
one objective is the violation degree of 
constraints and the other is the original 
objective function value. The minimum 
feasible solution (point A), the minimum 
solution considering soft constraints within 
a violation margin ε  (point B), and the 
original feasible solutions of the single-
objective problem are also shown in Figure 1. 
All the solutions of the POF that are between 
the points A and B are of great interest.

The philosophy of the proposed methodology 
is inspired by the goal programming methods 
[7], where the main idea is to find solutions that 
reach a reference (predefined objective) for one 
or more objective functions. If these solutions do 
not exist, the task will be to find solutions where 
the difference with the reference is minimum. 
On the other hand, if there is a solution with the 
same value as the reference objective function, 
the task will be to identify this solution. The 
lexicographical method is among the goal 
programming methods. In this case the different 
goals are categorized within many levels of 
priority. In This way, the problem is first solved 
considering only one goal with the corresponding 
constraints of the first priority level.

If there are multiple solutions in the previous 
step, another goal programming problem is 
formulated considering the second level of 
priority. The goals of the first level of priority 
are used as equality constraints to assure that 
the second problem solution does not violate the 
first level constraints. The procedure is repeated 
sequentially for other priority levels. 

Figure 2 illustrates the operation principle of 
the lexicographical goal programming method 

for a minimization problem with two objective 
functions

1f  and
2f . If it is considered that 

1f  is 
more important that

2f , the procedure consists of 
first minimizing the problem only considering 

1f  
and ignoring

2f . In this way, the set of solutions 
is represented by the segments AB and CD for 
the first priority level. The solution of the second 
priority level will be the one that minimizes 

2f  
along the segments AB and CD. In this case, the 
solution of the second priority level will be D 
which is the global solution of the problem. If 

2f  
is more important than

1f  the problem solution 
changes to point E.

Figure 1 Search space of a two-objective problem 
with hard and soft constraints

Figure 2 Lexicographical goal programming 
method 
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Proposed methodology for COP 
The proposed methodology for COP is based 
on the philosophy of lexicographical goal 
programming. It consists of turning a COP into a 
bi-objective problem, where one objective function 
is the original one ( )f X  and the other, is the 
constrained violation degree ( )v X . In other words, 
one objective function considers optimality and 
the other one considers feasibility. The algorithm 
is composed by two phases. In the first stage, the 
original objective function is completely discarded 
and the optimization problem is concentrated on 
minimizing the constrained violation degree of the 
solutions. Thus, the algorithm might find a feasible 
solution because the search is concentrated only 
on the minimization of the constrained violation 
degree. The second phase consists of optimizing 
simultaneously the original objective function and 
the constrained violation degree using a multi-
objective strategy.

Phase I: Constraint enforcement 
algorithm

In this phase, the objective function is completely 
discarded and all the algorithm effort is directed 
towards finding at least one feasible solution. For 
each alternative i  of the population, a fitness 
function, according to ( )iv X , is assigned. Then, 
an elitist strategy is used to assure that the solution 
with smaller ( )v X  is included in the following 
generation. This phase allows obtaining a solution 
that satisfies all the constraints (usable solution in 
the real world).

This technique is appropriate to solve highly 
constrained problems, where finding a feasible 
solution can be difficult. In order to find the 
constrained violation degree of an alternative X 
in the constraint j, the first step of the proposed 
strategy consists of turning the equality 
constraints into soft constraints using a tolerance
δ . Thus, the constraint violation degree of the 
alternative will be given by (2)

	 (2)

Where     denotes the absolute value.

In order to give the same importance degree to 
all constraints, each alternative violated must be 
normalized dividing it by the greatest violation 
value of the population. In this case the greatest 
violation value for each constraint j is calculated 
using (3).

	 	 (3)

The maximum violation value for each constraint 
in the whole population is used to normalize 
each violated constraint calculated in (2). Finally, 
to produce a scalar number that represents the 
constraint violation degree for each alternative of 
the population (in a range between 0 and 1), the 
normalized values are added and then divided by 
the total number of m  constraints as shown in (4).

	 	 (4)

Obtaining the fitness function for phase one

In order to illustrate the calculus of the fitness 
function, the constraint optimization problem 
presented in [8] and defined by the set of equations 
(5) is considered.

st

	 (5)

Where 721 ,,, rrr K  are the problem constraints. 
Table 1 shows a population of 5 alternatives 
randomly generated. The small letters (x1, 
x2,...,x5) stand for the variables and the capital 
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letters (X1, X2,...,X5) stand for the solution 
alternatives.  During the generation of the 
population it is guaranteed that constraints 

6r  and 7r  are satisfied (limits of the decision 
variables). Thus, the problem is only limited by 
the first 5 constraints ( 521 ,,, rrr K ).

Evaluating each alternative of the population 
for each of the constraints in problem (5) and 
discarding the objective function completely, the 
data registered in table 2 are obtained. Applying 
(2) and assuming a tolerance 0.0001δ =  the data 
presented in table 3 are obtained, and the term 

max ( )c j  is calculated using (3). 

Table 1 Randomly generated population 

x1 x2 x3 x4

X1 1156.4 133.69 0.14667 0.3424

X2 867.67 791.77 -0.3331 0.08332

X3 955.76 982.42 0.36467 0.01741

X4 722.69 153.13 0.37178 0.055625

X5 747.24 966.49 0.12927 -0.4855

Table 2 Violation values for each alternative and 
each constraint

r1 r2 r3 r4 r5

X1 -0.74573 -0.35427 -1206.3 226.85 1332.8

X2 -0.9665 -0.1335 -216.97 -1065.9 1294.6

X3 -0.20274 -0.89726 -901.88 123.9 501.93

X4 -0.23384 -0.86616 -711.27 929.26 565.26

X5 0.064772 -11.648 10.647 164.62 -137.11

Then, when a new alternative is generated, a 
comparison between the constraint violations for 
each alternative, and the maximum violations 
calculated in (3) allows keeping the values of the 
vector max ( )c j  updated. It is advisable to generate 
an additional vector )(max ji   containing the index 
of the alternatives that produce each max ( )c j
. Thus, for example, the maximum violation of 

constraint 1 is caused by individual 5 ( 5X ) as 
shown table 3.

Table 3 Constraint violations considering 0.0001δ =

C1 C2 C3 C4 C5

X1 0 0 1206.2 226.84 1332.8

X2 0 0 216.96 1065.9 1294.6

X3 0 0 901.87 123.89 501.92

X4 0 0 711.26 929.25 565.25

X5 0.064772 0 10.637 164.61 137.1

Cmax (j) 0.064772 - 1206.2 1065.9 1332.8

Imax(j) 5 - 1 2 1

Finally, applying expression (4) to the data shown 
in table 3, a scalar vector ( )v X  that quantifies 
the infeasible degree of each individual of the 
population is obtained as shown in (6).

	 (6)

The vector ( )v X  corresponds to the fitness 
function of phase one, which will be used in 
the selection process. For the feasible solution 
search, a traditional genetic algorithm (GA) with 
real codification is used incorporating progressive 
hardening of soft constraints. 

Progressive hardening of soft constraints 
(PHSC) – Phase one

Figure 1 shows the soft constraints handled 
through a violation margin ε . The technique 
used to find the feasible solutions consists of 
considering an interval of the violation margin (

min maxε ε ε≤ ≤ ). In this way, the initial objective 
of the GA is to minimize the parameter ( )v X  of 
each alternative, calculated with expression (4) 
considering maxε . The algorithm  is initially run 
with a high violation margin, and therefore, the 
GA reaches its objective with a low computational 
effort. Next, the violation margin is reduced every 
time the GA reaches a partial objective, until a 
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constraint violation margin smaller or equal to 
minε is finally reached. In this point, the GA has 

found a feasible solution.

The expression ( )1ε τ ε= −  is used as a 
reduction strategy of the violation margin. minε  
corresponds to the tolerance used to evaluate the 
equality constraints fulfillment (a typical value 
is 

min 0.0001ε δ= = ). maxε  is a “bait” value that 
allows the GA to easily find a population with 
a reasonable infeasibility margin. From this 
population, the optimization process guides the 
search towards feasible regions of better quality 
until finding a feasible solution with the desired 
precision degree. Figure 3 shows the search 
process of feasible solutions for problem (5), starting 
with a random population with max 0.4ε =  and 

0.5τ = . The white circles correspond to the initial 
population, the asterisks indicate the evolution of 
the population after several generations, and the 
vertical dashed lines indicate the current violation 
margin.

Figure 3 Search process of feasible solutions. 
Evolution of the population alternatives for differentε

Phase II: Optimization algorithm for 
constraint problems

Phase II is activated when at least one feasible 
solution has been found by phase one. In phase 
one the fitness function corresponds to the 
constraint violation degree, and the evolution of 

the alternatives considers the quality of each non-
dominated set to which each alternative belongs. 
In phase II the constraint violation and the 
original objective function must be minimized 
simultaneously within a modified objective space 
as shown in figure 1 (space f-v). The feasible 
alternative with the best objective function will 
be the current incumbent of the space search.

A GA and an elitist operator based on a non-
dominated sorting (NSGA-II [9]) are used in this 
paper for solving the bi-objective problem. In 
addition, to preserve diversity in the alternatives 
belonging to the non-dominated solutions set, a 
niches scheme is used, taking into consideration 
the normalized Euclidean distance between two 
objective vectors. This distance is known as 
crowding distance metric. A detailed description 
of the calculus of this distance is presented in [7], 
and [10]. The multi-objective theory introduces 
the concept of dominance, which defines that a 
solution  

1X  dominates another solution 
2X   if 

both conditions 1) and 2) are true:

1)	 The solution 
1X  is not worse than 

2X  in all 
objectives. 

2)	 The solution 
1X  is strictly better than 

2X  in 
at least one objective.

If any of the above conditions is violated, the 
solution 

1X  does not dominate the solution 
2X . It 

is possible to apply this definition in an iterative 
way to any set of solutions belonging to a multi-
objective optimization problem to establish the 
dominant and non-dominant sets of alternatives. 

The set of dominant solutions through all the 
objective space is called the Pareto-optimal front. 
Therefore, the GA (or any other evolutionary 
approach) aims to move the current front in each 
iteration towards regions of better quality. Figure 
4 shows the optimal front evolution for problem 
(5) using NSGA-II approach.

There are a bunch of different strategies that can 
be used to intensify the exploration in the target 
search region. Some of these strategies as reported 
in the specialized literature can be: the guided 
domination approach, dominance principle 
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by weights, and in general, modifications on 
the crowing distance metric. In this paper the 
guided domination approach described in [7] 
was implemented. Thus, a different dominance 
concept for minimization problems is formulated.  
A weighted function of the objectives is defined 
as shown in (7)

Figure 4 Pareto-Optimal-Front and target search 
region

Where ija  represents the improvement in the j-th 
objective function for a one-unit loss in the i-th 
objective function. Then, the new dominance 
concept is:

A solution 1X  dominates another solution 2X  if 
( ) ( )1 2( ) ( )i if x f xΩ ≤ Ω  for all i=1,2,…,M and 

the strict inequality is satisfied at least for one 
objective.

In this problem, there are two objective functions 
(M=2). The two weighted functions are shown in 
(8) and (9).

	 (8)      

( )2 1 2 21 1 2,f f a f fΩ = +
	 (9)

Thus, the modified definition of dominance 
allows a larger region to become dominated 

by any solution than the one allowed by the 
traditional definition. 

Besides, by choosing appropriate values of the 
coefficients 12a  and 21a , a section of the Pareto-
optimal region can be emphasized (see Figure 5).  
In this paper, in order to intensify the exploration 
of an interesting region of the Pareto-optimal front 
(as shown in Figure 4) the following coefficients 
were used: 12 0a =  and 21 1.33a = . 

Figure 5 The non-dominated portion of the Pareto-
optimal region

Genetic Algorithm

The multi-objective technique (NSGA-II) 
requires the incorporation of a GA that improves 
the Pareto-optimal front quality during the 
iterative process. A GA with the following 
characteristics is used:

Real codification: binary chain codification is 
not used, which implies a modification in the 
recombination and mutation operators.

Linear crossover: the implemented crossover 
operator creates three solutions (offspring) in 
each generation t from two parent solutions 1,t

iX  
and 2,t

iX , as shown in expressions (10), (11) and 
(12).

 1, 2,1 2 1 2t t
i iX X+                                                              (10)  

 1, 2,3 2 1 2t t
i iX X−                                                              (11)

 1, 2,1 2 3 2t t
i iX X− +                                                             (12)   
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Out of these three solutions, one is eliminated by 
tournament.

Random mutation: the mutation scheme consists 
of creating a random alternative ( )1, 1t

iY +  considering 
all search space ( ) ( ) ( )( )1, 1t U L

i i i iY r X X+ = −  . Where ir  is 
a random number between [0,1] and superscripts 
U and L indicate the superior and inferior search 
space limit, respectively.

Test cases and results 
The multi-objective NSGA-II method and the 
PHSC approach proposed in this paper were 
applied to 11 test cases reported in [8] and [11]. 
In Table 4 a summary of the 11 test cases is 
presented. LI, NE, and NI represent the number 
of linear inequalities, nonlinear equations and 
nonlinear inequalities, respectively, n is the 
number of decision variables involved and a is 
the active constraint. The mutation rate, for all 
cases, is 1% and the recombination rate is 90%. 
The population size for all cases is 15 individuals. 
The maximum generation number is 5000 and 30 
runs for each case were executed. For cases G2 
and G3, k=30 was used. For all cases max 0.4ε = , 
and min 0.0001ε = . The obtained results are shown 

in table 5.  It can be observed that for most of the 
cases, the proposed methodology reaches values 
of the objective function equal to those reported 
in the specialized literature. Particularly, for 
case G5 (represented in this paper by the set of 
equations (5)) there were found three alternatives, 
all of them with objective values better than the 
best value reported in the literature. Table 6 
presents detail information of the variables and 
constraint values for the best alternatives found 
by the proposed approach for problem G5. 

In general terms, the use of PHSC showed a 
better performance of the algorithm in phase I. 
Particularly, the G5 case is highly constrained 
and to find a feasible solution is a difficult task. 
Venkatraman reports, for the G5 case, an average 
number of generations of 1807.82 to find the first 
feasible solution on 50 runs with ε = 0.001. Using 
PHSC an average of 405.3 generations is obtained 
on 30 runs with ε = 0.0001. The use of a smaller 
tolerance allows obtaining a greater number of non-
dominated solutions in the target search region. 
Another strongly constraint case is G10, for this 
case the average number of generations reported 
by Venkatraman  is 99.86. However, the average 
number obtained applying PHSC was 38.7. 

Table 4 Summary of eleven test cases. (for G2 and G3 it is assumed k=30)

Test 
case

n
Type of

 function
LI NE NI a

G1 13 quadratic 9 0 0 6
G2 k nonlinear 0 0 2 1
G3 k polynomial 0 1 0 1
G4 5 quadratic 0 0 6 2
G5 4 cubic 2 3 0 3
G6 2 cubic 0 0 2 2
G7 10 quadratic 3 0 5 6
G8 2 nonlinear 0 0 2 0
G9 7 polynomial 0 0 4 2
G10 8 linear 3 0 3 6
G11 2 quadratic 0 1      0 1
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The algorithm performance in phase II is similar 
to the one reported by Venkatraman in [11]. 
Nevertheless, for the G5 case the proposed method 
was able to find, in 30 runs, 3 solutions with a better 
objective function than the one reported in [11]. 
These solutions belong to the dominated front and 

have an acceptable constraint violation degree (see 
table 6). Comparing the best alternative reported 
with the 3 alternatives found, it can be noticed that 
the alternatives 1 and 3 exactly satisfy constraints 
R3=0 and R4=0. All alternatives satisfy the 
inequality constraints R1 and R2. 

Table 5 Comparison of best results. ANG= average number of generations when the first feasible solution is 
found.

Function
Best 

known 
solution

Venkatraman
 and Yen [1]

Koziel and  
Michalewicz [2] 

Proposed 
methodology

ANG 
Venkatraman 

and Yen

ANG
Proposed 

methodology

Min. G1 -15 -14.9999 -14.7864 -14.9999 11.24 0
Max. G2 0.803553 0.803190 0.799530 0.803190 0 0
Max. G3 1.0 1.0 0.9997 1.0 31.68 5.5

Min. G4 -30665 -30665.5312 -30664.9 -30665.5312 0 0

Min. G5 5126.4981 5126.63049 NR 5126.331 1807.82 405.3

Min. G6 -6961.8 -6961.17856 -6952.1 -6961.17856 289.52 45.6
Min. G7 24.306 24.410977 24.620 24.410977 53.22 9.9
Max. G8 0.095582 0.095825 0.095825 0.095825 9.28 1.5
Min. G9 680.63 680.7622 680.91 680.7622 5.84 0

Min. G10 7049.33 7060.5528 7147 7060.5528 99.86 38.7
Min. G11 0.750 0.7490 0.9 0.7490 13.32 0

Table 6 Variables and constraint values for the best alternatives of problem G

Alternative 1 Alternative 2 Alternative 3 Best alternative reported

Objective
function value

5126.4945 5126.4691 5126.331 5126.4975

Variables

x1 680.3447227503 678.0676632572 681.5644559478 679.9453
x2 1025.639306343  1028.06265646 1024.293474739 1026.067
x3 0.000118591184 0.12021181155 0.11770661330 0.1188764
x4 -0.000396368384 -0.39559444472 -0.39676709250 -0.3962336

Constraints

R1 -0.035040431265 -0.03419374372 -0.03552629420 -0.03489
R2 -1.064959568734 -1.06580625627 -1.06447370579 -1.06511
R3 0 0.000045898864 0 0.000033030076
R4 0 0.000522908572 0 0.000247240858
R5 0.000817247899 0.008254636764 0.03317435154 -0.00009672673
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Conclusions 
In this paper a new methodology to deal 
with constraint optimization problems was 
presented. The main contribution of the proposed 
methodology consists of an efficient constraint 
handling approach using progressive hardening 
of soft constraints along with an intensive 
exploration of a target search region of the 
Pareto-optimal front. 

The multi-objective NSGA-II method along with 
the proposed methodology was implemented on 
11 test cases widely studied in the specialized 
literature. Results showed that the proposed 
methodology is competitive with the state-
of-the-art constraint optimization algorithms. 
In particular, for test case G5, three different 
alternatives better than the one reported in the 
literature were found. For the other test cases 
the algorithm found the best solution already 
reported. However, in some cases, a considerable 
reduction of the number of generations was 
achieved. 

Future work will consider other recombination 
and mutation strategies using real codification, 
such as blend crossover, simulated binary 
crossover, simplex crossover, non-uniform 
mutation and polynomial mutation, among 
others. The use of algorithms that incorporate 
the lateral diversity concept, such as NSGAII-
controlled, allows a search of greater quality in 
the target search region and can be implemented 
with the purpose of improving some results. This 
philosophy can be applied to highly constrained 
problems. 
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