
104

Rev. Fac. Ing. Univ. Antioquia N.° 68 pp. 104-114. Septiembre, 2013

Component-Based Java Legacy Code
Refactoring

Refactorización Basada en Componentes de
Código Java Legado

Hugo Arboleda1,*, Andrés Paz1, Jean-Claude Royer2

1 I2T Group, Universidad Icesi Calle 18 No. 122-135. Cali, Colombia.
2ASCOLA Group, Mines de Nantes – INRIA 4 Rue A. Kastler. 44307. Nantes,
France.

(Recibido el 19 de octubre de 2012. Aceptado el 5 de agosto de 2013)

Abstract

Component-Based Software Engineering (CBSE) claims to improve software
modularisation and to embed architectural concerns. Refactoring Java legacy
code with CBSE in mind requires first assessing the compliance of legacy code
with component programming principles. This paper presents a portfolio of
rules to assess the compliance of Java legacy code with the Communication
Integrity (CI) property, which is one of the major strengths of the CBSE
approach. These rules are proposed with the objective of identifying implicit
component types and thus provide a measure of the componentisation of an
application. In order to help developers and legacy code maintainers when
refactoring their applications, along with the rules, this work leads to define
a set of refactoring actions. Additionally, the results of testing, comparing
and analysing the outputs of refactoring several Java applications are also
presented.

--------- Keywords: Component based programming, communication
integrity, Java, refactoring

Resumen

La Ingeniería de Software Basada en Componentes (CBSE) pretende
mejorar la modularización del software y la inserción de preocupaciones
arquitecturales. Refactorizar código Java legado con CBSE en mente requiere
evaluar primero el cumplimiento del código legado con los principios de la
programación por componentes. En este artículo presentamos un portafolio
de reglas para evaluar el cumplimiento de la propiedad de Integridad de

	 Autor de correspondencia: teléfono: + 57 + 2 + 55 52 334 ext. 8035, fax: + 57 + 2 + 55 51 745, correo electrónico: hfarboleda@icesi.edu.
co (H. Arboleda)

105

Component-Based Java Legacy Code Refactoring

Comunicación en código Java legado; esta propiedad es una de las mayores
fortalezas del enfoque CBSE. Proponemos estas reglas para identificar tipos
componente y así proveer una medida de la construcción de componentes
CBSE de una aplicación. Con el objetivo de ayudar a los desarrolladores y
al personal responsable del mantenimiento de código legado cuando se hace
necesario refactorizar sus aplicaciones, nuestro trabajo nos lleva a definir un
conjunto de acciones de refactorización. En este artículo también presentamos
resultados de pruebas, comparaciones y análisis de las salidas logradas luego
de refactorizar varias aplicaciones Java.

---------- Palabras clave: Programación basada en componentes,
integridad de comunicación, Java, refactorización

Introduction
Component Based Software Engineering (CBSE)
[1] is a software engineering approach concerned
with software architecture, modularisation and
separation of concerns. The approach promotes
the principle of making the architectural decisions
explicit; it allows checking of architectural
constraints and the use of strict programming
principles such as the Communication Integrity
(CI) property [2, 3]. Such a property states that
two components can only communicate if a
communication channel has been previously
defined between them, i.e. there are no hidden
communication channels. In software development,
architectural erosion is the “progressive gap
observed between the planned and the actual
architecture of a software system as implemented
by its source code” [4] and it appears as a side
effect when software systems are maintained and
the system finally violates the original architectural
intents [5-7]. The CI property allows designers to
explicitly specify and automatically check some
architectural decisions, thus actively limiting the
chances of architecture erosion.

This paper considers the problem of refactoring
Java legacy code in order to generate component
based software applications that satisfy the
CI property. As part of previous work a first
catalogue of rules to discover component types
in Java legacy code is presented in [8]; a set of
refactoring actions in order to convert, when
possible, discovered data types into component
types is presented in [9]. This paper highlights

three technical contributions besides the general
approach. First, a refined catalogue of rules to
detect CI violations according to a light Java
component model. Second, an advanced set of
refactoring actions in order to solve the CI rule
violations. Finally, in order to help developers
and legacy code maintainers when refactoring
their applications, advanced tool support for
automatically identifying component types. Two
software applications were developed, each
one implementing a group of rules; it provides
alternatives to discover components respecting
fully or partially the CI property.

The remainder of this paper is organised as
follows. First, the background for this study and the
description of the main elements of the reference
model. Then, in Components Qualification the
list and explanation of the rules used in the tool
to prevent communication integrity violations in
Java legacy code. Subsequently, in Component
Extraction Results, are presented two rule sets
and their applications in several open-source
projects. The Refactoring Process presents a list
of refactoring actions. Finally, related work and
conclusions are presented, including a summary
of our contribution and future work.

Background

Reference component model

There are many proposed models that implement
the main CBSE principles. The authors focus
on models with interface and hierarchical

106

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

composition, leaving aside the notion of ports and
connectors. In [10] several component definitions
are discussed, the present work was based on the
definition given in [11]. This definition implies
that: i) a software component is a unit, ii) it
specifies an interface (or interfaces) of services it
provides, iii) it specifies context dependencies, and
iv) it may be part of a larger composite component.
A composite component is built from other
components; a component that is not a composite
is called a primitive component. As in [12, 13], it
is valuable to consider the notion of subtyping as
a formal way to organise types in the applications.

In the refactoring approach a strict component
model with a straightforward implementation in
Java is considered. The underlying component
model relies on the assumptions that component
types i) are true types, which means they can
be instantiated to generate components, ii)
communicate via a strict message passing
policy based on method calls, iii) can be either
concrete or abstract component types, iv) support
subtyping, and v) composites are built from a
class structure containing subcomponents.

The communication integrity property

In order to illustrate the CI property, consider
Listing 1, an excerpt of an application exposed in
[14]. In the Primitive class the getIt() method allows

access to the otherPart attribute from the outside.
Thus, according to the CI property, the OtherPart
class cannot be considered as a component type
since it can be accessed from outside its enclosing
parent. Assuming that Primitive is a component
type, the setIt(...) method enables communication
between Primitive instances and the otherPart
argument, hence it could also violate the CI
property. The Composite class has a public field,
which is an array of Data instances. Thus, one
can access these Data instances from objects
holding Composite instances. According to the
CI property, the Data class is considered as a data
type because it can be accessed from outside its
enclosing parent, the Composite. This is also true
for the SubData class, which is considered as a
data type because of polymorphism. The data
part attribute is enclosed in a data type thus it can
be indirectly accessed from everywhere in the
program and it should also be considered as a data
type. In the Composite class the getIt() method is
private. If one restricts its uses to this or super
then the Primitive instance cannot escape from
its enclosing parent. Thus, the Primitive class can
be considered as a component type. Similarly, the
Composite class is considered as a component
type since there is no possible violation of the
CI property. As this simple example shows, the
effects of these rules are complex and difficult
to predict. A tool is required to help designers
understand their applications to software projects.

Listing 1 Java Code Sample

public class Primitive {
 private OtherPart otherpart;
 public OtherPart getIt()
 { return this.otherpart; }
 public void setIt(OtherPart dp) { ... }
} // end Class Primitive
public class OtherPart { ...}
public class Composite {
 private Primitive prime;
 public Data [] datas;
 public Composite()
 { this.prime = new Primitive(); }

 private Primitive getIt()
 { return this.prime; }
} // end Class Composite
public class Data {...}
public class SubData extends Data {
 private DataPart datapart;
 ...
} // end Class SubData

public class DataPart {...}

107

Component-Based Java Legacy Code Refactoring

Discovering components from Java Code

Since the present work considers the static
analysis of source code, one cannot extract the
exact dynamic information about components, as
only the information of types is examined. The
set of types (classes, interfaces, generics) in the
Java source code is called the types of interest.
The component model recognises data types
(DTypes) and component types (CTypes). An
instance of a CType is a component, while a value
is an instance of a DType. The types of interest
are a disjunction of two sets, DTypes, CTypes and
ETypes, the latter are the external types to the
project under study. The composition structure
of a type is defined as the types of its fields or
attributes. The authors consider the maximal
structure, that is, all the defined attributes and the
inherited ones are collected, but the super private
fields are not considered since, in Java, they cannot
be accessed in the subclasses. A visible member
in a type is a public or default member, and
conversely private and protected ones are called
non visible. For component types, an additional
constraint is added: non-visible members can
only be called on this and super. A service is a
visible method. A method signature is defined
by a name, typed parameters and resulting type
(as usual the authors use void for procedures).
Provided services are all the available services
defined in the type. The required services of a
given type are those methods that are defined in
another type and are called in the source code
of the considered type. Communications occur
dynamically when a component requires the
service of another component; a communication
link denotes such a communication. There is
a communication channel between the two
component types if a block of code of the source
component type contains a call to a method of the
target component type. Subtyping relationships
are computed from the two Java subtyping
relationships: extends and implements.

Components qualification
The principles and rules presented in this article
mostly come from ArchJava [12], but have been

modified and extended. ArchJava is a language
extension to Java that seeks to integrate a
software’s architecture with its implementation.
As in the ArchJava language, the present work
avoids hidden communications that have been
established via data sharing, see AliasJava [15]
for a solution, and ignores the use of the Java
reflection API. A source code analyser has been
created, which is able to identify violations of
our CI rules in Java code and then to classify in
DType or CType the types of interest that were
found.

The communication integrity rules

The CI rules, described below, prevent
subcomponents from escaping their enclosing
parent component and are used to distinguish
DType from CType in Java legacy code.

Rule. Wrong Signatures:

1-a) 	 Types passed as parameters of, or returned
by, services enclosed in CTypes or DTypes
are DTypes; the service signature is
qualified as a wrong signature.

1-b) 	 The rule 1-a also applies to any constructor,
regardless of its modifier.

1-c) 	 Non-visible methods can have component
types in their signatures, as long as they are
called on this or super.

Rule. Composition:

2-a) 	 Types occurring in the structure of DTypes
are DTypes.

2-b) 	 Types in visible fields of CTypes are DTypes
since their instances are publicly available.

2-c) 	 Types in static fields of CTypes are DTypes
since their instances are shared by several
instances.

2-d) 	 CTypes can have non-static and non-visible
fields of CTypes but they should only
be accessed via this or super, to prevent
components escaping from their parent
components.

108

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

Rule. Subtyping:

3-a) 	 Subtypes of DTypes are DTypes. This
follows from rule 1-a, since instances of
the subtype could be used as parameters or
result, using polymorphism resulting from
subtyping.

3-b) 	 Exception: The above rule does not apply
for ETypes since it is convenient to extend
existing libraries. The communication
integrity property can be lost when
inheriting from external data types.
Inherited methods, required redefinitions
or downcastings are possible problems.
To provide a better checking in case of
extending external types is still an open
problem [16]. One restricted way is to check
for suspicious downcasts (see below).

3-c) 	 DTypes can be a subtype of CTypes, but if it
inherits from an inner class, rule 5-a should
apply on the subtype.

Rule. Arrays and Generics:

4-a) 	 Actual types of arrays and generics in
services are DTypes.

4-b) 	 Actual types of arrays and generics in
visible and static field declarations are
DTypes.

4-c) 	 The rule 4-b also applies to non visible
fields of DTypes (from 2-a).

4-d) 	 Formal parameters of generics in the case
of generic realisation used as a superclass
or super interface are DTypes (from 4-a).

4-e) 	 In addition to 4-d: The subclasses and
implementations of the generic realisation
(from rule 3-a) are DTypes.

Rule. Nested Classes:

5-a) 	 Parent classes with DType inner classes are
DTypes. If an inner class is a DType, one of
its instances could escape from its context
and could allow access to the enclosing
component reference itself.

Rule. Exception Classes:

6-a) 	 Exception types are DTypes. This is a strict
and pragmatic rule.

Rule. Enumeration Classes: An enumeration
class (enum) defines a public class with a set of
public constants.

7-a) 	 Enumeration classes are DTypes.

Component extraction results
The rules defined in the previous section could at
first seem strict. In order to “relax” the component
extraction and the refactoring processes, two
different sets are defined, which are concerned
to particular and well-defined interests. By using
each set of rules separately some concerns can
be considered and others ignored as proof of
the usability of the presented approach and tool
support. This also helps maintenance engineers
perform incremental refactoring.

The ISEC Set

The ISEC set does not check the wrong constructor
signatures. To restrict constructors is a major
issue in OO programming; this set of rules allows
component types in constructors, which enables
in fact a violation of the communication integrity
property. This set does not consider the use of
the static modifiers for fields and class members
in the source code under study. These static
modifiers are considered not so important in
OOP and CBSE applications. Finally, the wrong
signatures are checked on services of CTypes and
DTypes. This last point was to simplify both the
checking process and the refactoring process.
Since the set is stricter on DTypes, it is easier to
convert a DType into a CType. This set includes
the rules 2-a, 2-d, 3-*, 4-a, 4-c, 4-d, 4-e, 6-a;
including 1-a, 1-c for all types, and 1-c, 2-b, 2-c,
4-b, 5-a for those without the static cases.

The AJ Set

The AJ set includes the rules for checking all
static modifiers and the rule for checking wrong

109

Component-Based Java Legacy Code Refactoring

constructors. The idea is to include a more
complete set of rules but still checking wrong
signatures on services of CTypes and DTypes.
This set includes the rules 2-*, 3-*, 4-*, 5-a, 6-a;
including 1-* for all types.

Experiments
The two tools implementing each set of rules
were run on several examples of various
sizes, coming from different repositories and
illustrating different application domains. The
examples can be found on SourceForge [17] (e.g.
Metrics), and some others on the Jakarta Project
[18] (e.g. REGEXP). Some specific applications
(e.g. MineSweeper, Javacalc) were also collected,
and some others (e.g. JavaCompExt, NIM game,
and simplification) were designed by the authors
of this work. The tools were run on over 20
examples, ranging from simple examples of 100
Lines Of Code (LOC) to real size applications of
230 KLOC (thousands of lines of code).

The percentage of component types relative
to the total number of types (%R = #CTypes/
(#CTypes+#DTypes)) gives a partial evaluation
of the CBSE quality relevant in the context of this
work. As a preliminary remark, types respecting
the sets of CI rules were found in every application
tested, even in traditional OOP applications. The
main entry types of the applications, the main
class, test classes or top layer classes, are often
considered as component types. The main reason
for this is that any other types in the application
do not use them, and if they are designed in a good
object-oriented manner they are not responsible
for violations of the CI rules.

For some applications, which were designed with
CBSE in mind, the results are better in terms
of number of discovered CTypes. For instance,
the CoCoMe-OASIS [19] has a ratio of 57%, It
was designed with an explicit architecture and
implemented with a component-based approach.
However, for some others, which claim to be
CBSE applications, the results are poor in terms
of number of discovered CTypes (for instance,
COCOME-RCOS with a ratio of 31%). There

are various reasons for this bad score. The first
is that the component models which are often
used as a reference to develop the applications
are not compliant with our component model,
for example in relation to the concept of
hierarchical components and the implementation
of composites. Another reason is that designers
and programmers violate the CI property and/or
do not respect the initial architecture.

Although our component model is not
compatible with all the existing component
model implementations, the CI property,
which is the base of our approach, is compliant
with some other implementations like event-
oriented programming. The use of message-
oriented middleware, like Java Message
Service, is compatible with our approach. In
message oriented middleware the information is
communicated via events, which are instances of
classes encapsulating information. Nevertheless,
the event types are analysed and qualified
correctly according to the rules. One example
was the CoCoME-impl project, which uses JMS.

The refactoring process
Several small and middle-sized applications were
processed, and target plain Java source code, which
can be tested to verify their behaviour: NimI,
NimF, Javacalc, Simplification, MineSweeper
(a detailed refactoring conducted with the ISEC
rule set is described in [8]), Regexp, Metrics,
JavaCompExt. This set of projects represents a
total of almost 20 KLOC.

The main objective was to remove violations
of the CI rules on some of the types of interest,
transforming them from DTypes into CTypes.
These applications are generally provided
without explicit component architecture, and the
refactoring process generally does not target a
specific architecture.

Refactoring actions

During the refactoring of the applications several
recurrent actions to fix CI rule violations were

110

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

processed. The actions described below are
intended to restructure the applications under
study by removing violations of the CI rules
while preserving the original behaviour.

Wrong constructor signature

In this case, the type (T) occurs as a parameter type
of the constructor definition and this constructor
is called in its type definition or in another
type. The general method for removing wrong
constructor signatures is to erase T from the set
of parameter types while creating the T instance
inside the constructor of the enclosing type. Two
situations are possible: i) the constructor can
provide default values for the T instance, ii) the
T instance can be configured with values passed
to the constructor. In either case, this impacts
on the constructor calls, which must be changed
accordingly.

Wrong sign

A general solution is to remove the need for the
method with the wrong signature by substituting
its source code. Obviously this is far from a
good general solution, but it can be successful
if the method is only called once. If E = T and
the method is not used outside of T then it can
become non visible (making this method private
or protected). If the method is used elsewhere or
defined in a type other than T then there are two
sub cases depending if whether there is a wrong
argument or a wrong resulting type.

Wrong argument signature

The action is to replace the wrong method by a
new method without the wrong argument type,
but with some new parameters available from
the T instance. The calls of this wrong method
signature must be changed and an attribute of
type T must be defined in the context of the call
in order to replace the argument.

Wrong result signature

 In this case one solution is to make the method
non visible, to define a local attribute of type T

and to add a public void method which sets the
attribute with the method call. Complications
arise since the T value is usually accessed to
provide information. Thus the full solution needs
to delegate the required services to new provided
services defined in the enclosing type.

Data type encapsulation

In this case either the enclosing type becomes a
CType or it is removed.

Visible field

In this case a CType contains a visible field of
a class, interface, array or generic type. Making
the field non visible is the recommended solution
to this violation, often many public or default
package modifiers are overused. However, it can
lead to other modifications if this part is accessed
outside of its enclosing type. In this case, defining
accessors adds new wrong methods and the
wrong signature case above applies.

Static field

Removing the static nature and making the
field non-visible or removing this part from the
enclosing type will solve this violation. However,
if the static field is intended to be shared, its type
should remain as a DType and no refactoring
actions must be processed.

Data type subtyping

Either the super type becomes a CType or the
subtyping link must be removed. This action
could apply to classes, interfaces or generics.

Array and generics

The general principle is to avoid CTypes in arrays
or generics occurring in visible methods, visible
or static parts or as super type. One possibility
is to change the scope modifier or the supertype
link. An alternative approach is to define a
container, using a class in a compliant CBSE
way. Nevertheless, it may be difficult to respect
the CI rules; this will be discussed in future work.

111

Component-Based Java Legacy Code Refactoring

Inner data type

 If the inner type is a DType it must be refactored
as a CType or the inner structure must be changed.
For instance the solution may be to extract the
inner class from the enclosing context, or to
change to a static nested class.

Exception

To change an exception into a CType is to remove
its exception nature, generally acquired by
inheritance from an exception class.

Enumeration

As above there is no solution without removing
the enum qualifier.

Refactoring with the two rule sets

The component type ratio (%R) is considered
as a simple measure of the componentisation of
an application. In table 1, for each row, the first
line of data represents the original application, its
size given by its LOC, and the componentisation
ratio (%R) obtained after processing it with the
rule set referred to in the column header. The
two subsequent lines represent two different
refactoring alternatives; the first is guided by the
ISEC rule set and the second by the AJ rule set. An
initial exception is the Simplification application;
due to the use of singletons and of a purely
functional style it was not possible to propose a
CBSE refactoring without completely changing
the programming paradigm or introducing bad
programming practises.

Table 1 Component type ratio before and after
refactoring

Project
Size

(LOC)
ISEC
%R

AJ %R

NimF
	 _ISEC
	 _AJ

89
127
92

25
100
100

25
50
100

Project
Size

(LOC)
ISEC
%R

AJ %R

NimI
	 _ISEC
	 _AJ

123
100
125

50
100
100

50
50
100

Javacalc
	 _ISEC
	 _AJ

189
253
242

8
42
42

8
42
42

Simplification 454 29 29

MineSweeper
	 _ISEC
	 _AJ

795
794
825

30
90
70

30
40
70

REGEXP
	 _ISEC
	 _AJ

3232
3225
3250

43
81
50

37
75
50

JavaCompExt
	 _ISEC
	 _AJ

7602
7611
7721

52
58
55

36
36
51

Metrics
	 _ISEC
	 _AJ

14470
14459
14481

42
52
48

41
51
45

Related work
A survey about architectural degeneration is
presented in [20]. One approach is architectural
recognition [21], which analyses Java source code
and generates a model of information containing
components and connectors. Mendonça and
Kramer analysed the limits of some recovery
tools and identified the requirements for
effective architecture recovery of legacy
systems. This is a complementary but more
coarse-grained approach than detecting potential
communication integrity violations. The above
survey also discusses refactoring support in
development environments, like in Eclipse [22].
The refactoring actions suggested in this paper
are more advanced than those provided by such
an environment. In [23], the authors combine
architecture recovery and change dependency
analysis, but the components they consider are
files, not true programmed components.

112

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

In the context of refactoring tool support is
needed to evaluate the quality of applications
and to guide the restructuring process. There
is a lack of tools for assessing the quality of
component-based source code. Metrics based
tools, architecture recovery tools, Java analysers
and architecture compliance tools are some
immediate candidates, however, none of them
are devoted to the purpose addressed in this work
(see [8] for a deeper discussion).

ArchJava [3, 8] is closely related to the present
work. The latter introduces new rules for checking
generics, enumerations, and exceptions. The main
difference regarding the refactoring process is
that the present work defines an inference system
mining for data types in pure Java code and
propagating this information along inheritance
and composition, and coping with most of the Java
features. The approach addressed in this paper
makes explicit, more rigorous and automated,
the distinction between ordinary classes (for data
structure) and component types.

In [12, 18], ArchJava is claimed to be incremental,
which is found true within certain and well
defined limits. The incremental refactoring
process in ArchJava only considers i) to choose a
class, ii) transform it into a component type and
then iii) use the compiler and check the violations
of the communication integrity rules. This is a
coarse-grained restructuring, and communication
integrity enforcement can fail for several reasons
as discussed with the rule sets exposed in this
work. Discarding the generic, exception and
enumeration rules, more fine-grained situations
were also identified where CI violations can occur
and the refactoring actions to solve them, than the
ArchJava approach. For instance, the concept of
wrong signature is crucial in the analysis and the
refactoring process of a Java application.

Table 2 presents a comparative summary between
the features of our approach and those of the
approaches we have mentioned.

Table 2 Comparison with related approache

Feature Our approach
Arch
Java

Architectural
Recognition [21]

Component-based
X

(True programmed components)
X

X
(File-based components)

Rule-based approach
X

(Extends the rules of ArchJava)
X

Mines for data types and component types X

Incremental refactoring process X X

Detects potential communication integrity
violations

X X

Provides refactoring actions
X

(coarse- and fine-grained
restructuring)

X
(coarse-grained restructuring)

Conclusion
The Communication Integrity (CI) property is an
approach to maintain the software architecture’s

consistency of CBSD applications. However, the
CI property has not been significantly used in
refactoring processes besides the formal analysis
and practical experiences from ArchJava. The

113

Component-Based Java Legacy Code Refactoring

present work proposes in this context a catalogue
of rules to ensure the CI property in Java legacy
code according to a light, Java component model.
Several differences with ArchJava can be noted.
The approach presented in this paper considers
strict static checking, fine-grained detection of
components and small refactoring steps. A fine-
grained and incremental approach helps ensure
the refactoring steps are reliable. New rules for
subtyping, generics, exception and enumerations
are also considered. Groupings of our rules
were tested in two rule sets to compare their
applicability in identifying and distinguishing
data types from component types.

Experiments were conducted on more than
40 projects, which showed consistency in the
qualification of components. To further complete
the present work, a set of refactoring actions
is provided with the intent of removing the CI
rules violations in Java legacy code and, thus,
to increment the componentisation ratio. In
this regard, our experiments with our two sets
of rules throw useful information, particular to
each set of rules, in order to guide the selection
of the refactoring actions to apply. In an in-
depth analysis of several projects, some limits
of the approach were identified. For instance,
the fact that pure functional programming is not
compliant with it.

The respect of the communication property can
bring some value in evaluating and refactoring
Java applications. However, this is not a simple
task and tools with a good set of rules are required.
The present study shows that there are still some
improvements to be done with component types
in constructors. Simplifying some rules is also
possible, as demonstrated with the prohibition of
component types in data type signatures. Future
work in this setting will focus on the tool support
built to provide assistance for the qualification of
component types, and the theoretical side of this
work and will consider questions such as: what
degree of safety these rules ensure.

References
1. 	 N. Medvidovic, R. Taylor. “A Classification and

Comparison Framework for Softwar Architecture
Description Languages”. IEEE Transactions on
Software Engineering. Vol. 26. 2000. pp. 70-93.

2. 	 C. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
W. Mann. “Specification and Analysis of System
Architecture Using Rapide”. IEEE Transactions on
Software Engineering. Vol. 21. 1995.pp. 336-355.

3. 	 J. Aldrich, C. Chambers, D. Notkin. ArchJava:
connecting software architecture to implementation.
Proceedings of the 24th International Conference on
Software Engineering (ICSE’02). Orlando, FL, USA.
2002. pp. 187-197.

4. 	 R. Terra, M. Valente, K. Czarnecki, R. Bigonha.
Recommending Refactorings to Reverse Software
Architecture Erosion. 16th European Conference on
Software Maintenance and Reengineering (CSMR).
Szeged, Hungary. 2012. pp. 335-340.

5. 	 D. Perry, A. Wolf. “Foundations for the Study of
Software Architecture”. Software Engineering Notes.
Vol. 17. 1992. pp. 40-52.

6. 	 J. van Gurp, J. Bosch.“Design Erosion: Problems &
Causes”. Journal of Systems and Software. Vol. 61.
2002. pp. 105-119.

7. 	 M. Lindvall, D. Muthig. “Bridging the Software
Architecture Gap”. IEEE Compute. Vol. 41. 2008. pp.
98-10.

8. 	 H. Arboleda, J. Royer. Component types qualification
in Java legacy code driven by communication
integrity rules. Proceedings of the 4th India Software
Engineering Conference (ISEC’11). New York, NY,
USA. 2011. pp. 155-164.

9. 	 H. Arboleda, J. Royer. Java Component Refactoring
Based on Communication Integrity Violations. 9th
Belgian-Netherlands Software Evolution Seminar.
Lille, France. 2010. pp. 115-129.

10. 	 I. Crnkovic, S. Sentilles, A. Vulgarakis, M. Chaudron.
“A Classification Framework for Software Component
Models.” IEEE Transactions on Software Engineering.
Vol. 37. 2011. pp. 593-615.

11.	 J. Bosch, C. Szyperski, W. Weck. Component-
Oriented Programming. European Conference on
Object-Oriented Programming (ECOOP) Workshops
2003. Darmstadt, Germany. 2003. pp. 34-49.

12. 	 J. Aldrich, C. Chambers, D. Notkin. Architectural
Reasoning in ArchJava. Proceedings Eureopean

114

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

Conference on Onject-Oriented Programming
(ECOOP) 2002. Málaga, Spain. 2002. Vol. 2374. pp.
334-367.

13. 	 M. da Silva, P. de Castro, C. Rubira. A java component
Model for Envolving Software Systems.18th IEEE
International conference on Automated Software
Engineering (ASE). Montreal, Canada. 2003. pp. 327-
330.

14. 	 J. Gosling, B. Joy, G. Steele, G. Bracha. The Java
Language Specification. 3rd ed. Ed. Addison-Wesley.
Santa Clara, California, USA. 2005. pp. 175-248.

15. 	 J. Aldrich, C. Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. Object-
Oriented Programming European Conference
(ECOOP’04). 2004. Vol. 3086. pp. 1-25.

16. 	 M. Abi, J. Aldrich, W. Coelho.“A case study in re-
engineering to enforce architectural control flow and
data sharing.” Journal of Systems and Software. Vol.
80. 2007.pp. 240-264.

17.	 Slashdot Media. SourceForge. Available: http://
sourceforge.net/. Accessed in october 18, 2012.

18.	 The Apache Software Foundation. The Apache Jakarta
Project. Available: http://jakarta.apache.org/. Accessed
in october 18, 2012.

19. 	 A. Cansado, D. Caromel, L. Henrio, E. Madelaine,
M. Rivera, E. Salageanu. “A Specification Language
for Distributed Components Implemented in {GCM}/
ProActive”. CoCoME. Vol. 5153. 2007. pp. 418-448.

20.	 L. Hochstein, M. Lindvall. “Combating architectural
degeneration: a survey”. Information & Software
Technology. Vol. 47. 2005. pp. 643-656.

21. 	 N. Mendonça, J. Kramer. “Requirements for an
effective architecture recovery framework”. Joint
proceedings of the second international software
architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software
development (Viewpoints ’96) on SIGSOFT ‘96
workshops. ACM. New York, NY, USA. 1996. pp.
101-105.

22. 	 D. Gallardo. Refactoring for everyone. IBM
developerWorks Technical library. 2003. Available:
http://www.ibm.com/developerworks/library/os-
ecref/. Accessed in october 18, 2012.

23. 	 C. Stringfellow, C. Amory, D. Potnuri, A. Andrews, M.
Georg. “Comparison of software architecture reverse
engineering methods”. Information & Software
Technology. Vol. 48. 2006. pp. 484-487.

