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Abstract
Traffic assignment is one of the most important stages in transportation 
planning; however, its application to real case studies in medium- to large-
sized cities makes the solution of the model difficult because of the scale and 
high computational complexity related to the combinatorial and non-linear 
nature of the problem. The aim of this paper is to present a decomposition 
method based on sub-region analysis, and a simple heuristic rule for solving 
large-scale traffic assignment problems. This reduces the total amount of 
variables and equations of the model and offers a practical solution in a 
reasonable computing time. The proposed traffic assignment model is applied 
to the multimodal main road network of the Aburra Valley, Colombia. Such an 
application of a great amount of variables and equations converts the model 
into a large-scale problem. The proposed method considerably reduces the 
computational complexity of the problem, and it reveals accurate solutions in 
an execution time which is reasonable for such a large-scale model.

---------- Keywords: Traffic assignment problem, large-scale model, 
decomposition methods, heuristics

Resumen

La asignación de tráfico es una de las etapas más importante de la planificación 
del transporte, sin embargo su aplicación a casos reales en ciudades de tamaño 
medio y grande se hace difícil de resolver por la gran escala y complejidad 
computacional de estos modelos, asociada a su naturaleza combinatoria y no 
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lineal. El objetivo de este artículo es presentar un método de descomposición 
basado en subregiones y una regla heurística sencilla, para resolver modelos 
de asignación de tráfico de gran escala, que reducen la cantidad de variables 
y de ecuaciones del modelo, sin comprometer la calidad de la solución. El 
modelo de asignación de tráfico propuesto es aplicado a la red multimodal de 
vías principales del Valle de Aburrá, y dicha aplicación resulta en un problema 
de gran escala, por el alto número de variables y ecuaciones asociadas. El 
método propuesto reduce significativamente la complejidad computacional 
del problema y encuentra soluciones adecuadas en un tiempo de ejecución 
razonable para un modelo de gran escala.

---------- Palabras clave: Problema de asignación de tráfico, modelos 
de gran escala, modelos de descomposición, heurísticas

Introduction
One of the most important stages in urban 
transportation planning is addressing the traffic 
assignment problem (TAP). This problem can be 
seen as a part of a more complete model for urban 
transportation planning as is the four-step model, 
along with trip generation, trip distribution, 
and modal split [1,2], or it can be seen as an 
independent model, useful for analyzing the 
different urban traffic schemes, based on origin-
destination (OD) matrices. The aim of the TAP 
is to characterize user behavior in relation to 
the route chosen for making a trip. The travel 
demands are assigned to the available paths in 
the transportation network, minimizing the total 
travel times, costs, and/or distances.

A solution to the TAP can be as simple as assuming 
that there are no traffic congestion effects (free 
flow) and that all demand pairs use the same 
route; that is, assuming an “all or nothing” type 
of assignment. On the other hand, a solution can 
be as complex as assuming congestion effects on 
the decisions of users, which means including 
non-linear functions in the objective function of 
the optimization problem, and considering all 
the possible paths available for transportation 
users for minimizing their travel times. The 
former is an easy way to solve the TAP but is far 
from realistic, and the latter is more realistic but 
harder to solve computationally, especially when 
the problem is a large-scale one, as the cases of 

medium- and large-sized cities usually are. The 
latter approach represents significant research 
challenges, since it demands the formulation 
of strong solution methodologies that range 
from heuristics and metaheuristics, to rigorous 
methods of mathematical programming and 
decomposition methods.

In most cases, especially in the cities found in 
developing countries, the information available 
in order to run a classic TAP model is insufficient, 
incomplete, or even non-existent. In those 
cases, it is necessary to develop a specific TAP 
model that meets the requirements of urban and 
transportation planners, and to be in agreement 
with the available information. 

The aim of this paper is to propose a novel 
approach for the TAP model for the case study of 
the metropolitan area of Medellin, also known as 
the Aburra Valley, in the Republic of Colombia. 
With this approach, it can be considered the 
mathematical thoroughness of the classic TAP 
and the cost/time efficiency of the decomposition 
methods.

Background
Back in the 50s, Wardrop [3] established two 
principles for representing the behavior of users 
related to the choice of a route. Those principles, 
known as Wardrop’s principles, are widely used 
in equilibrium assignment models nowadays. 
The first principle states that the journey times 
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in all routes actually used are equal and less 
than those that would be experienced by a single 
vehicle on any unused route. This is known as 
the user equilibrium (UE) principle, and it is the 
principle which is most used by researchers and 
practitioners because of its assumptions about 
the individuals as independent beings seeking to 
minimize their own journey costs. The second 
principle states that in conditions of equilibrium 
the average journey time is minimal, which is 
known as the system optimal (SO) principle. 
This means that if all users perceive travel times 
in the same way, under equilibrium conditions, 
all routes between a travel demand pair have 
the same minimum time, while routes not being 
used require at least the same time. This principle 
ensures the most efficient use of the whole 
system.

The first basic mathematical formulation of the 
UE principle was made by Beckman, McGuire, 
and Winsten [4] and is given by the objective 
function (1) and is subject to constraints given 
by the equations (2), (3) and (4), where the arc 
ij represents the streets connecting the pair of 
nodes i and j. In it, o and d represent the origin 
and destination nodes, r is a route of the set of 
possible routes R, while tij (xij) is the travel time 
on arc ij as a function of the flow traversing the 
arc, xij; god  is the travel demand matrix from 
origin o to destination d, and δijr

od is a matrix 
whose elements are 1 if the arc ij belongs to the 
route r that connects the demand pair od, and 0 
otherwise. Decision variables are the flow on the 
arc ij (xij) and the flow on route r connecting origin 
o and destination d (fr

od). On the other hand, the 
mathematical formulation for the SO principle is 
given by the objective function (5), subject to the 
same constraints of UE formulation; which are 
(2–4).

	 	 (1)

Subject to:

	 	 (2)

	 	 (3)

	 	 (4)

	 	 (5)

This mathematical formulation takes into 
consideration that there is a known set of routes 
R between each demand pair od. This kind of 
formulation is known as the arc-route formulation, 
according to [5], since the assignments are made 
on arcs previously defined for a set of routes. This 
assumption has two main disadvantages: a subset 
of routes between every demand pair od must be 
known in advance, and it leaves some alternative 
routes that could be better than the previous ones 
defined in the R set, unconsidered.

An alternative formulation for TAP is the arc-
node formulation, which is more complete and 
therefore more computationally complex since it 
takes into consideration all possible paths between 
each demand pair od and is not limited by the 
subset R of routes. The solution for this approach 
is more difficult for large-scale problems, which 
is why its application has been limited.

Congestion 
According to Thomson and Bull [6], congestion 
is the condition that prevails if the introduction of 
a vehicle in a traffic flow increases the travel time 
of other vehicles. If the effect of congestion is not 
considered, UE and SO principles are equivalent.

Congestion effects are represented by link 
performance functions that relate the travel time 
on a link of the network with the flow going 
through it. These are strictly increasing functions, 
non-linear, and asymptotic to the capacity flow 
[7]. The most highly used link performance is the 
function proposed by the Bureau of Public Roads 
(BPR), given by Eq. (6)

	 	 (6)
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Where tij is the travel time of arc ij, xij is the flow 
on arc ij, tij

0 is the free flow time on arc ij, Kij is 
the capacity of arc ij, and α and β are parameters 
of the model. (It is assumed that α = 0.15 and β 
= 4.0, as recommended by the BPR). Other link 
performance functions are given by [8] and [9]. 
In the paper by Babonneau and Vial [10], some 
link performance functions are evaluated. 

Solution method for TAP
The TAP is highly sensitive to the problem scale. 
When the number of nodes and arcs in the network 
increase, or when the number of demand pairs od 
increase, the computational time for solving the 
TAP increases in a non-polynomial way due to 
the combinatory nature of the problem. Besides 
that, if the model takes congestion effects into 
consideration, the objective function becomes 
non-linear and it increases the complexity of the 
problem. In the large-scale models for TAP, some 
of the specialized solvers are unable to resolve 
the mathematical programming problem. 

The need to reduce the computational complexity 
of the problem has led to different alternatives 
for facing it; some based on mathematical 
programming principles (decomposition 
methods), and others based on heuristics and/or 
metaheuristics. 

The strategy of the decomposition methods 
based on mathematical programming is to break 
down or decompose the original problem into a 
set of less complicated problems, separating the 
constraints that might have a special structure. 
The method considers the solution of at least 
two problems: one with the most complicated 
constraints named the master problem, and 
other(s) with the constraints that have a special 
structure, these are named sub-problem(s). The 
method iterates by passing information from the 
master problem to the sub-problems and vice 
versa, until the optimal solution for the original 
problem is reached [11]. 

The algorithms most used for the solution of TAP 
are based on linear approximations to the objective 
function. Some examples are the Frank-Wolfe 

method [12], the simplicial decomposition method 
[13], and column generation approaches [14]. The 
Frank-Wolfe method, although widely used, has 
not been reported as having good performance for 
large-scale problems, and it was found that it can 
generate cycles in the solution [15].

On the other hand, heuristics (simple rules 
applied to solve a specific problem) and 
metaheuristics (rules for general problems) have 
been widely used in the solution of large-scale 
problems. Although they do not guarantee an 
optimal solution, they can find a good solution 
in a reasonable execution time. Some of the 
heuristics used for solving the TAP are described 
in Patriksson [16]. 

Experimental set-up

Proposed model and mathematical 
formulation

The transportation network can be represented as 
a graph (with arcs as streets or lines, and nodes as 
intersections or stations). Our graph is composed 
of two networks: a road network with information 
on the main streets, denoted as NetS; and a public 
transportation network with the lines and stations 
of the mass transportation systems available in the 
region (the Metro system, for instance), denoted 
as NetM. The congestion assumptions affect the 
flows on NetS and, in the case of NetM, they are 
not considered.

The transportation modes are grouped into the 
following categories: public collective (buses 
and the Metro system), public individual (taxi 
cabs), private collective (school buses), and 
private individual (cars and motorcycles). For the 
purpose of modeling, the travel demand is also 
grouped into two matrices by the aforementioned 
transportation modes: one matrix, named ODRS, 
for travel demands in private modes and the 
individual public mode, measured in standard 
vehicle units; and the other matrix for travel 
demands in the collective public mode, measured 
in number of trips, which is named ODRX. The 
interaction between the two networks is allowed 
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by using a set of special nodes in which collective 
public transportation demands can include a 
transfer. It is assumed that the only transportation 
mode that makes transfers is the collective public 
mode.

The proposed model is based on the UE principle. 
Some traffic factors assumed in the model 
include: calculations are made upon the inelastic 
and known travel demand, congestion is only 
considered for NetS, and the collective public 
mode can switch networks (that is, transfers can 
be made on it) while other transportation modes 
flow in NetS. Also, the walking times to the 
nodes are not considered. The model formulation 
corresponds to the arc-node formulation for TAP, 
which means that the model considers all possible 
paths for each demand pair od.

Sets

N: 	 nodes. This set is also renamed i, j, o, and 
d for modeling purposes; i,j for denoting 
nodes in the transportation network; and o,d 
for denoting the origin and destination nodes 
of travel demand

m: 	 transportation modes

Subsets:

msm: 	 transportation modes that use Net S 
exclusively: individual public and private 
modes

mxm: 	 transportation modes that can do transfers 
from NetS to NetM, and vice versa (only 
collective public)

ASij: 	 Arcs ij, belonging to NetS

AMij: 	Arcs ij, belonging to NetM

Parameters:

FFTij: 	 Free flow time for arc ij belonging to 
NetS [min/st veh]

MTij: 	 Time for traversing arc ij of the NetM 
[min/trip]

KSij: 	 Capacity of the arc ij of NetS [st veh/
hour]

KMij: 	 Capacity of the arc ij of NetM [trips/
hour]

ODRSod: 	 Travel demand from origin o to 
destination d in modes msm [st veh/hour]

ODRXod: 	 Travel demand from origin o to 
destination d in modes mxm [trips/hour]

FOCm: 	 Occupancy factor of vehicles by mode 
[trips/veh]

FSTVm: 	Conversion to standard vehicle factor 
[st veh/veh] 

FCMij: 	 Occupancy factor for standard vehicles 
of Metro system. This is defined only 
for arcs ij of NetM [trips/st veh]

α and β: 	parameters of the BPR performance 
function link

Decision variables:

Yij
od: 	 standard vehicles traversing arc ij of NetS, 

going from origin o to destination d in 
modes msm [st veh/hour]

Xij
od: 	 total trips traversing arc ij belonging to 

NetS or NetM, going from origin o to 
destination d in collective public mode 
mxm [trip/hour]

Auxiliary variables:

FSYij: total flow of vehicles on arc ij of NetS [st 
veh/hour], equation (7)

	 	 (7)

So the optimization model can be formulated as 
minimizing the objective function (8) subject to 
constraints (9–16). The objective function is the 
total travel time for the different flows in the 
network necessary for making the trips at rush 
hour. This function is divided into two terms; 
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the first term is the minimization of travel times 
in NetM, where there are no congestion effects, 
and the second term is the minimization of 
travel times in NetS where the function tij(FSY) 
is the BPR link performance function, and this 
captures the congestion effects on the flows and 
travel times in the network, since there is modal 
competition for the capacity of network arcs.

	 	 (8)

	 	 (9)

	 	 (10)

	 	 (11)

	 	 (12)

	 	 (13)

	 	 (14)

	 	 (15)

	 	 (16)

Equations (9–14) correspond to demand routing, 
and it is assumed that there is flow balance on 

each node of the network. Specifically, equations 
(9) and (10) state that if node i is the origin of 
travel demand, then the sum of all flows departing 
from the node in modes msm are equal to ODRSod 
in the former case, and the sum of flows departing 
from the node must be equal to ODRXod, if the 
mode is mxm in the latter case. Equations (11) 
and (12) state that if node i is the destination 
node of the travel demand, then the sum of all 
flows arriving to the node in modes msm must 
be equal to ODRSod in the former case, and the 
sum of flows arriving to the node must be equal 
to ODRXod, if the mode is mxm in the latter case. 
Equations (13) and (14) state that if node i is not 
an origin nor a destination node of travel demand, 
then the flow arriving to the node must be equal 
to the flow departing from it, which means that 
the flow is conserved. Equations (15) and (16) are 
the non-negative constraints on flows.

Proposed heuristic method

The proposed model is highly complex, and 
since the application to a medium-sized city 
often results in a high number of decision 
variables and constraints, it is necessary to find 
a strategy for reducing the number of variables 
and constraints, and therefore the complexity of 
the model, without compromising the integrity of 
the solution.

In this paper, we propose a zoning decomposition 
method, which basically consists of solving 
travel demands into aggregated zones (intra-
zonal trips), and then solving a system of travel 
demands between the defined zones (inter-zonal 
trips). In order to do this, the trips must be 
classified into intra-zonal and inter-zonal trips as 
follows:

•	 Intra-zonal trips: When both the origin and 
destination nodes belong to the same zone 
or sub-region sr, the trip is considered to be 
intra-zonal. It is assumed that congestion 
in arcs due to the flows generated by these 
demands only affects the sub-region where 
the traffic assignment is carried out, therefore 
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every sub-region is independent of other 
sub-regions.

•	 Inter-zonal trips: These trips are made 
between a pair of sub-regions sr and sr’. It 
is assumed that they cause congestion in the 
sub-region sr (from the origin node to the 
exit node of the sub-region sr), in sub-region 
sr’ (from the entrance node, to sub-region 
sr’, to the destination node) and in the sub-
regions between sr and sr’.

Under the assumption that intra-zonal trips 
are independent of the other sub-regions, it is 
possible to generate sr independent intra-zonal 
sub-models, where sr is the number of zones to 
model, and where each independent model has 
fewer variables than the original model for the 
TAP. The selection of the zones depends on the 
topology and transportation dynamics of the case 
study. 

According to the proposed formulation, we define 
two new sets; a set RNSR(i,sr) representing the 
membership of the node i to the sub-region sr; and 
a set RSRSR(i’, sr, sr’), where i’ is the entrance 
or exit node from sub-region sr to another sub-
region sr’. Therefore, for each independent zone 
sr and for each travel demand pair od:

•	 If (o ϵ sr) and (d ϵ sr), then assign the travel 
demand pair od.

•	 If (o ϵ sr) and (d  sr), then assign the travel 
demand from origin node o to the exit node 
(i’) of the sub-region sr. That is, assign the 
travel demand from o to i’.

•	 If (o  sr) and (d ϵ sr), then assign the travel 
demand from entrance node (i’) of the sub-
region sr to destination node d. That is, 
assign the travel demand from i’ to d.

Once all the intra-zonal trips are assigned, the total 
flow on the arcs of NetS is added, and the road 
network for the inter-zonal traffic assignment is 
pre-loaded with these flows, and then, an inter-
zonal traffic assignment is made, but it is done 
so by departing from the exit nodes of each sub-
region and arriving to the entrance nodes of the 

sub-region destination. Since the entrance and 
exit nodes of each sub-region are the only ones 
taken into account, the origin-destination pairs 
of the inter-zonal traffic assignment are reduced 
significantly. If SR is the dimension of the set of 
entrance and exit nodes of the inter-zonal model, 
then the origin-destination matrices would have 
a worst-scenario dimension of SR2–SR, which is 
smaller than the dimension of the original travel 
demand matrices.

Case study 

This study was carried out for the Aburra Valley, 
Colombia. The region has around 3.5 million 
inhabitants living among the 10 municipalities 
that form the Valley, and Medellin, its main 
municipality, contains almost 67% of the 
metropolitan area population. The transportation 
data is obtained from recent research on mobility 
in the Aburra Valley [17]. Rush hour for the region 
is about 6:30 to 7:30 AM, in which almost 17% 
of the daily trips are carried out. The OD matrix 
for this study represents the trips made in the AM 
rush hour. The total travel demand matrix for the 
Aburra Valley is decomposed into two matrices: 
the ODRX for pubic collective demands, and 
the ODRS for other transportation modes. The 
resulting matrices have 1,994 and 18,994 origin-
destination pairs, respectively. The ODRX matrix 
has a 287,184-trip demand and the ODRS matrix 
has a 112,485 standard vehicle demand for the 
rush hour. 

The transportation network of the region can also 
be decomposed into two networks: NetS, having 
2,729 directed arcs; and NetM, having only 68 
arcs. The complete graph (NetS + NetM) has 
1,008 nodes.

The decomposition heuristic proposed for the case 
study consists primarily of dividing the region 
into municipalities. According to table 1, since the 
northern municipalities (Barbosa, Girardota, and 
Copacabana) have fewer nodes, they are grouped 
into a single sub-region. The same applies for the 
southern municipalities (Sabaneta, La Estrella, 
and Caldas). But on the contrary, more than 70% 
of the total network nodes are in Medellin, which 
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implies that for a single zone in Medellin, there 
would be many variables; and since the objective 
of the decomposition method is to reduce the 
number of variables, Medellin must be separated 

into smaller sub-regions. In the case of the current 
research, the separation is made by neighborhood 
groups, according to their spatial location, as is 
shown in figure 1. 

Table 1 Proposed sub-regions for the Aburra Valley case study

sub-model Description # of nodes

1 Northern municipalities: Barbosa, Girardota, Copacabana 9

2 Municipality of Bello 89

3 Municipality of Itagüí 60

4 Municipality of Envigado 57

5 Southern municipalities: Sabaneta, La Estrella, Caldas 35

6 East-central Medellin neighborhoods 205

7 West-central Medellin neighborhoods 125

8 Northeastern Medellin neighborhoods 110

9 Northwestern Medellin neighborhoods 150

10 Southeastern Medellin neighborhoods 74

11 Southwestern Medellin neighborhoods 94

Figure 1 Geographic distribution of sub-regions in the Aburra Valley case study
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Results and discussion
The model was implemented in GAMS [18], 
using the non-linear Minos 5.51 solver [19]. 
The execution time of the model was about 2.5 
hours on a PC with 2 Gb RAM, running under the 
Windows XP operating system. 

Table 2 presents the total number of decision 
variables and the number of constraints for 
each independent zone (for every sub-model), 

comparing the model with and without the 
heuristic rule which states that each sub-model 
can only use the arcs of the network of the zone 
for the traffic assignment. This is due to the 
congestion assumptions explained previously. In 
the table, it can be seen that despite the large scale 
of the problem, the heuristic rule significantly 
reduces the number of decision variables and 
constraints, therefore reducing computing 
complexity without decreasing the realism of the 
approach. 

Table 2 Decision variables and equations for each sub-model with and without the heuristic rule

Sub-
model

# of variables 
(original)

# of variables 
(heuristic)

% of 
reduction

# of equations 
(original)

# of equations 
(heuristic)

% of 
reduction

1 239,701 1,741 99.27 85,682 957 98.88

2 4,267,341 429,843 89.93 1,539,984 156,841 89.82

3 1,613,369 103,231 93.60 582,418 45,063 92.26

4 2,150,229 135,175 93.71 775,932 54,484 92.98

5 1,964,929 64,201 96.73 700,916 28,122 95.99

6 2,123,709 399,223 81.20 764,508 176,930 76.86

7 2,181,305 323,493 85.17 785,980 122,474 84.42

8 1,430,519 167,865 88.27 514,944 66,143 87.16

9 2,858,041 485,401 83.02 1,031,288 174,378 83.09

10 1,348,033 114,043 91.54 486,254 47,935 90.14

11 2,320,161 253,342 89.08 837,646 98,017 88.30

Table 3 presents the results of the intra-zonal and 
inter-zonal traffic assignments. The results are 
presented in terms of the objective function (total 
travel time, in minutes, for all travel demands 
during the rush hour), and they are presented 
in terms of the computational cost for solving 
each sub-model. The computational cost of each 
sub-model is related to the number of variables 
and equations, presented in Table 3, in a non-
polynomial way, since it is an NP-Hard problem.

Table 3 Objective function and computational cost 
(time) for each sub-model

Sub-
model

Objective function 
[min/peak hour]

CPU time 
[sec]

Intra-
zonal

1 6,278.3 0.109

2 131,611.7 491.938

3 41,760.4 138.043
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Sub-
model

Objective function 
[min/peak hour]

CPU time 
[sec]

4 20,719.6 7.625

5 33,187.7 7.156

6 768,979.6 3,678.215

7 91,628.6 223.375

8 44,610.1 21.250

9 77,558.5 530.715

10 107,255.2 108.605

11 62,831.5 368.516

Inter-
zonal

1,677,573.8 2,780.934

Conclusions
The TAP approach presented in this paper is based 
on the UE principle, and it considers congestion 
effects. The application to the Aburra Valley case 
study is a combinatorial, non-linear, and large-
scale optimization model. Moreover, since the 
formulation used is the arc-node instead of the 
arc-route formulation, the model increases the 
number of variables and constraints because it 
has to assess all possible paths for a single travel 
demand pair od, and not only the predefined 
routes, like in the arc-route formulation. This 
approach increases the realism of the model, and 
should give more accurate solutions; therefore, the 
model has to deal with a massive computational 
complexity.

The model here presented proposes a series of 
decompositions: dividing the transportation 
network into two differentiable networks, each 
one with different assumptions on congestion and 
traffic flows, a decomposition of transportation 
modes into 4 subgroups, taking into account the 
use of the networks, and finally it is proposed a 
decomposition of the whole case study region 
into sub-regions in order to determine the traffic 
assignment. The modeling approach which 
considers separated demands (matrices ODRS 
and ODRX) and separated networks (NetS and 

NetM) is a novel approach, and it allows for 
multimodal modeling as well as for the possibility 
of representing the transfer between networks in 
the case of the collective-public demand. 

In order to solve the resulting large-scale TAP, 
we proposed a novel approach base on sub-
region decomposition. This decomposition 
method and the heuristic rule which reduces the 
number of variables and constraints of each sub-
problem, make the large-scale problem tractable 
and give solutions in an execution time which 
is reasonable for such a large problem. Another 
advantage of this method is that it allows for a 
parallel execution of sub-problems, since they are 
independent; this could considerably reduce the 
total execution time of the problem. The solution 
obtained is optimal for each sub-problem, but 
suboptimal for the original problem, due to a 
certain lack of interaction between all the flows 
in separating the problem into intra-zonal and 
inter-zonal trips. Future research might include 
the improvement of the solution by allowing 
more interaction between the intra- and inter-
zonal models.
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