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Abstract

A review of the most significant technical papers related to the navigation of 
underwater remotely operated vehicles is presented, with special interest in 
aided inertial navigation. Sensors used for implementation, fusion algorithms 
and models that describe the navigation systems are presented. From this 
review, it was concluded that the implementation of an estimator, based on 
the vehicle kinematic and dynamic models, limits the growth of the estimated 
error, even in case that the only available information is that provided by an 
inertial measurement unit.

Keywords: Aided inertial navigation, underwater navigation, underwater 
remotely operated vehicles

Resumen

Se presenta una revisión de las publicaciones técnicas más significativas sobre 
la navegación de vehículos submarinos operados remotamente, con especial 
interés en la navegación inercial asistida. Se definen los sensores que se 
utilizan para su implementación, los algoritmos de estimación y los modelos 
que describen los sistemas de navegación. Con esta revisión, se concluye 
que la implementación de un estimador basado en los modelos cinemático y 
dinámico del vehículo ayuda a limitar el crecimiento del error de estimación, 
incluso cuando sólo está disponible la información proporcionada por una 
unidad de medición inercial.

Palabras clave: Navegación submarina, navegación inercial asistida, 
vehículos operados remotamente
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Introduction
In the last ten years, maritime research has 
been addressed towards the development of 
Autonomous Underwater Vehicles (AUV), 
in order to explore areas where Underwater 
Remotely Operated Vehicles (UROV) can not 
be used; for example, to navigate under ice or to 
perform missions where accompaniment from a 
support vessel is prohibited [1].

However, UROVs are still designed for 
intervention or exploration tasks in delimited areas 
where one or more manipulators are required for 
maneuvering in real time, and consequently energy 
consumption could be high. Thus, an umbilical 
cable becomes important to provide energy and 
ensure the recovery of the robot [2].

Also, there is an interest in mini/micro 
ROVs because their agility, ease of transport, 
deployment and recover, and their relatively low 
cost. These vehicles and AUVs are being more 
used for monitoring and exploration [3].

The main challenge into the development 
of underwater vehicles is to obtain accurate 
positioning systems since aquatic environment is 
a scenario where it is not possible to have absolute 
global positioning signals, as those obtained 
with GPS. Therefore, the challenges related to 
localization of underwater robots still apply.
Whether in the ROVs or AUVs area, to improve 
precision of vehicle’s states estimation, in spite of 
absence of sensors or technology, is a major goal.

Most of state of the art reviews about underwater 
navigation are addresed to AUVs. For example, 
[4] proposes the classification of the navigation 
techniques used as: inertial navigation, acoustic 
navigation, and geophysical navigation. [5] takes 
up this classification and makes a comparison 
of the three classes, defining what technique 
can be used depending on the needs of the 
AUV’s missions. [6] and [7] not only present 
the drawbacks in the localization of AUVs and 
the most used solutions, but also address other 
design aspects such as mechanical structure, 
communications, and software and hardware 

architecture. Likewise, [8] reviews the sensors 
used in underwater navigation and proposes 
some challenges around the same topic.

This paper is an updated review of the most 
significant technical papers dealing with the 
navigation systems designed for UROVs, with a 
main interest in the aided inertial navigation and 
the algorithms to estimate position, orientation, 
linear velocities and angular rates of the robot. 

The paper is organized as follows. In section II, the 
navigation problem is exposed from the approach 
of underwater vehicles modeling. Section III 
summarizes the existing navigation techniques 
following the well established classification, 
pointing out the publications where these methods 
have contributed to the UROVs’ localization. 
Section IV presents the aided inertial navigation, 
describing the UROVs’ navigation systems, 
the fusion algorithms, and the new research 
tendencies. Finally, section V closes the paper with 
the conclusions obtained by the review.

Underwater vehicles modeling
Float structures, vessels and partially or 
completely submerged vehicles such as UROVs 
are part of the marine craft category [9]. Their 
kinematics is described using two reference 
frames: inertial frame and body-fixed frame.

Inertial reference frame has its origin in an 
arbitrary point on the surface of the Earth and it 
consists of three perpendicular axes following 
the right hand rule: x indicates North, y points to 
the East, and z points towards the Earth center 
[10]. This frame is considered inertial because 
rotation of the Earth does not affect significantly 
the marine vehicles at low speed [11].

Likewise, the body-fixed frame consists of three 
axes according to the right hand rule: x goes 
from stern to bow, y from port to starboard, 
and z indicates the UROV’s descent direction 
or the increasing in depth from the sea surface. 
Commonly, vehicle reference axes match with its 
inertia axes and the center of gravity is the origin 
of this reference frame [10].
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The position vector of (1) is obtained by using 
the three vehicle linear displacements referenced 
on the inertial frame. In the same way, rotations 
around each axis of the Earth system, represented 
by the Euler angles, are used to obtain the 
orientation vector of (2). Vehicle linear and 
angular velocities expressed in the body-fixed 
frame through the vectors of (3) and (4) are 
obtained by using position and orientation rates, 
respectively.

(1)

(2)

(3)

(4)

According to the above expressions, six degrees 
of freedom in each frame are identified and they 
correspond to the six independent coordinates 
required to define the twelve states of the vehicle: 
into the inertial positions and orientations, linear 
velocities and angular rates.

Figure 1 shows the relation between the UROV’s 
reference frames and its states. By following the 
Society of Naval architects and Marine Engineers 
(SNAME) [12], linear motion directions are 
named surge, sway, and heave, and the rotational 
ones roll, pitch, and yaw. 

Figure 1 Reference frames of an UROV

One of the main problems to operate underwater 
robotics is related to the localization task, due 
to the absence of a single sensor able to provide 
information about all the vehicle’s states. 
Moreover, the GPS cannot be used under water 
because its signals are strongly attenuated [13]. 
An alternative solution for this problem is a set of 
sensors installed in the vehicle to measure directly 
positions and orientations, or linear velocities 
and angular rates. With these measurements, it is 
possible to do a framework transformation and 
to determine the inertial variables from (5) to (8) 
[14].

Matrices of equations (7) and (8) represent the 
three consecutive rotations needed to transform 
a vector from the body-fixed reference frame: 
into inertial reference frame. Matrix transforms 
linear velocities  in inertial velocities, and  
transforms angular rates into the corresponding 
angular displacement derivatives. The order of 
rotations is not arbitrary; vector is rotated by  
around  axis of inertial frame, then by  around 
the  axis resulting from rotation around , and 
finally by  around  axis resulting from the two 
previous rotations [15].

η  (5)

η2 = J2 ν2
 (6)

(7)

(8)

Existing navigation techniques
The process of determining the UROV’s states, 
related to a reference frame, is known as 
navigation [2, 16]. Nowadays, there are different 
sensors used to detect motion and their selection 
depends on the navigation technique adopted. 
These techniques are presented next, emphasising 
on the aided inertial navigation.
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Dead reckoning and inertial navigation 

Dead reckoning is the most common and 
established navigation method [4, 17]. It uses 
measurements of the vehicle linear velocity and 
deviation from the magnetic North to calculate 
how much the vehicle has moved from a starting 
point [4]. The new vehicle position is determined 
by integrating the measured velocity, and the 
orientation corresponds to the deviation from 
magnetic North.

The most used sensors in dead reckoning are the 
compass and the speed sensor based on Doppler 
Effect or Doppler Velocity Log (DVL) [4, 17]. 
The former orientates itself according to the Earth 
magnetic field. This sensor is widely used in 
underwater vehicles due to its low cost. However, 
magnetic disturbances caused by the structure of 
the robot and its systems can generate significant 
errors [8].

On the other hand, sensors based on Doppler 
Effect measure velocity relative to the water or to 
the sea floor. In the first case, its main disadvantage 
is its inability to register the velocity components 
introduced by the ocean currents, generating 
incorrect estimation of positions [4]. The second 
one uses several transducers oriented on different 
angles that continuously send an acoustic signal 
of certain frequency towards the sea floor. As 
the underwater vehicle is moving, the signal 
reflected by the seabed changes in its frequency 
due to Doppler effect and the difference between 
the sent and received signals is used to estimate 
the vehicle’s velocity [6].

As an alternative, the Correlation Velocity Log 
(CVL) is used. It is based on the same principle 
that DVL, but it emits two consecutive pings. 
The obtained echoes are compared and used to 
calculate velocity [6].

To utilize the DVL and CVL, the vehicle has to 
move slowly so that both sensors can record the 
reflected signal, and its distance from the sea 
floor should be a maximum of 300 meters [5, 7].

In inertial navigation, the variables measured 
are the linear acceleration and the angular rate 
experimented by the vehicle, which corresponds 
to a direct measurement of  and  in (3) and (4) 
respectively. One integration in time of the 
angular rate allows the UROV to calculate its 
orientation; also the double integration in time of 
the acceleration will determine the position. To 
perform the above procedure, three orthogonal 
accelerometers and gyroscopes can be used, or a 
sensor of each kind need to be arranged to register 
the motion change in the three body-fixed axis.

When the sensors are contained in a single 
device, it is named Inertial Measurement 
Unit (IMU). If a processing unit is included to 
correct the measurements and compensate for 
temperature effects, vibrations, etc., the whole 
set is named Inertial Navigation System (INS). 
Commonly, the INS receives its name according 
to the technology employed for the gyroscopes 
fabrication. The most used are the fibre optic and 
ring laser [18].

Dead reckoning and inertial navigation are used 
in low cost UROVs. For example, [19] used a 
6 DOF IMU with three MEMS accelerometers 
and gyroscopes to implement an INS inside 
the PHANTOM S2 UROV. The test performed 
with the system at rest allowed to determine the 
statistics of the signals provided by each sensor, 
that is, the mean and the standard deviation. 
In addition, this work presents results about 
misalignment errors and a test where it was 
found that the errors generated by gyroscopes, 
belonging to that IMU in particular, cannot be 
considered as white noise.

[20] also designed and implemented a low cost 
INS for a particular UROV. He designed an 
IMU composed by a three axis accelerometer, 
a two axis gyroscope to sense the roll and pitch 
motion, and a single axe gyroscope to sense 
yaw. The information measured by the IMU 
is transmitted to an embedded computer in the 
UROV, where it is transformed in the inertial 
frame and the integration process is performed 
to calculate the position and orientation vectors. 
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In the report, some drawbacks related to the 
sensor configuration are mentioned, and the 
implementation of a Kalman filter in Matlab to 
reduce the navigation errors is suggested.

[21] proposes the inclusion of a DVL in the 
navigation system of VideoRay Pro4 mini-ROV. 
The Doppler effect sensor is small enough to be 
attached to the UROV, and it has a compass and 
other devices to detect roll, pitch, and yaw motion.

Although the inertial navigation is able to 
determine the vehicle’s states [22], the small errors 
in acceleration and angular rate are integrated as 
the vehicle moves, causing bigger errors in the 
linear velocity, position and orientation calculated 
[18]. The drift increase rate, dependent on ocean 
currents, robot’s velocity and measurement 
devices quality, can achieve a threshold where 
navigation becomes unacceptable [4, 17].

The first strategy to reduce the errors of this 
technique consists in determining the sources of 
error belonging to the sensors, as is proposed by 
[23] and [24]. Each author performed tests with 
an IMU at rest to define its parameters. They 
coincide in that a bad calibration of gyroscope 
makes a negative contribution to navigation 
results because the integration of gyroscope 
measurements is used to determine the device 
orientation,  in (2), and later, the transformation 
matrices  and  in (7) and (8) respectively.

Likewise, the drift can be limited resetting the 
vehicle’s position and orientation with respect to 
an inertial reference such as GPS. For UROVs, 
this is possible sending the complementary 
information through the umbilical cable [7], but 
in AUVs the procedure becomes unachivable 
when the vehicle is in deep water [5].

Acoustic navigation
Unlike the electromagnetic signals that suffer 
a high attenuation, the acoustic energy can be 
propagated adequately to significant distances 
in aquatic medium and therefore, it results in a 
viable alternative for positioning of unmanned 
underwater vehicles [4, 25].

This technique uses a set of acoustic devices and 
a ping is transmitted among them [5]. The time 
between the sending and return of the signal is used 
to calculate the distance that the vehicle has moved 
[8]. Depending on the number and the deployment 
of the acoustic elements as well as the signals 
frequency, this kind of navigation is classified as: 
Long BaseLine (LBL), Short BaseLine (SBL), 
and Ultra Short BaseLine (USBL) [25, 26]. All 
of these require a precise knowledge of the water 
speed profile which can be difficult to obtain in 
areas where it changes because of the temperature 
and density conditions [8].

LBL
These systems utilize at least three transponders 
mounted on the operation area, and one 
transponder mounted on the underwater vehicle 
[25]. The transmitters-responders can be 
deployed in seabed or in the surface [17], forming 
a geometric arrangement [18]. The maximum 
distance between the vehicle and acoustic 
transponders can be up to six kilometers [25].

To determine the position, the vehicle sends an 
acoustic signal to each transponder and they 
respond to the call. Thereafter, a triangulation is 
made using the signal time of flight [5].

To save the vehicle’s energy, the transponder on 
the robot can be replaced by a receptor of the 
signals emitted by the rest of devices, each one to a 
different frequency and in an established sequence. 
According to the order in wich the waves arrive, 
the vehicle reconstructs its position [4].

Among the three types of acoustic navigation, 
the LBL systems provide the higher precision. 
However, the deployment and calibration of 
transponders require a considerable time and 
expert operators [26].

SBL
In this case, the transponders are not mounted 
on seabed or on the surface, but on the hull of 
an assistance vessel. The vehicle determines its 
position, related to this ship, when it calculates 
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the arriving time of each of the acoustic signals 
returned by the set of transponders. Depending 
on the vessel shape, the acoustic devices are 
implemented in a distance of 10 to 50 meters 
among them [25].

This system has the advantage of providing a good 
level of accuracy. Its complexity is lower than 
LBL arrangements because the acoustic devices 
are installed directly on the assistance ship, but 
a rigorous calibration and the implementation of 
additional sensors to obtain an absolute position 
is needed [26].

[27] presents the integration of SHARPS system 
into the JASON/MEDEA array. The net of 
receivers is installed in the UROV JASON while 
the transmitter is mounted on MEDEA. When 
an acoustic signal is sent, the receivers provide 
information about the time of flight and the 
system determines MEDEA’s position related 
to UROV JASON. As strategy to calculate the 
accuracy of the estimate, the Cramér Rao Lower 
Bound technique (CRLB) is used. Within the 
advantages, the authors highlight the insensitivity 
of the system to the UROV’s hydraulic noise, 
which allows obtaining a high precision 
localization.

USBL
The operating principle of this technique is similar 
to SBL systems, but the distance among the 
transponders mounted on the vessel is about 10 
centimeters [25]. The system measures the phase 
shift of the acoustic signal arriving to the array 
devices to calculate the orientation of the vehicle 
related to them. If these signals are returned to 
the robot, it can calculate its position according 
to the time of flight [4]. Among the three kinds 
of acoustic navigation, this technique is the most 
sensitive to the noise and to the calibration errors.

[28] makes a review of some USBL systems 
commercially available and propose the 
implementation of the inverted USBL. The 
application allows monitoring the position of an 

UROV through a node installed in the seabed, and 
a control station on the surface. The latter sends 
an acoustic signal to the node for its transmission 
to the UROV. The ping is returned to the node 
and processed to calculate the vehicle’s position 
and orientation using a different approach to 
conventional methods for acoustic navigation.

Geophysical navigation or terrain 
navigation

This technique allows estimating the position 
in the inertial reference frame. A set of sensors 
extract certain geophysical characteristics of the 
operation area, as those related with bathymetry, 
the magnetic field, or gravitational anomalies. 
These parameters are compared with an a priori 
map of the region, which contains the distribution 
of those properties, or are employed to build a 
new map to estimate the vehicle position [4]. 
The success of the procedure in any of the two 
cases depends on the presence of the adequate 
characteristics and the sensors ability to extract 
them [5].

The most common measurement devices are the 
sonar and the cameras [5]. The former works 
sending an ultrasonic sound that is redirected by 
the obstacles or the seabed. The signals detected 
by a hydrophones array are reconstructed 
digitally to generate a map of the explored region 
[20, 29]. On the other hand, cameras are good if 
the vehicle is close to the sea floor and y has φ 
adequate illumination [5].

The geophysical navigation provides the best 
accuracy compared to the other techniques, but 
it requires the implementation of equipment 
with high energy consumption, besides the 
computational cost associated to the processing 
of the obtained measurements [7].

[30] discusses about the usage of this technique 
in AUVs.They also unify the nomenclature of 
this topic through a comparative table including 
the measurement models, sensors, and the 
probabilistic approaches used in the estimates.
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Aided inertial navigation
The most recent publications about the navigation 
of underwater remotely operated vehicles show 
a combination of the methods described in the 
above sections. Inertial navigation is common in 
all them.

According to the IEEE standard for inertial 
systems terminology [31], the aiding consists 
in including no inertial information like 
measurements provided by acoustic sensors 
or those used for geophysical recognition. 
However, the addition of other measurement 
devices is not the only way to aid the estimates. 
As alternative, restrictions in the movement 
can be established or a model that describes the 
kinematics and dynamics of the system can be 
used. Whatever the case, the implementation 
of an algorithm to fuse the modeling and 
measurements is required.

[32] and [33] make a classifi cation of the 
techniques for the fusion of data from multiple 
sensors. Following these authors, the fi ltering 

and estimation algorithms combine the signals 
from similar sensors to obtain an estimate of 
the vehicle’s states. The information from the 
measurement devices is modeled as random 
variables that have been corrupted with noise, 
which requires a precise knowledge of the 
covariances associated. Kalman fi lter versions 
are commonly used to integrate the INS 
measurements with acoustic sensors, for example 
LBL, because they provide optimum estimates in 
a statistical sense.

Figure 2 presents the Kalman fi lter cycle for 
discrete linear systems. Two stages are observed: 
prediction and update. During prediction, the 
transition matrix A, input matrix B, previous 
state xk-1, previous error covariance Pk-1, input uk, 
and process noise covariance matrix Q are used 
to propagate the state estimate  and the error 
covariance matrix  ahead in time. When a 
new measurement zk is available,  and  are 
updated through the Kalman gain Kk that involves 
the observation matrix H and the measurement 
noise covariance matrix R [34].

Figure 2 Kalman fi lter cycle for discrete linear systems. Adapted from [34]
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Kalman filters can be implemented as indirect or 
direct feedback [35, 36]. In the first configuration, 
the position, velocity and orientation data 
obtained with an aiding system is subtracted 
from the information of these states provided 
by the INS to generate an observation error that 
constitutes the filter input. Further, the navigation 
errors are estimated and subtracted from the 
INS calculations. In direct feedback, the same 
procedure is made, but the estimated errors are 
used to limit the INS drift. The reader is referred 
to [35] and [36] for further details.

The barest error model to perform the prediction 
is (13). The variation rates of position errors are 
the velocity errors; variation rates in state δV are 
described as an acceleration error, and variation 
rates in orientations errors are modeled as errors 
in angular rates measurements. Matrix Q is 
given by (14), where δP is noise associated to 
velocity integration inside the INS to calculate 
position, and δAB and  δωB are the accelerometer 
and gyroscope noise components. This model 
is deduced assuming small errors in orientation 
angles [37]. [38] presents INS models where 
errors do not meet this restriction.

(13)

(14)

[39] makes a comparison of the Kalman filter 
performance in direct and indirect feedback, when 
it is applied to a navigation system compound 
of an INS and a DGPS during a 96 minutes 
simulation. Their results show a tendency to 
divergence in the direct feedback filter since the 
error grows with time. On the other hand, indirect 
feedback configuration offers better results 
because the estimated errors oscillate around zero 
during most of the simulation.

The growth of the estimated error in direct 
feedback configuration is due to the INS drift 

associated to position, velocity, and orientation, 
in conjunction with noise and other sensors 
inaccuracies. As time passes, the difference 
between states calculated by INS, and 
measurements from additional devices is bigger, 
violating the restriction adopted to maintain the 
linearity of model equations [36].

Recent researches combine direct and indirect 
feedback to improve the results offered by 
the filter. For example, [37] uses this strategy 
in an INS/DVL navigation system, where the 
estimated errors are subtracted from position, 
velocity and orientation from INS, and in turn are 
used to start a new iteration in the filter. Thus, 
the corrected vehicle’s states are used to calculate 
the observation error and to limit the output 
growth. In the published results, a difference 
about one meter between the real trajectory 
and that followed by the submarine using aided 
inertial navigation is observed after two hours 
and five minutes of simulation. In a second test, 
the DVL measurements error was reduced and a 
difference between trajectories lower one meter 
was obtained. 

The model in (13) is not the only option to 
implement the linear Kalman filter in navigation 
as is observed in the work published by [40].  In 
this research, the UROV’s localization system 
is compound of an INS, a DVL, and an acoustic 
arrangement. The measurements of these last 
two systems are expressed in body-fixed frame, 
so the INS information is used to make the 
transformation to inertial frame. Thereafter, the 
states of position and orientation are estimated in 
the Kalman filter. Ak matrix is linear because it 
relates directly the rate of change of position and 
velocity with these states in the inertial frame. 
The input corresponds to the DVL measurements 
once they have been transformed, and position 
from acoustic arrangement constitutes the filter 
observation. According to this implementation, 
Q matrix includes the DVL noise and R the 
acoustic system noise. To test the estimator, [40] 
simulates the UROV’s dynamics to obtain the 
filter observations. 
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If the Kalman filter seeks to directly estimate 
the vehicle’s states, it is necessary to implement 
a direct configuration as that shown in Figure 3. 
Linear acceleration and angular rate measured 

by the IMU, plus additional measurements from 
aiding sensors, feed the filter for the estimation. 
Here, the model may vary according to design 
criteria and required accuracy.

Figure 3 Direct Kalman filter

[41] integrates an IMU and a Laser Vision 
System (LVS) in the micro-ROV VideoRay Pro 
using a Wiener process as model in which the 
vehicle acceleration is part of the states and the 
input is modeled as white noise [42]. The IMU 
provides the linear acceleration components and 
the angular rate in z axis, while the LVS provides 
linear velocities and yaw orientation. The filter, 
when compared with LVS information, presents 
good results even in the situation where UROV 
loses the reference point of the vision system and 
the estimate is only updated with the IMU.

[11] also implements a Kalman filter to estimate 
the orientation of VideoRay Pro, but using a linear 
model that describes the information provided by 
three gyroscopes. The state vector is composed of 
roll, pitch and yaw motion, and their associated 
deviation. The system inputs are the angular rate 
and the measurements correspond to the three 
Euler angles calculated independently based on 
information provided by three accelerometers. 
All measurements are transformed from body-
fixed frame to the inertial frame before starting 
the filter.

[11] analyzes the system behavior performing 
free inertial navigation and then applying the 
Kalman filter. In the first case, an unlimited 
growth in position, linear velocity, and orientation 
components is observed despite the UROV was at 
rest which corroborates the drift of this technique. 
In the second test, orientation estimated values 
oscillate around zero. Finally, when a motion in 
pitch is caused, also a variation occurs in roll due 
to the low coupling among the vehicle degrees of 
freedom.

Navigation in non controlled 
environments

Some works such as [11] and [13] were performed 
in a semi-controlled environment such as a 
swimming pool. However, when the UROV is 
maneuvered at sea, different forces and moments 
caused by the fluid affect the robot’s motion 
and should be included in the fusion algorithm 
modeling to improve its performance.

[14] propposed the general model of motion 
of (15) associated with the UROV/AUV 
hydrodynamic forces exposed above.
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(15)

where M is the total mass matrix; C(ν) is the 
centripetal and Coriolis forces matrix; D(ν) 
is the hydrodynamic damping matrix; g(η) is 
the restoring forces vector; τprop is the resultant 
forces and moments vector: [X Y Z K M N]; τcab 
is the cable disturbances vector, and, τext is the 
environmental disturbances vector.

Equation (15) brings together the UROV’s 
dynamics, kinematics and mechanics in a 
nonlinear expression that depends on the states 
defined in (9) - (10) [43]. Since this model is 
nonlinear, equations of figure 2 must be modified 
to account for nonlinearities. Such modifications 
are known as the Extended Kalman Filter (EKF) 
and the Unscented Kalman Filter (UKF). Both of 
them estimate the states of the system presented 
in (16).

       (16)

The EKF introduces the Jacobian operator, 
through a first order Taylor series expansion, to 
make a linear approximation of f(x,u) and h(x), 
and generate the matrices F and H of (18).

  (18)

To apply the Kalman cycle, (15) has to be 
transformed to the discrete domain, and (18) 
and (19) are replaced where necessary in the 
expressions of figure 2. On the other hand, the 
UKF does not use a linear approximation, but an 
“unscented” transformation which prevents the 
influence of nonlinearities on the estimation. For a 
more detailed explanation of this transformation, 
the reader is referred to [44].

[45] simulates the EKF to estimate the linear 
velocity and position of ROPOS UROV, along 

with ocean current components. The filter model 
coincides with (15)  but the g(η) and C(ν) effects 
are neglected due to the vehicle neutral buoyancy, 
and the approach of [46]. Observations include 
linear velocities measured by a gyro-compass and 
a DVL; the position coordinates registered by an 
USBL system, and the depth calculated using a 
pressure sensor. In this case, as the observations 
are direct measures of the states, h(x) is linear. 
The results show a good performance of the filter 
becoming more noticeable when the USBL and 
DVL information is not available.

The filter implemented in [45] was tested by 
simulating the sensor signals through (15) taking 
into account the simplifications mentioned. Tuning  
of Po, Q, and R matrices is addressed in [47].

Likewise, [48] developed two observers to 
estimate the position and orientation with respect 
to the vertical (yaw), along with the associated 
velocities of UROV MINERVA. One of them 
uses (15) as model, neglecting the Coriolis and 
centripetal forces matrix, and the quadratic 
components of the hydrodynamic damping 
matrix. The Kalman filter equations of figure 2 
are used, where linearity around ψ is achieved in 
the Ak matrix. The second algorithm is an EKF 
which includes the full model of UROV in the 
possible degrees of freedom. The filter input and 
measurement equation are the same as in the 
previous case. After a set of 300 seconds tests, 
the authors conclude that the EKF has better 
performance than the KF because it significantly 
reduces the estimation error. In these results, a 
convergence of the extended filter is observed 
even when some measurements are not available 
and the system works with dead reckoning.

The works previously presented reduce the 
number of differential equations assuming 
that some of the states can be obtained directly 
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through the sensors installed in the vehicle 
[45], or the model is simplified according to the 
possible degrees of freedom [48].

However, the extended Kalman filter also yields 
good results when it estimates the UROV’s twelve 
states as is presented by [49]. This work includes 
in the state vector three additional parameters 
representing the umbilical cable disturbances. 
The dynamic of (15) is used to model the position, 
orientation, and linear velocity rate of change, 
while the angular accelerations are assumed 
constant. The filter observations correspond to the 
direct measurements of the states provided by a 
pressure sensor, a compass, and an IMU, together 
with measurements from a DVL and a SBL that 
introduce nonlinearities in h(x). In all analysed 
cases, it was found that the EKF provides more 
accurate information about the states that using 
only the measurements from sensors without 
fusing them.

In contrast, [50] shows that the results yielded 
by the EKF may not be favorable. The linear 
velocities estimated by the EKF in a linear 
path, using the complete model of the vehicle 
and measurements from an IMU and a DVL, 
are quite similar to the reference velocities 
provided only by the DVL. On the other hand, the 
estimated r when the UROV makes a turn is bad 
in comparison with the angular rate estimated 
by EKF using a nonlinear model of the inertial 
sensors, and the same observations. However, 
the poor performance of the filter in [50] can 
be attributed to inadequate identification of the 
UROV’s model parameters as is stated by [51].

According to the majority of the works cited 
in this section, the extended Kalman filter 
represents a promising alternative for the 
fusion of measurements provided by sensors 
of different types, in order to contribute to the 
navigation of underwater vehicles, particularly 
UROV. However, other publications present 
the UKF as a valid option to perform the same 
task. For example, [52] updated the work of [41] 
implementing an UKF to improve the estimate of 
the VideoRay Pro III states.

Conclusions
The main techniques for underwater navigation 
were presented. Aided inertial navigation is 
emphasised as a good strategy for localization 
of remotely operated vehicles because, despite 
the boom achieved by AUVs, UROVs are still a 
good option to develop missions which require a 
real time update of the information recorded in 
the area of operation, and the tools used involve 
significant energy consumption. Within each 
category exposed, some of the works that provide 
information about the techniques behavior, 
measuring devices, and processing needed to 
calculate or estimate parameters were cited.

Free inertial navigation is independent on 
external signals and employs low cost sensors, but 
generates an error accumulation due to the drift 
integration over the time. Acoustic navigation 
offers a higher precision that inertial technique, it 
uses the sound that propagates better in water, but 
it raises the mission cost because a deployment 
and a subsequent recovery of the transponders 
are required. Geophysical navigation is the 
more accurate individual strategy, but it requires 
an a priori map of the operation area or the 
implementation of dedicate sensors to register 
certain characteristics and build an online map. 
This also increases the mission cost.

According to reviewed publications, the 
researchers have focused their efforts on the 
combination of existing underwater navigation 
methods to try to limit their errors and take 
advantage of their strengths. This has resulted 
in aided inertial navigation, which uses Kalman 
Filtering as a robust strategy of integration, taking 
into account the process and observations noise.

Recent advances show an interest to research into 
fusion algorithms when sensor dropout occurs. 
This has conducted to a deepest analysis of the 
models that describes the systems and which are 
used to propagate the states. Extended Kalman 
filter is the most widely used fusion algorithm 
since it can be used when the sensors does not 
measure position, orientation and velocity 
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directly, and the filter inputs are related with the 
states change rate through a non linear expression.

The complete model of an UROV that involves its 
kinematics, dynamics and mechanics, performs 
an adequate propagation of states and contributes 
significantly to limit the error when there is a fault 
in the sensors and the only available information 
is that from inertial measurements.

The implementation of linear Kalman filter 
facilitates the definition of the error covariance 
matrix and process and measurement noise 
matrices because these parameters are given by 
the noise characteristics of the sensors used. In 
the nonlinear versions of the filter, the definition 
of these matrices requires a more dedicated tuning 
process that involves trial and error testing.
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