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Abstract 

This article deals with the robust control problem of the motion axes of 
milling machine tools subjected to perturbation forces induced by the metal 
machining process. A position output feedback control scheme is proposed 
for robust rejection of unknown cutting and friction perturbation forces and 
robust tracking tasks of motion trajectories planned for a three-axis milling 
machine tool. The Coulomb friction, viscous damping and cutting forces are 
considered as terms of an unknown time-varying disturbance input signal 
affecting the dynamics of the motion axes of the milling machine. In the 
motion control design, the perturbation signal is modeled locally by a fourth 
degree Taylor time-polynomial family. Then, a state observer is designed to 
estimate the disturbance and velocity signals required for implementation of 
the proposed motion controllers. Simulation results are included to show the 
robust performance of the proposed motion control scheme and the fast and 
effective estimation of the perturbation and velocity signals.

Keywords: Milling machine tool, motion control, motion planning, 
perturbation rejection
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Resumen

En este artículo se aborda el problema de control robusto de los ejes de 
movimiento de máquinas- herramienta fresadoras sujetos a fuerzas de 
perturbación que se inducen durante el proceso de maquinado del metal. 
Se propone un esquema de control por retroalimentación de la salida de 
posición para el rechazo robusto de fuerzas de perturbación de fricción y 
de corte desconocidas, y para tareas de seguimiento robusto de trayectorias 
de movimiento planificadas para una máquina-herramienta fresadora de tres 
ejes. Se considera la fricción de Coulomb, el amortiguamiento viscoso y 
las fuerzas de corte como términos de una señal de entrada de perturbación 
variable en el tiempo desconocida, la cual afecta la dinámica de los ejes de 
movimiento de la máquina fresadora. En el diseño del control de movimiento, 
se modela la señal de perturbación mediante una familia de polinomios en 
el tiempo de Taylor de cuarto grado. Entonces, se diseña un observador de 
estado para estimar las señales de velocidad y perturbación que se requieren 
para la implementación del controlador de movimiento propuesto. Se incluye 
resultados en simulación para mostrar el desempeño robusto del esquema 
de control de movimiento propuesto y la estimación efectiva y rápida de las 
señales de perturbación y velocidad.

Palabras clave: Máquina-herramienta fresadora, control de 
movimiento, planificación de movimiento, rechazo de perturbaciones

Introduction 
Robust and efficient control of automatic metal-
cutting machine tools has become a very important 
and challenging research topic because of the 
modern manufacturing systems demand high 
levels of production and quality of manufactured 
products. Therefore, the motion control 
algorithms for these mechatronic machines must 
guaranty real-time, fast and accurate tracking of 
the specified machining trajectories, minimizing 
the positioning and contouring errors. In addition, 
the designed controllers should be simple and low 
cost for their practical implementation. Thus, the 
reduction of the sensor number is an important 
criterion that must be taken into account in the 
design process of any motion control scheme for 
automatic-metal machining machines.

On the other hand, the machining process dynamics 
is very complex, involving nonlinear friction 
and cutting forces, structural nonlinearities, 
parametric uncertainty, undesirable vibrations, 
and others nonlinear effects (see [1-8] and 

references therein). Hence the motion control 
schemes should be robust with respect to those 
perturbation dynamics and their design will be 
commonly based on simplified mathematical 
models instead of exact mathematical models. 
In fact, there exist several developments of 
controllers for machine tools, which are based 
on Lyapunov methods, classical control, neural 
networks, adaptive force control, nonlinear state 
observer-based control, variable-gain control, 
fuzzy logic control and H∞ control, as well as 
other control design methodologies (see [9-15] 
and references therein).

In this paper, it is proposed a position output 
feedback control scheme with on-line 
compensation of disturbance signals for robust and 
accurate tracking tasks of reference trajectories 
specified for the motion axes of a three-axis milling 
machine tool using position output measurements 
only. The presented motion control approach can 
be extended to n-axis milling machine as well as 
to other types of metal-machining machine tools 
such as turning and drilling machines.



195 

Active Perturbation Rejection in Motion Control of Milling Machine Tools

The control design methodology used in this 
study differs basically from others in that the 
robust motion control problem of machine-tool 
axes is suitable combined with the estimation of 
unknown bounded disturbance signals affecting 
directly the input-output system dynamics by 
employing Taylor time-polynomial models 
to locally describe those signals. The main 
advantage of this approach is the synthesis of 
robust linear control and estimation algorithms 
quite simple and feasible to be implemented using 
commercial control technologies. The estimation 
of disturbance and velocity signals is based on the 
design methodology of robust state observers with 
respect to un-modeled perturbation input signals 
of polynomial type described by Sira-Ramírez et 
al in [16]. The resulting state observer is called the 
Generalized Proportional Integral (GPI) observer 
because its design approach is the dual counterpart 
of the so-called GPI controller [17, 18].

In the design process of the proposed motion 
control scheme, a simplified linear mathematical 
model, similar to those used in [9-12] for control 
design purposes, describing the dynamics of 
the motion axes subjected to unknown bounded 
disturbance signals is considered. Into these 
disturbance signals are included the cutting and 
friction forces and possibly un-modeled dynamics 
and parametric uncertainties. A family of fourth 
degree Taylor time-polynomials is proposed to 
model locally the disturbance signal. Then, the 
extended disturbance signal-plant mathematical 
model is used to design a Luenberger observer 
to asymptotically estimate the disturbance and 
velocity signals required for implementation of 
the proposed controllers. Simulation results are 
provided to show the efficient and robust tracking 
performance of the presented motion control 
scheme as well as the fast and effective estimation 
of the perturbation and velocity signals.

Mathematical model of milling 
machine motion axes

Dynamic model

Consider the schematic diagrams of a motion 
axis of a milling machine shown in figures 1 
and 2. The generalized coordinate x is the linear 
displacement of the cart. In addition, θ is the 
angular displacement of the power transmission 
screw, m is the mass of the cart, J is the mass 
moment of inertia of the  ball screw, cb and ct are 
the equivalent viscous damping coefficients of 
the cart and screw bearings, respectively, and τ is 
the control input torque.

Figure 1 Schematic diagram of a milling machine 
axis

Figure 2 Schematic diagram of a three-axis milling 
machine
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The mathematical model that describes the 
dynamic behaviour of the X, Y and Z motion axes 
of the three-axis milling machine shown in figure 
2 is then given by the set of uncoupled perturbed 
ordinary differential equations (1) and (2).
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In the above, “sign” denotes the signum function, 
J1, J2 and J3 are the mass moments of inertia of 
each screw of the X, Y, and Z axes, respectively, 
m1, m2 and m3 are the masses of each cart, which 
are displaced by the screws, cbi and cti, i = 1, 2, 3, 
are the equivalent viscous damping coefficients 
of the nut and guideways bearings, and of the 
support bearings of the screws of each axis, 
respectively. Here, a = p/2π is the proportionality 
constant of the angular-linear displacement, x = 
aθ, and p is the pitch of the transmission screw, 
µ1, µ2 and µ3 are the Coulomb friction forces for 
each axis of the machine, Fcx, Fcy and Fcz are the 
cutting forces induced by the machining process 
in the X, Y and Z directions, g is the gravity 
acceleration constant. In addition, τx, τy and τz 
denote the control input torques applied to the X, 
Y and Z motion axes, respectively.

Defining as state variables to the displacements 
and velocities of the carts of each axis as follows

1 2 1 2 1 2, , , , ,x x x x y y y y z z z z= = = = = =  

one obtains the state space description (3).
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It is easy to verify that the system (3) is completely 
controllable from the control variables, τx, τy and 
τz, and observable from the output variables, x1, 
y1 and z1.

Quasi-static mathematical model of cutting forces

In this study, the quasi-static mathematical model 
(4) for prediction of the cutting forces for slotting 
and side milling operations proposed by Kline [6-
8] is used to only evaluate the robustness of the 
proposed motion control scheme.
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where us is the power required to machine a unit 
volume of the work material, da is the cutting 
depth in Z axis direction, f is the feed per tooth, nt 
is the number of teeth on the cutter in contact with 
the workpiece, D is the diameter of the milling 
cutter, λ is the angle of the cutting edges, b is the 
depth of the side cut, vi is the tool rotation angle, 
(v0,vm) is the angular range of a cutting edge cuts. 

Figure 3 illustrates the significant cutting forces 
for a slotting operation on soft steel (us = 0.5 kW/
cm3/min) resulted by applying the mechanistic 
model (4). These forces will be considered 
as terms of the unknown disturbance signals 
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affecting the dynamics of the machine motion axes. For this milling operation, a vertical cutter with 
two edges was employed, with 45λ = ° , D = 10 mm, da = 0.005 m, f = 0.001 m and spindle speed N = 
1800 rpm, nt = 1 and b = 10 mm.

Figure 3 Cutting perturbation forces, Fcx, Fcy and Fcz, for a slotting operation

Motion control with disturbance 
compensation

In the design of the motion controllers for the 
X, Y and Z axes, it is considered the simplified 
mathematical model (5) subjected to the 
disturbance signals ξx, ξy and ξz given by (6), (7) 
and (8), respectively.
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Under the assumption that estimates of the 
disturbance and velocities signals are available 
to be used in the synthesis of control laws, we 
propose the output feedback controllers (9) with 
compensation of the perturbation signals for robust 
tracking tasks of reference trajectories specified 
for the motion axes of the milling machine.
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where x*(t), y*(t) and z*(t) are the desired 
position reference trajectories for the carts of the 
X, Y and Z axes, respectively. Here, x̂ξ , ˆ

yξ , ẑξ , 
x̂ , ŷ  and ẑ  denote estimates of the disturbance 
and velocity signals. 

The use of the controllers (9) yield the set of 
uncoupled homogenous linear differential 
equations (10) for the closed-loop dynamics of 
the tracking errors, ex = x-x*(t), ey = y-y*(t) and 
ez = z- z*(t).

 
1, 0, 0, , ,i i i i ie e e i x y zα α+ + = =   (10)

The characteristic polynomials of the closed-loop 
dynamics are then given by (11).
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α0,i, i = x, y, z, so that the characteristic polynomials 
(11) are Hurwitz (stable) polynomials, the 
robust and asymptotic tracking of the reference 
trajectories is guaranteed.

In this work the Hurwitz polynomials (12) are 
proposed to compute the gains of the controllers.
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where ωc,i > 0 and  ζc,i > 0 are the natural frequencies, 
and viscous damping ratios, respectively, for the 
desired closed-loop dynamics of the tracking errors.

Since the controllers (9) require information 
of the disturbance signals ξx, ξy and ξz, and the 
velocities of the carts of the milling machine, 
in this paper is proposed the application of the 
design methodology of robust observers with 
respect to polynomial type perturbation input 
signals proposed by Sira-Ramírez et al. in [16] for 
on-line estimation of the disturbance and velocity 
signals. The proposed disturbance observer is 
called Generalized Proportional Integral (GPI) 

observer, because its design approach is the dual 
counterpart of the so-called GPI controllers [17], 
and whose robust performance, with respect 
to unknown perturbation inputs, nonlinear and 
linear un-modeled dynamics and parametric 
uncertainties, have been evaluated extensively 
through experiments for trajectory tracking tasks 
on a vibrating mechanical system by Sira-Ramírez, 
Beltrán-Carbajal and Blanco-Ortega [18].

Design of the Luenberger state 
observer

In the design process of the observer, the perturbation 
input signals are locally described by the family of 
fourth degree Taylor polynomials (13).
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where all the coefficients pj,i are completely 
unknown.

An extended state-space model for the perturbed 
dynamics of the motion axes of the milling 
machine is thus given by (14).
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where η1,i = i, η2,i = 1,iη ,  ξ1,i = ξi, ξ2,i = iξ , ξ3,i = iξ , 

ξ4,i = (3)
iξ , ξ5,i = (4)

iξ ,  i = x, y, z.

The disturbance and velocity signals can then be 
estimated by the Luenberger state observer (15).
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The dynamics of the estimation errors, e1,i = η1,i -

1,ˆ iη , e2,i  = η2,i - 2,ˆ iη , epk,i = ξk,i - ,k̂ iξ , k = 1, 2, …, 5, 
i = x, y, z, are then given by (16).
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From this expression, one can obtain the 
characteristic polynomials (17) of the dynamics 
of the estimation errors.

( ) 7 6 5 4 3 2
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which are completely independent of any 
coefficients pj,i of the Taylor polynomial 
expansions of the disturbance signals ξi(t).

In this study, the design parameters of the 
state observer (15) are choosing so that the 
characteristic polynomials of the dynamics of the 
observation errors (17) are Hurwitz polynomials 
described by (18).
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Simulation results
In order to verify the dynamic behaviour of the 
motion control scheme of the axes of a milling 
machine and the estimation of the disturbance 
signals proposed in this paper, some numerical 
simulations were carried out using the system 
parameters described in table 1.

Table 1 System parameters

Parameter Value
m1 17.551 kg
m2 23.896 kg
m3 22.505 kg
J1 19.623 kgmm2

J2 11.872 kgmm2

J3 16.249 kgmm2

cb1 = cb2 = cb3 2.5 N s/m
cb1 = cb2 = cb3 2.5 N s/m
µ1 = µ2 = µ3 0.3
p1 = p2 = p3 0.003175 m

Figure 4 shows the cutting trajectories specified 
for cutting motion in the x-y plane. The first desired 
movement is a straight line starting at the point 1 and 
ending at the point 2. Next, the cutter moves from point 
2 toward point 3 in straight line also. The cutting depth 
in z axis direction is a constant value and the modulus 
of the x path from point 2 to point 3 is 0.08 m (80 
mm), which is the same for the modulus of the y path 
from point 1 to point 2 (80 mm). This path of 80 mm is 
specified to be performed into a time of 26.667 s.
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Figure 4 Trajectory specified for the cutting operation

According to the parameters used in the quasi-
static mathematical model of cutting forces 
(depth of cut of 5 mm, feed per cutter tooth of 
0.05 mm, number of teeth on the cutter of 2, and 
spindle speed of 1800 revolutions per minute), 

one gets the feed rate of 3 mm/s and the time 
required to mill the path of 80 mm as 26.667 s.

The equations of the straight lines are described as 
follows. From point 1 to point 2 by equations (19):
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with initial (i) and final (f) conditions given by 
(20).
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From point 2 to point 3 by equations (21):
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with initial (i) and final (f) conditions given by (22).
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Figures 5-7 present the performance of the control 
scheme (9) without employing the feedforward 
terms of the perturbation signals. This is, the 
values of the estimates of those signals were 
set to be zero, ˆ ˆ ˆ 0ξ ξ ξ≡ ≡ ≡x y z , in the control 

implementation. Here, it is evident the inefficient 
performance on the tracking of the cutting 
trajectories, with large tracking errors. Of course, 
that performance is unacceptable for machining 
tasks of products. 

Figure 5 Closed-loop x-axis response without perturbation compensation

Figure 6 Closed-loop y-axis response without perturbation compensation
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Figure 7 Closed-loop z-axis response without perturbation compensation

On the other hand, figures 8-10 depict the 
robust and efficient tracking performance of the 
proposed control approach rejecting disturbances 
directly affecting the dynamics of the motion 
axes of the milling machine. In addition, one 
can observe the fast and effective estimation of 

the disturbance signals. The control gains were 
selected to get Hurwitz (stable) polynomials 
according to the equation (8), with ωc,i = 12 
rad/s and ζc,i = 0.7071, i = x, y, z. The gains of the 
disturbance observer were set to be ωo,i = po,i =700 
rad/s and ζo,i = 0.7071.

Figure 8 Closed-loop x-axis response and estimation of the disturbance signal ξx
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Figure 9 Closed-loop y-axis response and estimation of the disturbance signal ξy

Figure 10 Closed-loop z-axis response and estimation of the disturbance signal ξz

Conclusions
In this paper we have proposed a PD control 
scheme based on rejection of disturbances for 
robust and efficient tracking tasks of reference 
trajectories specified for the movements of the 
axes of a three-axis milling machine tool. The 
cutting and friction forces generated during 
the machining process of the workpiece were 
considered as unknown bounded perturbation 
signals affecting the motion axes dynamics. Into 
these perturbation signals could be included 

other disturbances as parametric uncertainties, 
vibrations, unmodeled dynamics and so on. Since 
the deigned controllers requires information of 
these signals, a real-time estimation scheme of 
perturbation signals based on Taylor polynomial 
models has been applied. Simulations results 
show the robust and efficient performance of the 
proposed disturbance observer-control approach, 
as well as the fast and effective estimation of the 
disturbances signals. 
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