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Abstract

A classification methodology based on Support Vector Machines (SVM) is 
proposed to locate the faulted zone in power distribution networks. The goal 
is to reduce the multiple-estimation problem inherent in those methods that 
use single end measures (in the substation) to estimate the fault location in 
radial systems. A selection of features or descriptors obtained from voltages 
and currents measured in the substation are analyzed and used as input of the 
SVM classifier. Performance of the fault locator having several combinations 
of these features has been evaluated according to its capability to discriminate 
between faults in different zones but located at similar distance. An application 
example illustrates the precision, to locate the faulted zone, obtained with 
the proposed methodology in simulated framework. The proposal provides 
appropriate information for the prevention and opportune attention of faults, 
requires minimum investment and overcomes the multiple-estimation problem 
of the classic impedance based methods.
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Resumen

En este artículo se propone una metodología de clasificación basada en má-
quinas de soporte vectorial (SVM), para localización de fallas en redes de 
distribución de energía eléctrica. La meta es reducir el problema de la estima-
ción múltiple de los métodos que usan medidas en un sólo terminal de la línea 
(la subestación), para estimar la localización de fallas en sistemas radiales. 
Adicionalmente, la selección de características o descriptores obtenidos de la 
señal de tensión y de corriente se analiza y usa como entrada del clasificador 
SVM. Se evalúa además el desempeño del localizador ante diferentes combi-
naciones de estas características, de acuerdo con su capacidad para discrimi-
nar entre las fallas que ocurren en la diferentes zonas del sistema de potencia, 
pero localizadas a una distancia similar desde el punto de medida. Un ejem-
plo de aplicación ilustra la precisión para localizar la zona en falla obtenida 
con la metodología propuesta y en un entorno de simulación. El localizador 
propuesto suministra información para la prevención y atención oportuna de 
fallas, requiere de mínima inversión y soluciona la múltiple estimación de los 
métodos basados en la estimación de la impedancia.

---------- Palabras clave: Sistemas de distribución, localización de 
fallas, calidad de potencia, caracterización de señales, vectores de 
soporte.
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Introduction

Faults in power distribution systems cause 
supply interruptions being responsible of process 
disturbances, information and economic loss and 
equipment damage among others [1, 2]. High 
accuracy approaches have been proposed for 
fault location in power transmission systems; 
however, these algorithms are not useful for 
fault location in distribution systems due to the 
specific characteristics of the latter [3, 4, 5]: a) 
Single end measurements of voltage and current 
are available only at the distribution substation; 
b) Distribution systems are usually operated in 
a radial mode and they are characterized by the 
presence of single and double phase laterals; 
c) Loads are usually tapped along the lines and 
laterals and could be either single or multi-phase; 
and, d) The non-uniform development of the 
network and variations on loads are responsible of 
heterogeneous section lines (presence of different 
conductor gauges, combination of overhead lines 
and underground cables, etc.).

Different methods have been proposed for fault 
location in power distribution systems. Most of 
them are based on the calculation of the equivalent 
impedance as seen from the substation during 
the fault. The pre-fault and fault effective values 
(rms) of the fundamental current and voltage at 
the substation are used with this purpose [5, 6]. 
Then, the faulted section is estimated following 
an iterative procedure: the impedance obtained 
from the line model considering a possible 
fault in each node of the network is compared 
with the equivalent impedance calculated from 
measurements. The fault point in the section line 
could be estimated according to the reactance 
analysis as it is described in [6]. There exist 
a variety of methods that follows this basic 
principle for fault location in distribution systems. 
Thus, the effect of loads and laterals is studied 
in references [7] and [8] and the complexity of 
dealing with heterogeneous lines is analyzed in 
reference [9]. Algorithmic solutions have been 
proposed in the literature to deal with those 
considerations with good accuracy results, as 

presented by Das [5], Saha [10] and Son Choi 
et al. [11]. The main drawback of these methods 
is the multiple-estimation problem given by the 
existence of multiple points (usually far away 
one from each other) in the power distribution 
system that fulfill with the equivalent impedance 
condition. Consequently, these methods provide 
precise (accurate distance to the fault) but 
uncertain (multiple sections are at the same 
electrical distance) fault locations. This is the 
main disadvantage to apply these methods in real 
systems since the existence of multiple possible 
fault locations in a large geographical area do 
not solve the need of a quick fault location and 
introduce a decision problem: which is the most 
likely faulted node?

Recently, many works have addressed this 
problem by using knowledge-based techniques to 
exploit the existence of previous experiences and 
contextual information. In reference [12] current 
measured at the power substation have been 
used to train an ANFIS net to associate current 
patterns with protective device settings in order 
to isolate faulted zones in the system. In a similar 
strategy, heuristic knowledge from operators 
is exploited together with information from the 
SCADA database [13]. Fuzzy inference is used 
in both methods to deal with uncertainty inherent 
in these methods. A Bayesian network has been 
proposed [14] as a causal model between the fault 
equipment and the evidences of observations 
during feeder outages as the regional distribution 
of trouble calls or abnormal observations of the 
feeders and surrounding environments expressed 
in the calls. A rule-based expert system is 
described [15] to locate the faults in a distribution 
system by using component data and network 
topology stored in the database and a set of rules 
defined by engineers. Data mining methodology 
have been used [16] to derive fault location and 
diagnosis models from reports containing similar 
information. A database containing information 
from customers and SCADA system during 
outages is used [17] to reduce the search area 
associated to faults. In this method a second step is 
proposed for fault location assisted by the design 
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of a meter-polling schema based on the existence 
of a complete automated meter reading system. 
All of the previous referenced methodologies use 
information from a database of equipment faults, 
SCADA, customer calls among others, not always 
available in most of the distribution facilities.

In this paper, we propose an alternative method 
that only uses information contained in the single 
end measurements of current and voltage at the 
distribution substation. A procedure to reduce 
the multiple-estimation problem is proposed 
based on the use of significant features extracted 
from voltage and current registers and the use of 
Support Vector Machines (SVM) as classification 
tool. Non-linear classification properties of SVM 
have been exploited to assign fault registers with 
predefined fault sections. Features, extracted 
from voltage and currents, have been selected to 
be sensible to fault location and fault type. The 
following features have been considered with this 
purpose: Variation of the rms values of voltage, 
current and apparent power, the reactance seen 
from the substation during the steady state of 
fault and finally the frequency of the transient 
caused by the fault.

This paper is presented in six sections. Section two 
is devoted to introduce the fundamentals of SVM. 
In section three, the definition and the procedure 
used to characterize the voltage and current 
signals to be used in fault location is presented. 
The fault location strategy is described in section 
four. Section five exemplifies this proposal in a 
real power distribution system. Finally, section 
six is devoted to conclude and summaries the 
contributions of this work. 

Support Vector Machines (SVM)

Support Vector Machines (SVM) have been used 
in this work as classification technique to assist 
fault location because the good results reported 
in diagnosis applications. SVM are based on 
statistical learning theory and can be viewed 
for practical purposes as a binary classification 
technique resulting from the development of 
artificial neural networks and its combination 

with the optimization and generalization theories 
[18, 19]. In the following subsections a brief 
summary of the theory is presented in three steps: 
the case of dealing with linear separable data, the 
use of soft margin constrain to deal with noisy 
data and finally the use of kernel functions in the 
non linear separable case.

Linear case 

Suppose having n training elements, xi, in an 
N dimensional space. Each element has its 
respective tag etiquette(y) as presented in (1). 
This etiquette is used to label members of the 
same class (+1 or -1).

N
i R∈x  and { }1,1 −+∈iy  (1)

Training data is used to estimate a decision 
function, which causes an output in {±1} when 
it is excited with an input xi in RN. The goal is 
to find a hyper plane H: y=w·x-b=0 and two 
parallel hyper planes, H1: y=w·x-b=+1 and H2: 
y=w·x-b=-1, conditioned by the inexistence of 
elements between H1 and H2 and forcing the 
distance between them (margin) to be maximum 
(wx represents the inner product between vector 
w and x). The hyper plane H is designed as 
optimum separating hyper plane (OSH). Figure 
1 illustrates this requirement in a two-dimension 
space.
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Figure 3 Data transformation in a new space where classes are linearly separable 

Figure 1 Separating hyper planes

Weight (w) and bias (b) are the only parameters 
used to control the function and those data points 
that the margin pushes up against are called Su-
pport Vectors. 
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To find the OSH it is necessary to find those 
Support Vectors or in other words to perform 
margin maximization by solving the objective 
function presented in (2) (Margin is inversely 
proportional to ww ⋅ ) 

Subject to
)

bw
ww ⋅(

2
1

min
,

i 1,bii ∀≥+⋅ )( xwy

(2)

This is a typical linear constrained quadratic 
optimization problem, convex in a convex set (w, 
b). Therefore, it has only one possible solution. 
When Lagrange multipliers, with αi≥0, are used 
to solve this type of problems the problem is 
transformed to equation (3). 

 (3)

Using this dual representation (3) the solution is 
obtained by performing a minimization of L. A later 
maximization in αi allows finding the saddle point. 
The points with αi different from zero correspond 
to the Support Vectors (SVs). These are the critical 
elements in the original dataset in the sense that 
when the training process is performed taking only 
into account these SVs, the same hyper planes will 
be obtained. Figure 1, shows the SVs data points, 
labeled as k, l, m and n.

Soft margin

The methodology presented in the previous 
sections is based on the no existence of mixed 
classes. In order to cope with this common 
problem the previous strategy is reformulated 
by considering a relaxation in the optimization 
condition to define what is known as a “soft 
margin”. In order to allow not satisfying 
completely the function constrains presented in 
(2), the slack variables (ξi) are introduced and a 
new set of constrains is formulated as in (4).

Subject to iiii -1)b ∀≥+⋅ ,( ξxwy

 
(4)

Figure 2 shows this situation with nonlinearly 
separable classes. The slack variables ξi allow 
measuring the classification error in terms of 
distance to the hyper plane.
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Figure 3 Data transformation in a new space where classes are linearly separable 

Figure 2 Non-separable case by using a 
linear hyperplane

A classifier can be obtained by controlling its 
classification capability using ||w|| and the criteria 
related to the slack variables that penalize the 
training errors. Typically the number of training 
errors (5) is used with this aim. 

 (5)

And the optimum hyper plane can be obtained by 
the soft margin criteria in (6).

Subject to ∑
=

+⋅
n

1i
i

bw
C) ξww(

2
1

min
,

iiii -1)b ∀≥+⋅ ,( ξxwy

(6)

Parameter C is denoted as “error penalization 
constant”, and has to be fixed a priory by the 
user. High value of C means a high penalization 
error. When the Lagrange multipliers are used, 
the problem is transformed in (7). 

Subject to (7)
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Kernel based SVMs

In case of non-linear separable dataset, it is 
possible to transform the data set to a new 
dimensional space, where the data is linearly 
separable. Figure 3 presents the intuitive idea of 
this transformation. The transformation function, 
Φ(.), is defined in terms of scalar products of the 
i nput data in the original classification space. 
Thus, it is not necessary to specify Φ(.); instead 
of it kernel functions, K(u·v), are used since they 
perform the transformation and scalar product in 
the transformed space in a single step. 

There are several kernel functions that may be used 
in the definition of the new classification space as 
they are presented in table 1. Furthermore, Mercer 
theorem can be used to determine if a function 
could be used as kernel [19].
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Figure 3 Data transformation in a new space where classes are linearly separable Figure 3 Data transformation in a new space 
where classes are linearly separable

Using an appropriate kernel function, SVM can 
separate data from different classes in this new 
space. Thus, linear classification algorithms can 
be extended to the non-linear cases by using an 
appropriate kernel function.

Table 1 Kernel functions

Name Function
Polynomic kernel ( ) ( ) 0.., >+⋅= stssK dv uvu
Gaussian basis 
radial function (RBF) ( ) 22

2/, σv -uvu −= eK

Sigmoid ( ) ( )Θ+⋅= v uvu tanh,K

When a RBF is chosen as kernel function (as in 
section five) two parameters (the error penalization 
constant C and the kernel parameterσ) have to 

be set to tune the classification algorithm. More 
extended information about SVM and kernel 
based methods is in [18, 19].

Features obtained from measurements 

Since it is supposed that the only available 
measurements are voltages and currents at the 
substation, these have to be processed to obtain 
a set of useful descriptors. In the following 
subsections these features are described and the 
dependences with the fault resistance and distance 
are analyzed. For this purpose, faults in the main 
feeder of circuit of figure 4 have simulated under 
different conditions of resistance. 

Figure 4 Transient frequency at the faulted 
phase Vs the distance (nodes along the main 
feeder) and fault resistance [0.5 Ω, 40 Ω]

Frequency of the transient 

The natural frequency during the transient ( f ) can 
be associated to the distance to the fault, since it 
is directly related to the inductive and capacitive 
parameters of the remaining circuit in presence 
of a fault [20]. The frequency is obtained from 
the maximum energy detail of the decomposition 
of voltage transient using the Discrete Wavelet 
Transform (DWT) and the Fast Fourier Transform 
(FFT) [21, 22, 23]. In this paper, only the 
frequency has been used because its independence 
with the resistive parameters of the system, and 
consequently its relation with the distance. The 
non-dependence of frequency with the resistance 
can be observed in figure 4. Faults simulated at 
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each of the 12 nodes along the main feeder of the 
power system in figure 15 and using 21 different 
fault resistance values from 0.5Ω t to 40Ω are 
presented.

Variation of rms values

The variations of the fundamental component of 
current (ΔI), voltage (ΔV) and apparent power 
(ΔS) have also been used as descriptors. These 
are defined from the subtraction of rms values 
during the fault and pre-fault steady states [4]. 
Because of the influence of the fault resistance 
the variation in the three phases has been used as 
descriptors instead of only the faulted ones.

Figures 5 and 6 shows a single phase faults on 
phase A, located at node 10 and 2, of the test power 
system represented in figure 13, respectively. 
These two figures illustrate two cases where the 
value of ΔV in the faulted phase is the same (-
4488V) for different fault conditions (location 
and fault resistance). Nevertheless, the evolution 
of non-faulted phases is different. Variation 
of current (ΔI) and apparent power (ΔS) may 
experience similar effects.
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Figure 4 Transient frequency at the faulted phase Vs the distance (nodes along the main feeder) 

and fault resistance [0.5Ω, 40Ω]
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Figure 5 Single-phase fault in phase A at node 10. Fault resistance of 0,5ΩFigure 5 Single-phase fault in phase A at 
node 10. Fault resistance of 0,5 Ω

Figures 7, 8 and 9 represent the evolution of ΔI, 
ΔV and ΔS in case of single-phase faults along 
the 12 nodes main feeder for 21 values of fault 
resistance. 

From figures 7, 8 and 9 it is noticed the multiple-
estimation problem if only one of these attributes 
(ΔV, ΔI, ΔS) is used. Latter, in the application 

example, variations in the three phases are used 
to avoid the multiple estimation problem, by 
locating only one faulted zone. 3

20 30 40 50 60 70
8

9

10

11

12

13

14

15

Time (ms)

Phase A 
Phase B 
Phase C 

Ph
as

e 
vo

lta
ge

 (k
V

) 

Figure 6 Single-phase fault in phase A at node 2. Fault resistance of 17,86Ω

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2 x 10
4

Node number

V
ol
ta
ge
va
ri
at
io
n
(d
V
a
)
[V
]

Figure 7 Voltage variation at the faulted phase Vs the distance (nodes along the main feeder) and 

fault resistance [0.5Ω, 40Ω].

Figure 6 Single-phase fault in phase A at 
node 2. Fault resistance of 17.86 Ω

Figure 7 Voltage variation at the faulted 
phase Vs the distance (nodes along the main 
feeder) and fault resistance [0.5Ω, 40Ω]

Figure 8 Current variation at the faulted 
phase Vs the distance (nodes along the main 
feeder) and fault resistance [0.5 Ω, 40 Ω]
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Figure 9 Apparent power variation at the 
faulted phase Vs the distance (nodes along 
the main feeder) and fault resistance [0.5 Ω, 
40 Ω]

Fault reactance

The value of the reactance (Xf ) seen from the 
substation during the fault is also related to the 
fault distance as presented in figure 10. It has 
been used as basis of the classical fault location 
algorithms [6]. 

Figure 10 Fault reactance at the faulted 
phase Vs the distance (nodes along the main 
feeder) and fault resistance [0.5 Ω, 40 Ω]

In case of single phase to ground faults, reactance 
is computed by using phase values; otherwise, 
reactance is computed by using line-to-line 
magnitudes. The behavior of reactance and 
frequency versus the distance is quite similar.

Methodological approach for 
faulted zone location

The proposed strategy is based on the use of the 
available measurements of current and voltage 
at the power distribution substation. A selection 
of features extracted from these measures and 
sensible to fault location is proposed to train 
SVM based classifier to relate the faulted section 
with measures at the substation. Having this goal 
the following six steps are applied: 

Step one: Zone definition in the 
distribution system

The power system is subdivided into significant 
zones to be identified in the fault location 
process. The zone definition criterion considers 
the following aspects: system topology, presence 
of protective devices, feeder lengths and other 
maintenance crew criteria as the maximum search 
length. It is recommended to subdivide laterals 
and long feeders into several zones according 
to the presence of protective devices and the 
representativeness of data available to train the 
SVM based classifier. In the presence of laterals 
it is also recommended to define a zone for each 
one if enough data is available to train the SVM to 
effectively avoid the multiple estimation problem. 

Following the exposed, the system in the example 
has been divided in seven zones as presented in 
figure 13. If the faulted zone is correctly identified, 
the multiple estimation problem is avoided.

Step two: Structure of the SVM for fault 
location

Two different configurations of SVM for fault 
location are proposed. The first one has two 
serial stages to deal with different fault types 
(figure 11). The first stage recognizes the fault 
type, whereas the second one consists of four 
SVM specialized classifiers trained to locate the 
fault zone according: SVM PhG (Phase to ground 
classifier), SVM 2Ph (Phase to phase classifier), 
SVM 2PhG (Two phase to ground classifier) and 
SVM 3Ph (Three phase classifier).
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Figure 11 Fault type dependable SVM fault 
locator – DFL

The second structure proposed and tested is a 
simpler non-fault type dependable architecture 
based on the use of only one SVM to deal 
with all possible fault types (figure 12). Both 
fault locator configurations were tested in the 
example.

Figure 12 Non dependable SVM fault locator 
– NDFL

Step three: Training data

Measurements used to train the SVM are registered 
at the power substation but also simulations of 
faults (in this case a precise model is needed) 
can be used. In training stage, it is important 
to have registers from all the previous defined 
zones in order to train adequately the SVM based 
classifier to identify faults in any zone of the 
power distribution system. 

Step four: Feature selection

All the descriptors or features previously presented 
are related to the fault location but according to 
system characteristics (load, heterogeneity, etc) 
the importance of them can vary. In section V 
the significance of them has been analyzed in the 
two different architectures for fault location in an 
application example.

Step five: Training

This step is performed by using a training set of 
disturbances characterized by descriptors (xi), 

and labels associated to the corresponding faulted 
zone (yi). This training set has to be complete and 
balanced. Complete in the sense that the training 
data set covers the whole search space and 
balanced to avoid a biased training of specific 
zones. Training is subdivided in two parts a) 
selection of the penalization parameter (C) and 
the kernel function (see equation 6 and table I) 
and b) the definition of the support vectors. These 
parts are described as follows:

a. Selection of C and σ : Grid search and cross 
validation have been used to select the 
best combination of C and the RBF kernel 
the parameter σ according to the method 
described in [19].

Grid search is defined as the variation of the 
two parameters (C and σ) in a feasible solution 
interval (24<C<232 and 2-6<σ <26 ). These two 
intervals originate a bidimensional grid of 
possible combinations of C and σ (the search 
space). When a maximum function performance 
is obtained, the C and σ values are selected as 
the best for such set of input descriptors. Cross 
validation is applied to obtain the performance 
for each pair (C, σ ). This technique consists 
on a subdivision of the training set in n subsets. 
Training is performed by using (n-1) subsets. 
The remaining subset is used in the validation 
step. This procedure is repeated n times by using 
a different subset in the validation step and 
consequently a different combination of subsets 
in training. The performance is then obtained as 
the mean value of the obtained in the n tests. 

Performance has been computed according to 
(8).

 (8)

b. Definition of the support vectors: Having 
obtained the best performance value, C and 
σ are selected to set the SVM. Next the SVM 
is trained by using all the training data. Train 
a SVM means to obtain the support vectors 
which helps to separate classes as presented 
in figure 1.
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The previous training process has to be repeated 
for each one of the 31 subsets of descriptors 
considered in the application example. 

Step six: Test the SVM for fault location 

Having trained the SVM based fault locators 
presented in figures 11 and 12 by using the entire 
training set as presented in step five, an additional 
precision test has been carried by using new data 
not used in training test. The performance index 
is the same as the defined in equation (8). 

Application example of the SVM 
based fault locator 

Test system and dataset

A 25 kV power distribution system from 
Saskpower, Canada [5] (figure 13) has been used 

to test the fault location approach. The proposed 
system contains a three phase main feeder from 
node 1 to node 12, single-phase tapped loads at 
nodes 1, 2 and 8, and a three-phase taped load 
at node 12. It also has three laterals, a three-
phase one in node 6 and two more single-phase 
at nodes 9 and 10. The length of the main feeder 
is approximately 37 km. A complete dataset have 
been obtained from simulation of faults in each 
node under different conditions. Single, double 
and three phase faults have been simulated by 
using 21 different values of fault resistances from 
0,5 to 40 ohms [24]. Using Alternative Transients 
Program (ATP) [25] in an integrated environment 
linking ATP and Matlab, to automate the 
generation of faults [26], has simulated the power 
system. Table 2 summarizes the dataset used to 
train the SVM.

Table 2 Data sets used for training the svm fault locators

Fault 
type

Fault locator
Zone number in the distribution system

1 2 3 4 5 6 7 Total
P-G SVM PhG 60 45 75 15 10 10 10 225
P-P SVM 2Ph 60 45 75 - - - - 180

2P-G SVM 2PhG 60 45 75 - - - - 180

3P SVM 3Ph 20 15 25 - - - - 60

All SVM G 200 150 250 15 10 10 10 645

In case of zones from 4 to 7 there is not data of 
phase faults because these zones correspond to 
single-phase laterals 

Definition of zones

The circuit has been subdivided in seven zones as 
it is depicted in figure 13. The main feeder was 
subdivided on three zones by using the criteria 
of reduce the possible location of the fault. Zone 
one comprises four nodes, zone two groups three 
nodes and zone three the last six nodes. These 
zones, in the main feeder, have been defined to 
overcome the multiple-estimation problem.

Laterals are also subdivided in zones according to 
the same criteria. Zones 5, 6 and 7 are defined to 
avoid multiple estimations of the fault locations 
caused by the radial topology of the system. In zone 
4 the multiple estimation problem is not completely 
avoided due to the existence of sections with similar 
characteristics (from node 18 to node 19 and from 
node 18 to node 20). An additional zone has been 
defined with nodes 24 and 25 (Zone 7).
A constrain to the zone definition is the availability 
of data to train the SVM based locator. According 
to the exposed in section four, zone definition can 
also take into account the criteria of the operation 
staff and the maintenance crew.
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Figure 13 25 kV power distribution system 
from Saskpower, Canada

Training the SVM based fault locator

The performance of the zone fault locator has 
been analyzed by training and testing the SVM 
based classifier. Table 3 presents the data used in 
testing and training steps.

Table 3 Data sets used for training and 
testing the svm fault locator 

Fault type

Number 
of 

training 
elements

Number 
of testing 
elements

Phase to ground (SVM PhG) 225 846
Phase to phase (SVM 2Ph) 180 639

Two phase to ground 
(SVM 2PhG)

180 639

Three phase (SVM 3Ph) 60 213
All fault types (SVM G) 645 2337

Stage one SVM based classifier in figure 11 has 
been trained to identify the fault type by using 
only two descriptors (ΔV and ΔI). Precision in 
testing step equals to the unity (no errors were 
obtained). On the other hand SVMs of stage 2 
(figure 12) and the SVM G (see figure 12), have 
been trained by using data in table 2 for different 
combinations of descriptors in order to obtain the 

best combination. The training set was selected 
by using only five fault registers corresponding 
to fault resistance of 0.5, 5, 15, 25 and 40 ohms. 
The higher the number of training data, covering 
uniformly the whole set of zones, the better the 
precision of the precision test. 

Result analysis

Table 4 summarizes the results. Groups of 
descriptors labeled as numbers 13, 19, and 26 
presents the highest precision (perfect according 
to equation 14). All of these combination of 
descriptors which includes the reactance (Xf ) 
appear as a good set of descriptors to be used to 
classification purposes. From table 4, in case of 
one the groups of descriptors (Group 10, composed 
by ΔV and ΔI), which has better performance, but 
not equal to unity, the desegregated test results 
are presented in table 5. These results correspond 
to the seven possible zones in case of phase to 
ground fault (SVM PhG fault locator).

From tables 2 and 5, it is noticed that having 225 sets 
of training elements and testing with 846 new sets, 
the average performance is around 99%. However, 
the classification performance in zones four and 
five are lower, but the precision is higher than 84 %. 
Table 6, presents the confusion matrix for phase to 
ground faults in table 5. The diagonal corresponds 
to the well-classified data, while the elements off 
the diagonal correspond to error in classification. It 
shows how data from zones four and five are not 
well classified using the variation of current ( ΔI 
) and voltage ( ΔV ) as the only descriptors. From 
the analysis it is possible to determine that those 
wrong classified data in zone four, corresponds to 
faults in node 18 with low fault resistance value. 
Similarly, wrong classified data in zone five, 
corresponds to high resistance faults at node 16. 
However, it is noticed that by using a simple pre-
processing of the voltage and current time signals to 
obtain descriptors as reactance ( Xf ), frequency ( f 
) or variation of apparent power ( ΔS ) it is possible 
to obtain a perfect performance of the SVM fault 
locator under the presented conditions and to reduce 
the multiple-estimation problem.
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Table 4 Extensive test of svm based fault locator
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1 ΔS 0.924 0.914 1.000 0.906 0.940 17 ΔS, ΔV, Xf 1.000 1.000 1.000 1.000 0.999

2 ΔV 0.898 1.000 1.000 0.690 0.868 18 ΔS, ΔV, f 0.991 1.000 1.000 0.995 0.995

3 ΔI 0.879 1.000 0.995 1.000 0.869 19 ΔS, ΔI, Xf 1.000 1.000 1.000 1.000 1.000

4 Xf 1.000 1.000 1.000 1.000 0.965 20 ΔS, ΔI, f 0.978 1.000 1.000 1.000 0.995

5 f 0.981 1.000 1.000 1.000 0.981 21 ΔS, Xf, f 0.994 1.000 1.000 1.000 0.997

6 ΔS, ΔV 0.998 1.000 1.000 1.000 0.997 22 ΔV, ΔI, Xf 1.000 1.000 1.000 1.000 0.998

7 ΔS, ΔI 0.950 1.000 1.000 0.986 0.994 23 ΔV, ΔI, f 0.979 1.000 1.000 1.000 0.993

8 ΔS, Xf 1.000 0.992 1.000 1.000 0.998 24 ΔV, Xf, f 0.993 1.000 1.000 1.000 0.989

9 ΔS, f 0.980 1.000 0.998 0.986 0.983 25 ΔI, Xf, f 0.993 1.000 1.000 1.000 0.998

10 ΔV, ΔI 0.991 1.000 1.000 1.000 0.996 26 ΔS, ΔV, ΔI, Xf 1.000 1.000 1.000 1.000 1.000

11 ΔV, Xf 1.000 1.000 1.000 1.000 0.995 27 ΔS, ΔV, ΔI, f 0.996 1.000 1.000 1.000 0.991

12 ΔV, f 0.991 1.000 1.000 1.000 0.984 28 ΔS, ΔV, Xf, f 0.996 1.000 1.000 1.000 0.997

13 ΔI, Xf 1.000 1.000 1.000 1.000 1.000 29 ΔS, ΔI, Xf, f 0.996 1.000 1.000 1.000 1.000

14 ΔI, f 0.961 1.000 1.000 0.995 0.985 30 ΔV, ΔI, Xf, f 0.994 1.000 1.000 1.000 0.996

15 Xf, f 0.996 1.000 1.000 1.000 0.995 31 ΔS, ΔV, ΔI, 
Xf, f 0.983 1.000 1.000 1.000 0.995

16 ΔS, ΔV, ΔI 0.983 1.000 1.000 1.000 0.994

Table 5 Desegregated test results in case of SVM PhG fault locator – Group of descriptors 
number 10

Faulted zone Test data
Well classified 

data
Precision in test-

ing
Zone 1 192 192 1

Zone 2 207 207 1

Zone 3 282 282 1

Zone 4 48 44 0.916

Zone 5 53 45 0.849

Zone 6 32 32 1

Zone 7 32 32 1

Total 846 838 0.991
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Table 6 Confusion matrix of SVM PhG – Group of descriptors 10

Zone number in the distribution system
Total

1 2 3 4 5 6 7

Zo
ne

 nu
mb

er
 re

co
gn

ize
d b

y S
VM

 1 1 192 0 0 0 0 0 0 192

2 0 207 0 0 0 0 0 207

3 0 0 282 0 0 0 0 282

4 0 0 0 44 8 0 0 52

5 0 0 0 4 45 0 0 49

6 0 0 0 0 0 32 0 32

7 0 0 0 0 0 0 32 32

Total 192 207 282 48 53 32 32 846

Conclusions
This paper presents a methodological approach 
to locate the faulted zone based on the use of 
only the available measurements of current and 
voltage at the power substation. These signals are 
characterized to obtain descriptors as the variation 
of the effective values of voltage, current and 
apparent power, the reactance as seen from the 
substation in the steady state of fault and the 
frequency of the transient caused by the fault.

It is shown that the proposed approach has perfect 
performance in case of the analyzed example. Support 
Vector Machine based classifier has been tested to 
identify faulted zones and the obtained results show 
a good performance. The proposed approach allows 
reducing the multiple estimation problem of the 
fault location by using a low cost implementation 
strategy. This approach also contributes to improve 
the power continuity indexes in distribution systems 
by the opportune fault location.
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