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Abstract

This paper presents the detection of failure in gears using, as a statistical 
indicator, the Root Mean Square value from the vibration residual signal. 
Models for three double stage gearboxes are considered on the analysis. 
The gear models are designed with different modules in order to preserve 
geometrical resemblance. This research shows the variation on gear mesh 
stiffness for different amounts of damage. This paper also describes the 
development of a model to simulate the vibration response from the double 
stage gearbox for conditions with and without failure. The variation on time 
of the gear mesh stiffness is taken into account on the dynamic simulation, and 
damping coefficient is considered proportional to gear mesh stiffness. Results 
obtained from dynamic simulation for both good state and with failure teeth 
are in accordance with the results reported on literature.

----------Keywords: Gear mesh stiffness, residual signal, breakage of 
tooth, dynamic response

Resumen

Este artículo utiliza el valor RMS de la señal residual de vibración como 
indicador estadístico que permita detectar la falla en ruedas dentadas. 
En el análisis se consideran tres modelos de caja de engranajes de doble 
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etapa diseñados con diferentes módulos buscando conservar semejanzas 
geométricas. En este trabajo se muestra la variación de la rigidez de engrane 
para diferentes tamaños de daño. Se desarrolla un modelo para simular la 
respuesta de vibración de la caja de engranajes de dos etapas para condiciones 
de buen estado y con falla. En la simulación dinámica se considera la rigidez 
de engrane variante en el tiempo y el coeficiente de amortiguamiento se 
considera proporcional a la rigidez de engrane. Los resultados obtenidos de la 
simulación dinámica para los dientes en buen estado y con falla son acordes 
con los reportados en la literatura.

----------Palabras clave: Rigidez de engrane, señal residual, ruptura 
del diente, respuesta dinámica

Introduction
Whether it is in the industrial machinery, 
automotive applications, or in our daily lives, 
gearboxes are the most important mechanisms 
for mechanical power transmission. They provide 
rotational speed changes and/or change the 
direction of motion [1], even in an unfavorable 
working condition, such as lubrication or an 
assembly problem. This tends to produce fatigue 
and over-stress, leading to deformation or material 
loss on teeth, which is reflected in lack of tooth’s 
stiffness -that is proportional to its damage-, 
affecting the system dynamical response, and 
showing changes on system’s vibration and 
louder acoustic emissions by internal excitations 
from cyclic time-varying mesh stiffness. Gear 
transmission modeling with failure can help in 
the analysis of this dynamical change in order to 
obtain adequate results allowing the maintenance 
personnel to monitor gearbox health, and to detect 
early faults [2]. In the literature there are many 
papers related to gearbox modeling in order to 
obtain a dynamical response.

The mathematical model is used in gear 
dynamics up to 1986 [3]. A widely used model 
expresses all the basic factors: design, production 
technology, operation and change of gear system 
condition [4]. This model has a bearing to reduce 
the vibration generated by the gearset, and can 
be researched using computational simulation 
inferring diagnostic information of the gearing 
system. In [5] a model is presented to study the 

effects of dynamic response for one-stage gear 
with different teeth. Statistical indicators have 
been assessed to detect cracks growth [1, 6], with 
satisfactory results.

The purpose of this paper is the development 
of a model for a double stage gearbox with 
involute teeth. Its input torque is constant and 
its output torque is proportional to the square of 
the speed, considering mesh stiffness fluctuation 
and damping coefficient proportional to teeth 
pairs meshing stiffness. This research pretends to 
assess the efficiency of RMS value from a residual 
signal as a statistical indicator for a double stage 
gearbox system designed with a different module 
gear mesh. Three double stage gearboxes with 
geometrical resemblance were designed in order 
to assess the statistical indicator.

Involute tooth profile is generated by the 
equations developed in [7]. This profile will be 
used to posterior calculations of gear meshing. 
The stiffness of one tooth is calculated from 
the deflection due to bending, contact and fillet-
foundation deflections. Deflection due to bending 
is based on an analytical equation system shown 
in [8]. Fillet-foundation deflection considers the 
model developed in [9]. Afterwards, gear stiffness 
time variation is calculated analytically for gear 
with and without damage based on [1, 5, 6, 10].

Finally, model-construction equations are 
showed for the system based on standard 
Lagrangian equation, and the dynamical response 
is calculated. From this the analytical model 
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frequency domain is obtained, which is compared 
to results presented by other authors, which 
verifies the model capacity to reflect the effects 
of a breakage tooth in dynamical response.

Design of the double stage 
gearboxes

Three gearboxes were designed with different 
modules under AGMA standard [11]. The design 
of the three gearboxes aims to preserve the 
geometrical resemblance of reducers. The design 
has the following constraints:

•	 Stress resilience Sfb´ and bending safety 
factor Nb is the same for the first and second 
stage gears.

•	 Gears from the reducers have the same 
number of teeth, which guarantees the gear 
ratio.

•	 Wheel width from first stage is given by W1=8 
m1, where m1 is the module for the first step.

•	 Wheel width for the second stage is given 
by W2=19 m2, where m2 is the module for the 
second step.

•	 For a k-gear between different reducers, 
relationship between dedendum circle radio 
rf,k and its shaft radio h=rf,k  ⁄ra, is constant.

Double stage gears parameters for the three 
reducers designed that fulfill the previous 
constraints are given on table 1. 

Table 1 Parameters of the double stage gears, for the three reducers

Similar parameters of the three reducers
Pinion 1 Gear 1 Pinion 2 Gear 2

Teeth numbers 18 26 20 35
Pressure angle α 20 20 20 20

Coef. Dedendum ϕ 1.4 1.4 1.4 1.4
Coef. Adendum 1 1 1 1

Coef. Tips radius γ 0.35 0.35 0.35 0.35
Cutter offset e 0 0 0 0
Contact ratio c 1.5724 1.5724 1.5724 1.5724

Rotation speed (rpm) 1674 1159 1159 662
Modulus of elasticity E (kPa) 206 206 206 206

Additional parameters (first reducer).  Input Power = 0.4027 hp
Pinion 1 Gear 1 Pinion 2 Gear 2

Module 1.25 1.25 1 1
Teeth width W (mm) 10 10 19 19
Shaft diameter (mm) 10 10 10 10

Torque (Nm) 1.71 -2.47 -2.47 4.33
Mass (kg) 0.0246 0.0583 0.0345 0.1306

Constant of scale for damping μ1=1.2687 exp -6, μ2=1.4878 exp-6
Average mesh stiffness (N/m) K̅12=1.9895 exp  8,  K̅ 

34=3.9312 exp 8
Bearing stiffness (N/m) kx1=ky1=kx2=ky2=kx3=ky3=3.6862 exp 8

Torsional stiffness of shaft ks1=3.8 exp 3
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Designing under AGMA standard demands that 
gear teeth could resist fracture by both bending and 
tooth superficial stresses [12]. According to this, 
speed reducer gear mesh are designed from AISI 
4340 steel values, considering a bending breakage 
safety factor Nb=3 for first and second step gear, 
respectively; and it was checked that superficial 
stress safety factor was greater than one Nc>1.

Bending safety factor for each gear mesh 
composing the reducer is given by Eq. (1):

	 	 (1)

where Sfb is the corrected strength, and σb is the 
bending stress.

The corrected strength  Sfb is given by Eq. (2): 

	 	 (2)

The bending-fatigue strength, Sfb′, of AISI 4340 
is 250 MPa. The values of the factors KL, KT and 
KR are given in table 2.

Table 2 Factors for the calculations of Eq. (1), Eq. 
(2), Eq. (8) and Eq. (9) [12]

Factor
Life factor-bending fatigue KL=1

Temperature Factor KT= CT= 1
Reliability factor KR= CR= 1.25

Application factor Ka= Ca= 1
Load distribution factor Km= Cm= 1.6

Size Factor KS= CS= 1
Rim thickness factor KB= 1

Idler factor KI= 1
Geometry factor [13] JG1 = 0.307,

JG1 = 0.343,
JG3 = 0.326,
JG1 = 0.375

Surface-life factor CL= 1
Hardness ratio factor CH= 1

Elastic coefficient MPa-0.5 Cp= 191
Surface finish factor CF= 1

The bending stress σb is given by Eq. (3):

Additional parameters (second reducer). Input Power = 3.165 hp
Pinion 1 Gear 1 Pinion2 Gear2

Module 2.5 2.5 2 2
Teeth width W (mm) 20 20 38 38
Shaft diameter (mm) 10 10 10 10

Torque (Nm) 13.46 -19.45 -19.45 34.03
Mass (kg) 0.1966 0.4662 0.276 1.045

Constant of scale for damping μ1=2.6122 exp -6,  μ2=2.3335 exp -6
Average mesh stiffness (N/m) K1̅2=3.9719 exp 8,  K3̅4= 7.8599 exp 8

Bearing stiffness (N/m) kx1=ky1=kx2=ky2=kx3=ky3=  6.1075 exp 8
Torsional stiffness of shaft ks1= 3.7422 exp 4

Additional parameters (third reducer). Input Power = 10.546 hp
Pinion 1 Gear 1 Pinion2 Gear2

Module 3.75 3.75 3 3
Teeth width W (mm) 30 30 57 57
Shaft diameter (mm) 30 30 30 30

Torque (Nm) 44.86 -64.8 -64.8 113.4
Mass (kg) 0.6635 1.5733 0.9316 3.527

Constant of scale for damping μ1= 3.9136 exp -6,  μ2= 3.4997 exp -6
Average mesh stiffness (N/m) K1̅2= 5.9719  exp 8, K3̅4= 1.1794 exp 9

Bearing stiffness (N/m) kx1= ky1= kx2= ky2= kx3= ky3= 8.59 exp 8
Torsional stiffness of shaft ks1=1.3281
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	 	 (3)

where Ft is tangential load, W is tooth width, m 
is the module, Kv is the Dynamic factor. Factors  
Ka, Km, Ks, KB and KI are given in table 2. The 
dynamic factor Kv is calculated using Eq. (4).

	 	 (4)

where V_t is the speed on pass line in m/s. 
Factors A y B are calculated by Eq. (5) and Eq. 
(6), respectively:

	 A = 50 + 56 (1-B)	 (5)

	 	 (6)

where Qv is gear-quality factor, which value was 
taken as 11 .

The surface fatigue safety factor can be calculated 
as the quotient of the square of corrected surface 
strength divided by the square of surface stress 
for each gear in the mesh [12], and it is given by 
Eq. (7):

	 	 (7)

where Sfc is the corrected surface-fatigue strength 
for gear and σc is the pitting resistance. Sfc, it is 
calculated using Eq. (8):

	 	 (8)

where Sfc' is surface-fatigue strength published by 
AGMA, which is 1050 MPa for AISI 4340. CL, 
CH, CT, and CR factors are given in table 2. σc is 
the pitting resistence, defined by AGMA by Eq. 
(9):

	 	 (9)

where, Ca, Cm, Cv, Cs, Cp and Cf factors are given 
in table 2. d is the pitch diameter for the smallest 
gear in the mesh. I is the surface geometry factor. 
AGMA defines an equation for I, Eq. (10):

	 	 (10)

where ρp and ρg are the radii of curvature for pinion 
and gear teeth, respectively, φ is the pressure 
angle, and dp is the pitch diameter of pinion. The 
curvature radii for teeth are calculated from mesh 
geometry using Eq. (11) and Eq. (12):

   (11)

	 ρg = C sin ϕ - ρP	 (12)

where pd is the diametral pitch, rp is the picth radius 
of pinion, C is the center distance between gear and 
pinion, and xp is the pinion addendum coefficient, 
which is equal to decimal percentage of addendum 
elongation for unequal addendum teeth.

Time variation of gearmesh 
stiffness

Gearmesh stiffness was calculated for involute 
teeth. Since this tooth profile is the most used in the 
industry because of its advantages in comparison 
to other tooth profile [14]. Tooth profile for each 
gear of the three gearboxes with characteristics 
given on table 1, was obtained using the equations 
developed in [7], which in turn are a combination 
of parametric equations to generate tooth filet (BC 
curve) and involving profile (AB curve), as it can 
be seen in the figure 1.

Figure 1 Involute y fillet tooth profiles
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The stiffness of one tooth is function of the 
tooth geometry, the position of the contact point 
(the bending deflection and fillet-foundation 
deflection depends of the contact point), gear 
tooth deflections, gear tooth profile errors, gear 
hub torsional deformation and finally the local 
faults on the tooth. On this paper it is calculated 
from the deflection due to bending, contact and 
fillet-foundation deflections [10]. This work 
does not include the analysis of torsional mesh 
stiffness. 

The deflections of a spur tooth gear can be 
determined by considering it as a non-uniform 
cantilever beam as shown in the figure 2. 

Figure 2 Model of the spur gear tooth as a non-
uniform cantilever for bending deflection computation 
[8]

The bending deflection, δb, of a tooth is computed 
using the model shown in [8], is giving by Eq. 
(13). 

	 		

	 	 (13)

where F is the applied force, αm  is the operating 
pressure angle, sh is a shear factor, G is the shear 

modulus, di and ei are given in the figure 2. E´, Ii̅ 
and A̅

i are expressed by Eq. (14), Eq. (15) and Eq. 
(16), respectively:

	 	 (14)

	 	 (15)

	 	 (16)

where Ii is the area moment of inertia and Ai is 
the area of the tooth cross section. E is the Young 
modulus, and μ is the Poisson’s ratio.

The bending stiffness of the tooth on load 
application point can be obtained using Eq. (17):

	 	 (17)

From the results derived in [15], the stiffness 
of Hertzian contact of two meshing teeth is 
practically constant along the entire line of action 
independent from the position of contact and the 
depth of interpenetration. The stiffness of contact 
kh is given by Eq. (18)

	 	 (18)

where W is the tooth width.

Besides the tooth deformation, the fillet-
foundation deflection also influences the stiffness 
of gear tooth. In [9] is derived the fillet-foundation 
deflection of the gear based on the theory shown 
in [16] applied to circular elastic rings, which 
assumes linear and constant stress variations at 
the root circle. It can be calculated using Eq. (19):

	 	 (19)

Where uf and Sf are given in figure 3. 
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Figure 3 Geometrical parameters for the fillet-
foundation deflection [9]

The coefficients L*, M*, P* y Q* can be approached 
by polynomial functions [9], using Eq. (20):

	 		

	  	 (20)

hfi = rf ⁄ rint, rf , rint and θf  are defined in figure 3, 
the values of AGi, Bi, Ci, Di, Ei and Fi  are given in 
table 3. 

Table 3 Coefficient values for Eq. (20) [9]
AGi Bi Ci Di Ei Fi

L̇ (hfi, θf) -5.5574 x 10-5 -1.9986 x 10-3 -2.3015 x 10-4 4.77021 x 10-3 0.0271 6.8045
Ṁ (hfi, θf) 60.111 x  10-5 28.100 x10-3 -83.431 x 10-4 -9.9256 x 10-3 0.1624 0.9086
Ṗ (hfi, θf) -50.952 x 10-5 185.50 x 10-3     0.0538 x 10-4 53.300 x 10-3 0.2895 0.9236
Q̇  (hfi, θf) -6.2042 x 10-5 9.0889 x 10-3 -4.0964 x 10-4 7.8297 x 10-3 -0.1472 0.6904

The stiffness with consideration of gear fillet-
foundation deflection can be obtained by Eq. (21)

	 	 (21)

Gearmesh stiffness, Ke, for a one pair of teeth at a 
desired contact position is obtained using a serial 
combination of stiffness: the obtained bending 
stiffness of the tooth kb, fillet-foundation stiffness 
of the tooth kf, and the stiffness of Hertzian 
contact of two meshing teeth kh. It can be written 
using Eq. (22): 

	 	 (22)

Subscripts 1 and 2 denote respectively the pinion 
and the gear.

Figure 4a shows the typical gearmesh stiffness 
variation during teeth engagement [15]. Figure 
4b is the time varying gearmesh stiffness Ke(t), 
computed by means of the sum gearmesh stiffness 
of each pair of  teeth in contact. The maximum 
values of stiffness corresponding to two pairs of 

teeth in contact are obtained from (nTe) to (c − 1)
(nTe), and the minimum values corresponding to 
one pair in contact are obtained from (c − 1)(nTe)to 
((n + 1)Te) with n integer [17], since c is the contact 
ratio and Te is the gearmesh period (in seconds).

Figure 4 a) Typical variation of the gearmesh 
stiffness from tooth engagement to separation; b) Time 
varying gearmesh stiffness computation
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Considering a rotational speed ω1 of the pinion 
with Z1 teeth, Te is defined by Eq. (23):

	 Te = 60 ⁄ω1 Z1	 (23)

Fault description
In this paper, breakage is the fault modelled. 
Breakage is the fracture of a whole tooth or 
substantial part of a tooth. Common causes 
include overload and cyclic stressing of the 
gear tooth material beyond its endurance limit. 
Random fracture can occur in areas such as the 
top or the end of a tooth, rather than the usual root 
fillet section [5]. The breakage model studied 
in this paper, shown in figure 5, causes loss of 
contact between teeth.

Figure 5 Schematic graph of breakage

Due to this loss of contact, gearmesh stiffness is 
considered zero during this condition, figure 6a. 
Figure 6b shows the same effect of this contact 
loss in the whole gearbox. 

If in a pair of teeth occur contact loss for a particular 
time tf, shorter than Te (gearmesh period), the 
gearmesh stiffness function is zero from tf to Te. 
The two pair of teeth gearmesh stiffness function 
is reduced, and impact load affects the second pair 
of teeth. Figure 7 represents the Time-varying 
mesh stiffness evolution with different breakage 
height, for three gearboxes. Stiffness calculations 

for a pair of involute spur teeth, whose main 
parameters were given in table 1, considering 
0%, 2%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 
60% and 70% addendum tooth breakage, were 
done. According with results, Time-varying 
mesh stiffness has the typical shape gearmesh 
which maximum stiffness values corresponding 
to two pairs in contact, and the minimum values 
corresponding to one pair in contact [17].

This variation is considered as the gearbox main 
source of excitation and yields vibration and 
acoustic emissions [18]. A stiffness reduction 
is observed for the breakage cases.  Since teeth 
lose contact due to breakage tooth, a stiffness 
decrease took place. Therefore, mesh stiffness 
Time-varying calculations are made in advance 
from two pairs in contact to one pair in contact 
on breakage zone.

Figure 6 a) Gearmesh stiffness with fault b) Time 
gearmesh stiffness in breakage case
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Figure 7 Time-varying mesh stiffness evolution with 
different breakage height. (a) first gearbox, (b) second 
gearbox and (c) third gearbox

Modeling of double stage gear 
trains

The model developed here is based on double 
stage gear trains (figure 8). The Input torque 
is constant, Tin=cte, and output torque is 
proportional to the square of the speed, Tout = cθ̇3

2. 
Gears are modeled as rigid disk with radius equal 
to the base circle. 

The input and output shafts are assumed rigid, 
while allowed intermediate shaft torsion is 
represented by the equivalent torsion spring 
constant. Each shaft is supported by bearings 
modeled by two linear springs. This implies 
the simplifying assumption that the gear may 

move laterally but do not tilt. Gear teeth are 
flexible, then gearmesh stiffness 12 (t) and k34 
(t) from first and second step, respectively, are 
modelled by linear spring, acting on the line 
of action of the meshing teeth, and damping. 
Gear teeth are assumed to be perfectly involute 
and manufacturing and assembly errors are 
ignored. The casing is assumed to be rigid. Tooth 
separation is not considered. In this study, we 
assume that the system has a constant damping 
ratio ς=0.07 [19]. The damping coefficient, ct, 
is assumed to be proportional to the meshing 
stiffness of the tooth pairs. The damping can 
be considered an improvement of the constant 
damping factor acting on the velocity and can be 
considered quite realistic [20] and are given by 
Eq. (24) and Eq. (25)

Figure 8 Model of double stage gear system with ten 
degrees of freedom

	 ct1 = μ1 k12 (t)	 (24)

	 ct2 = μ2 k34 (t)	 (25)

where μ1 and μ2 are the constant scale measured in 
seconds from first and second step, respectively 
[21]. These parameters of the gearbox system are 
listed in table 1.

The expression of the displacement on the line of 
action, giving in [22], is expressed by Eq. (26):

	 δ(t) = Rp θp-Rr θr-(yp-yr)cosα + (xp-xr )sinα	 (26)
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The equations of motion for the model were 
obtained using the standard Lagrangian equation 
[23], it is given by Eq. (27):

	 	 (27)

where q is the vector of degrees of freedom, it is 
given by Eq. (28):

	 q={x1,y1, θ1, x2, y2, θ2, θ3, x3, y3, θ4}
T	 (28)

T is the kinetic energy of the system, given by Eq. 
(29) and Eq. (30):

	 		

	 	 (29)

	 		

	 	 (30)

V is the change in potential energy, which is 
given by:

Variation of the gearmeshes, Eq. (31) and Eq. 
(32):

	 		

	 	 (31)

	 		

	 	 (32)

Twisting of gear shafts, given by Eq. (33):

	 	 (33)

where ks1, intermediate shafts torsional stiffnesses, 
are given on table 1.

Lateral deflection of bearings can be obtained 
using Eq. (34):

	 		

	 	 (34)

where kxi, kyi (i = 1, 2, 3, 4) are the bearings 
stiffness, which were calculated on [24]. These 
are shown on table 1.

D is dissipation function, which are given by Eq. 
(35) and Eq. (36):

	 		

	 	 (35)

	 		

	 	 (36)

Qi is the external applied forces, it is given by 
Eq. (37):

	 Qi={0  0  0  Tin  0  0  0  -Tout }
T	 (37)

Where Tout is obtained using Eq. (38)

	 	 (38)

The proportionality constant, cf , is given by Eq. 
(39):

	 	 (39)

where θ̇in(rad/s) and Tin (Nm) is nominal speed 
and input torque, respectively.

Once Lagrangian formulation is applied, system 
movement equation is obtained, given by Eq. 
(40):

	 Mq̈ + C(t) q̇ + K(t)q = Qi	 (40)

where M is a diagonal mass matrix; the matrix 
K(t) includes the bearings stiffness, torsional 
stiffness of intermediate shafts and the time 
varying gearmesh stiffness; and the matrix C(t) 
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includes damping constants and is assumed to be 
proportional to the meshing stiffness of the tooth 
pairs. Reformulating the second-order system Eq. 
(40) into the so-called state-space formulation, 
Eq. (41) is obtained:

	 		

	 	 (41)

Gear system dynamic response
The dynamic response [25] of the three 
Gearboxes given by the equation of motion (Eq. 
(41)) were obtained using the ODE15s Matlab 
function to extract the displacement, velocity and 
acceleration of the gear system under health and 
fault states.

Figure 9 shows the spur gear dynamic response 
in the three stage gear transmission. X direction 
displacements of faulty pinion are reflected in 
figures 9b, 9c y 9d. 

Figure 9 X direction displacement, pinion with fault: (a) 0% breakage, (b) 5% breakage,  (c)  20% breakage, (d)  
40% breakage

Residual signals
The idea of residual signal was first presented in 
a local gear fault, such as crack in a tooth [26]. 
The vibration signal in this fault is modified for 
a complete revolution by effects of short duration 
impact impulse. In order to effectively detect the 
fault features in the vibration signal, the regular 
components need to be removed; the rest is called 
the residual signal, which is supposed to be more 
sensitive to crack growth. Residual signal on this 
work is determined through the methodology 
based on idea of removing regular components 

in signal, which are redundant for the purpose 
of fault detection, proposes the generation of 
residual signal, removing the whole original 
signal of the healthy case from the original signal 
of the faulty case [1].

Figure 10 shows the dynamic response (in 
frequency domain) of first stage gear trains 
(table 1) registered on the input pinion in the  
direction. Figure 10a is the dynamic response of 
the healthy case. This figure is characterized for 
the presence of several dominant peaks which 
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correspond to the two gearmesh frequencies fe1 
= 502 Hz, fe2 = 386 Hz, and their first harmonics. 
The figure 10b is the dynamic response (in the 
frequency domain) of the defected case with 10% 
of breakage of input pinion. In the defected cases, 
compared to the healthy case, is observed the 
appearance of sidebands spaced by the rotational 

frequency f1 of the faulty pinion, around gearmesh 
fe1. These frequencies are analytically given by 
(n, m integers). Figure 10c is the residual signal 
obtained using the dynamic response of the 
healthy case (figure 10a), and the response of 
the defected case (figure 10b), in figure 10c the 
sidebands produced by the fault are shown. 

Figure 10 Dynamic response spectrum and residual signal for first stage gear transmission (table 1): (a) vibration 
displacement response in the  direction for 0% breakage, (b) vibration displacement response in the  direction for 
10% breakage, and (c) residual signal

Statistical fault 

Diagnosis indicators

In this work the three gear trains were simulated 
with different tooth breakage levels and the 
vibration signals was obtained in each case. 
In order to obtain an approach to the fault 
condition, an indicator to extract defect features 
of the vibration signals is required. Statistical 
indicators in the Time-domain analysis are the 
most fundamental. We propose to evaluate the 
statistical indicator RMS, in [1] concludes that 

this indicator shows the best performance on 
the proposed method of generating the residual 
signal.

In the case where the mean value of the signal 
is not zero, the RMS indicator can be obtained 
using equations (42) y (43) [27]:

	 	 (42)

	 	 (43)
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The residual signal of the acceleration component 
of the third pair of gears, which parameters 
are given in table 1, considering the proposed 
tooth breakage levels in each gear train, was 
calculated. Figure 11 shows the RMS value for 
each analyzed signal, the y axis corresponds to 
the changes of healthy tooth. This figure shows 
the RMS from residual signal, which allows to 

detect the appearance of breakage. This can be 
concluded given the similarity between observed 
results from the percentage change of RMS for 
the three pair of gears. On the other side, it was 
observed that this indicator turns out to be more 
sensitive to failures up to 15%, because for major 
failures bigger changes are not observed.

Figure 11 RMS change for three gearbox

The application of this paper is framed within 
the online identification and monitoring of 
faults in rotating machinery using the stochastic 
variability of the vibration signals as the main 
tool for the characterization of faults. 

The creation of a database of vibration signals 
enables future training algorithms for the 
subsequent diagnosis of faults in real industrial 
applications. 

Conclusions 
In this paper, three double stage gearboxes 
were designed with different modules. Time-
varying mesh stiffness evolution was calculated 
considering different breakage levels ranging 
from 0% to 70% of module of tooth. An analytical 
model was developed for a double stage gearbox 
with output torque proportional to the square 

of the speed. Dynamical model simulation was 
made with stiffness calculated for the gears under 
different tooth breakage levels on the pinion, and 
is represented on frequency domain observing 
the two gearmesh frequencies  and  as their first 
harmonics. For gear with failure, lateral band 
was observed around gear frequency and its 
harmonics, which are caused for lack of stiffness. 
These observed lateral bands are in accordance 
with the results reported on the literature. With 
the simulated vibration signals, the residual signal 
is determined. The RMS statistical indicator is 
evaluated in the three gearboxes to reflect their 
change on levels of vibration signals obtained of 
dynamical response with tooth breakage. It has 
been found that the RMS of the residual signal is 
an effective indicator of the gears conditions for 
detects the appearance of teeth breakage in at wo-
stage gearbox; it will be used to diagnose presence 
of failure. 
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