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Abstract

This paper studies the performance of a Genetic Algorithm (GA) to find 
solutions to problems of robust design in multiobjective systems with many 
control and noise factors, representing the output vector in a single aggregation 
function. The results show that the GA is able to find solutions that achieve 
a good adjustment of the responses to their corresponding target values and 
with low variability, even with highly fractional experimental designs, which 
provide a limited number of data points to be fed to the GA. This conclusion 
is important for the practical application of the GA to robust design studies. 
Generally, such studies are carried out using scarce resources and dealing 
with other limitations, which force the engineer to use few experimental 
treatments and gather a limited amount of data. Thus, knowing that the GA 
performs well under such situation expands its applicability.

----------Keywords: Taguchi methods, parameter design, genetic 
algorithms, performance analysis

Resumen

Este trabajo estudia el rendimiento de un Algoritmo Genético (AG) para 
encontrar soluciones a problemas de diseño robusto en sistemas multiobjetivo, 
con muchos factores de control y ruido, representando el vector de salida 
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en una sola función de agregación. Los resultados muestran que el AG es 
capaz de encontrar soluciones que entregan un buen ajuste de la media de las 
respuestas a sus respectivos valores objetivo y con baja variabilidad, incluso 
con diseños experimentales altamente fraccionados, los cuales proveen de 
un número limitado de datos que se ingresan al AG. Esta conclusión es 
importante para la aplicación práctica del AG a estudios de diseño robusto. 
Generalmente, dichos estudios son llevados a cabo usando recursos escasos 
y lidiando con otras limitaciones, lo que obliga al ingeniero a usar pocos 
tratamientos y recoger una cantidad limitada de datos. Por eso, saber que el 
AG se comporta bien bajo esas situaciones, expande su aplicabilidad.

----------Palabras clave: métodos de Taguchi, diseño de parámetros, 
algoritmos genéticos, análisis de rendimiento

Introduction
Robust design (RD) is a methodology developed 
by Genichi Taguchi [1] that tries to adjust the 
mean of the responses of a system as close as 
possible to their corresponding target values 
and simultaneously attempts to achieve low 
variability in those responses, even in the presence 
of noise factors. To do so, Taguchi proposes 
a two stage methodology labeled Parameter 
Design (PD). First, an engineer identifies and 
sets values of controllable factors of the system 
to achieve mean adjustment and then, he/she sets 
other control factors to get low variability under 
different noise conditions [1]. The application 
of PD has had a profound worldwide effect on 
enhancing the quality of products and services 
in many industries [1-6]. To facilitate parameter 
design studies, the work presented in [7, 8] 
developed a tool based on Genetic Algorithms 
(GA), which automatically finds the levels of 
control factors that achieve mean adjustment and 
low variability in all responses. Given that other 
researchers have also explored the application 
of GA to robust design (e.g. [2, 9, 10] to name 
just a few), it was sensible to apply the same 
optimization algorithm for developing such tool. 
Some newer optimization algorithms might also 
have been applied, but there is no evidence that 
they could always and consistently outperform 
GAs [11, 12]. Moreover, the GA developed in [8] 
is readily generalizable to multiobjective systems 
with many outputs, control and noise factors, and 

uses the parameter design approach, which is 
frequently applied in real studies of robust design 
[3-6]. In following Taguchi’s idea that many 
quality problems may be tackled using simple 
methods [1], the GA handles multiobjective 
systems by collapsing the mean and variance of 
the outputs in a single aggregate fitness function 
(similar to what Taguchi does in PD by using 
the so called Signal to Noise Ratio (SNR) [1]).  
Although this approach is simple, it is a valid one 
and the GA has been applied to different real RD 
problems at many firms with good results [6, 8]. 
Examples range from adjusting the width of the 
painted strip of a car painting system to enhancing 
copper-mining operations [6, 8]. However, one 
main concern regarding the application of the GA 
to robust design is that an engineer will normally 
have limited time and economic resources to 
conduct the study [1, 5, 6]. Thus, generally, the 
engineer uses highly fractional experimental 
designs to gather the data for the analyses [1, 5, 
6]. Hence, as the fractioning level increases, the 
amount of collected data decreases, which might 
lessen the performance of the GA. Therefore, the 
main focus of this paper is to analyze the ability 
of the GA to find good solutions to problems of 
robust design under different fractioning levels 
of the experiments used in gathering the data. 
In line with Taguchi’s quality approach [1], we 
acknowledge that this work addresses rather 
specific type of problems, leaving out more 
encompassing issues, which are much harder 
to solve [11, 12]. However, to the best of our 
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knowledge, such analysis has not been elsewhere 
conducted and still for many developing 
countries, enhancing specific production and/or 
service processes is worthwhile doing. Finally, a 
secondary objective of this paper is to experiment 
with some parameters of the GA, which might 
also impact its performance, but keeping the 
original mechanisms implemented in the GA. 

Some details of the Genetic 
algorithm used in robust 

design
This part of the paper introduces some aspects of 
the developed GA necessary for understanding the 
analysis that was performed in the present study. 
More details of the GA may be found in [7, 8]. The 
GA developed in [8] represents the combinations 
of k control factors that may take s different 
levels (values) of a robust design experiment 
using an integer codification. One chromosome 
will be composed by a combination of different 
levels for each factor, which corresponds to a 
particular treatment of the experiment. Let flj be 
the factor j of chromosome l, with j = 1, 2, …, k 
and l = 1,2, …, N. Each flj can take the value of a 
given level of the factor j, that is 1, 2, …, s. One 
chromosome (or solution) is expressed as a row 
vector (see Eq. 1). The matrix representing the 
total population of solutions X will be composed 
of N chromosomes (see Eq. 2).

  (1)

  (2)

Each of the chromosomes (solutions) xl will 
generate a different response y of the system when 
the control factors are set to the corresponding 
levels specified in the chromosome xl. The GA 
searches through the space of possible treatment 
combinations, finding the combinations that 

minimize the variance of the responses and 
adjust their means as close as possible to their 
corresponding target values.  The fitness function 
used to guide the GA for each response is the 
following (Eq. 3):

Fitness function = f (xl)= –{s2(xl)+[T– y (xl)]
2} (3)

where T is the target value for Nominal the Better 
(NTB) quality characteristic, and `y(xl) and s2(xl) 
are the corresponding mean and variance of the 
solution represented by chromosome xl, 

A multiobjective system will have more than one 
response (in general, r = 1,2, …, R responses) 
and hence, one fitness function for each of 
them. Following the work presented in [13, 
14], the total fitness function for multiobjective 
systems will be expression (4), which consists 
of a desirability function D(f(xl))  and a penalty 
function  Pl((y(xl)):

 Dl(xl) = Dl(fr(xl)) – Pl(y(xl))  (4)

where y(xl) is the generic form of designating 
all the responses of the treatment combination 
xl. Thus, the penalty function will depend on 
all the replications of all the responses of the 
system. Each element of expression (4) can 
be decomposed into expressions (5) and (6) 
according to [14]:

   

  (5)

   

   (6)

Moreover, each element of the penalty function 
(6) can be expressed as expression (7) shows 
[14]: 
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Each response yr has a target value Tr and 
a lower and upper limit given by Lr and Hr 
respectively, in which Lr<Tr<Hr ∀r , r = 1, 2, 
..., R. For chromosome xl to be feasible, the 
corresponding response must be within those 
limits ( ). The constant c avoids pr 
from becoming zero if infeasible cases arise, and 
thus ensures that a non-zero P is calculated for a 
non-feasible solution (see (6)). A value of 0.0001 

is assigned to c, which does not influence the 
value of the final solution (see [14]). 

The desirability function must also have a lower 
and upper limit for each of the elements drl(fr(xl)) 
(see expression (5)), called the desirability limits 
[14]. Expression (8) presents the desirability 
function, where br corresponds to the most 
desirable case and ar to the least desirable case:

   (7)

   (8)

Parameter br may be expressed by equation (9), 
using the minimum variability attained in the 
treatment combinations of the initial experiment 
performed and assuming that response r is at its 
target value Tr:

  (9)

The value of ar corresponds to the least desirable 
case, where the variance of the response is a 
maximum and the mean of it is at any of the 
two limits (Hr or Lr). Thus, parameter ar may be 
calculated using expression (10):

 (10)

From expressions (3) through (8), one can see that 
in the fitness calculation, the GA needs to know 
the responses corresponding to the experimental 

treatment, which each chromosome represents. 
However, some of those treatments might not 
have been part of the experiment that the engineer 
conducted to gather the data. Thus, the GA needs 
to estimate those responses. For estimating the 
mean of a response for a non-tried chromosome 
(treatment), the GA calculates the main effect 
of each of the treatment levels on the response 
and a grand mean using all the observations 
corresponding to the experiment that was carried 
out. Then, the GA adds to the grand mean, the 
corresponding main effects of the levels indicated 
by the chromosome. For estimating the variance 
of the response for a non-tried chromosome 
(treatment), the GA uses a similar procedure. The 
GA first computes a global variance considering 
all the replications of all the treatments tried in the 
original experiment. Then the GA calculates the 
main effect of each control factor on the variance. 
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Finally, the GA sums the main effects of the 
levels indicated in the chromosome to the global 
variance. Those procedures correspond to a linear 
estimation usually applied in the Taguchi method 
[1]; for a worked out numerical calculation, see 
e.g. [1] page 16. In the search process, the GA 
uses roulette selection, a uniform crossover and 
a bit by bit (factor by factor) mutation operator. 
The GA employs a stopping criterion of reaching 
3000 chromosomes in the population, a crossover 
probability of 0.3 and a mutation probability of 
0.05.

Experimental design for the GA’s 
performance analysis

The main objective of this study was to evaluate 
the performance of the GA under different 
fractioning levels of the experimental design 
used to gather the data. However, one can also 
change the value of other parameters of the GA 
that were kept constant in previous studies [7, 8]. 
That entails identifying the most relevant factors 
to be manipulated, and the experimental design 
and performance measures to be used.

Identification of experimental factors

A previous analysis suggested that the 
performance of the GA may be influenced by the 
experimental design that the robust design study 
uses [7]. Specifically, the level of fractioning 
in such design will determine the number of 
data points that the GA will have for beginning 
the search process. Since a GA’s long-term 
performance is also influenced by population size 
[15, 16], which depends on its initial size, one 
may conclude that the level of fractioning should 
impact the GA’s ability to find good solutions. 
Moreover, remember that the GA developed for 
robust design needs to estimate missing values 
and thus, the number of missing values that the 
GA will need to estimate depends on the number 
of data points fed to the GA. Since those missing 
values are only approximate estimates of the true 
unknown ones, it is reasonable to think that the 
more missing values the GA has to estimate, the 

lower its performance will be. Thus, the higher 
the fractioning level of the experimental design, 
the larger the number of missing values that 
the GA will need to estimate and, the poorer its 
performance may be. The level of fractioning is 
also an important parameter to be considered, 
since in robust design, the experimenter generally 
tries to use highly fractional designs to lower the 
cost of the experiments [1, 5, 6]. Thus, from a 
practical point of view, assessing how well the GA 
behaves under different levels of fractioning will 
set a limit on the experimental designs that may 
be used with the GA in robust design studies. With 
regard to other parameters of the GA, a revision 
of relevant literature shows that there exist many 
studies that consistently find that the crossover 
probability (pc) and the mutation probability (pT) 
have an important effect on a GA’s performance 
[15-21]. Thus, it is sensible to include both 
parameters in the experiment. Additionally, the 
same above-mentioned studies found that values 
of parameters associated to the calculation of the 
fitness function were also relevant, because they 
allow to more finely or coarsely discriminate 
among solutions. In the present study, since the 
desirability limits ar and br play an important role 
in the calculation of the value of the desirability 
functions, the experiment should consider them.

Finally, one should note that there exist other 
parameters and mechanisms that might influence 
the performance of the GA [15-19, 21], but some 
of them are not applicable to the present situation 
(e.g. size of generation gap) and other would 
substantially alter the GA (e.g. parent selection 
strategy, cross-over and mutation mechanisms), 
which if changed, would not permit the 
comparison with previous results.

Experimental design and levels of 
factors 

Having identified the four factors that will be used 
in the experiments, the study needs to establish the 
experimental design and the levels of the factors. 
To be able to appreciate whether non-linearity 
exists in the effects, the experimental design will 
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correspond to an Orthogonal Array (OA) L9(3
4). 

This OA allows analyzing main effects using a 
convenient number of experimental conditions. 
However, it omits interaction effects. Given 
that in preliminary experiments with the GA, 
no interaction effects were found, it is more 
important to focus the analysis on non-linearity 
of main effects. The OA L9(3

4) specifies three 
levels  for each factor. In order to be able to 
use previous studies [7, 8] as a base scenario, 
one of the levels of the identified factors will be 
the same values used in those research papers. 
Regarding the fractioning levels, in [7, 8], the 
authors applied an inner OA L64(4

10) for the 10 
control factors and an outer OA L16(4

5) for the 
5 noise factors. Thus, the product array has 64 
times 16, 1024 design points. This study will 
keep the outer OA, since robust design literature 
suggests that a small number of noise factors and 
levels for them be considered [1, 5, 6]. Regarding 
the inner array, a L48(4

10) and a L80(4
10) were 

selected as alternatives for the present analysis. 
Using those OAs, each experiment will have 
768 treatment combinations (L48(4

10) x L16(4
5)), 

1024 combinations (L64(4
10) x L16(4

5)) and 1280 
combinations (L80(4

10) x L16(4
5)). That implies 

a percentage difference in data points among 
experimental designs of - 40% when comparing 
the extreme cases (1280 with 768), - 20% (1280 
with 1024) and – 25% (1024 with 768). Note that 
we selected OA’s with high fractioning levels, 
given that in robust design that is a common 
practice [5, 6]. As robust design interventions 
are normally carried out in a short time, due to 
restrictions in the downtime of processes and 
economic resources to conduct experiments, 
only a limited number of treatments is tried [5, 
6]. Though using lower levels of fractioning in 
this work might have better allowed exposing the 
effect of fractioning level on the performance of 
the GA, that would have been irrelevant from a 
practical viewpoint, i.e. we would have used low 
fractioning levels that are almost never used in 
robust design interventions. 

In the case of crossover and mutation probability, 
the study will employ the values used in previous 

analyses [7, 8], which are pc = 0.3 and pT = 0.05. The 
other two levels will correspond to values similar to 
the ones used in previous studies [15, 22], pc = 0.9 
and 0.6, and pT = 0.01 and 0.001. For parameters ar 
and br, the analysis will consider a value equal to the 
one used in [7, 8], and the other two levels will be 
equal to 0.8 and 1.2 times ar and br.

Responses to be measured

In previous studies of the GA, the analysis has 
used different case studies. One of such case 
studies involved the optimization of the four 
responses of a system simulator independently 
from each other. Thus, the GA was dealing with 
four different single objective systems, each 
with ten control factors and four noise factors. 
Additionally, a second case study used the same 
simulator, but the GA simultaneously optimized 
the four responses, which means that the GA 
was handling a four-dimensional multiobjective 
system.  The present study will use the same two 
case studies. More details of the simulator and 
case studies may be found in [7, 8]. Note that 
these simulated systems are representative of 
real processes subject to robust design studies, 
and thus our conclusions are applicable to 
such situations [3-6]. For the single objective 
systems, the experiment will measure the 
desirability function of each response D((xl))  for 
the chromosomes delivered by the GA (see Eq. 
(4)), since that function aggregates both mean 
adjustment and variance reduction. Additionally, 
the analyses will consider the value of the mean 
of the response and its corresponding adjustment 
to its target value and the standard deviation of the 
response. In the case of the multiobjective system, 
the study will analyze the overall aggregated 
desirability for the four responses (see eqs. (4), 
(5) and (6)), and also mean adjustment and 
standard deviation for each of the four responses.  
Table 1 shows the experimental design. Each 
treatment combination will be run 30 times 
in the GA, so that the ANOVA may achieve a 
statistical power of around 80% to 85%, which 
was calculated using the table provided in [23], 
and data collected in previous work.
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Experimental results and analysis
Given that this study needs to conduct controlled 
experiments with specific levels of fractioning, 
to test the GA a simulator was built, which is 
described in detail in [7, 8]. This simulator has 
four responses, ten control factors and four noise 
factors and interactions among the factors. Thus, 
compared with real studies of RD, this simulator 
represents difficult to optimize systems [1, 4-6]. 
It should also be noted that we have applied the 
GA to solve RD problems in real systems, ranging 
from adjusting the width of the painted strip of a 
car painting system to enhancing copper-mining 
operations [6-8], which lends credibility to the 
application of the GA to real systems. 

Results obtained for the single objective 
systems

For the following case studies, the four responses 
of the simulator are optimized independent 
from each other, so that the GA deals with four 
single objective systems. For each experimental 
treatment shown on Table 1, the algorithm was run 
30 times. Table 2 presents the results for response 
one of the single objective system. This table 
shows the experimental design corresponding 
to OA L9(3

4),  along with the average value of 
the desirability function and the average value of 
response y1, the average percentage difference of 
y1 with regard to its corresponding target value (T 
= 200) and the average standard deviation of  y1. 
These averages were calculated using the results 

of the 30 runs for each experimental treatment and 
considering the best five solutions delivered by 
the GA in each run. Additionally, Table 2 presents 
the statistically significant effects of the factors on 
those outputs. The effects were calculated using 
the following contrasts: effect F1 = (average of 
the corresponding response for level 3 of factor 
F) - (average of the corresponding response for 
level 1 of factor F), and effect F2 = (average of 
the corresponding response for level 2 of factor 
F) - (average of the corresponding response for 
level 1 of factor F). For example, for the effect of 
factor C on the average desirability function (DF) 
of y1: C1 = (.95 + .97 + .97) / 3 - (.91 + .90 + .92) 
/ 3 = 0.0533, and C2 = (.95 + .95 + .94) / 3 - (.91 
+ .90 + .92) / 3 = 0.0367. Note that in the case of 
the effects on average percentage difference with 
regard to the target value, these were calculated 
using the absolute value of such percentages. That 
was done, since the percentage difference may 
be positive or negative, thus the positive values 
might be cancelled out by the negative ones. The 
results presented on Table 2 indicate that there 
are no large differences in the performance of 
the GA under the nine different treatments. Only 
effects C1 and C2 on the value of the desirability 
function (DF) are partially statistically significant. 
Figure 1 (a) also shows that factor C has the most 
important impact on DF. Remember that level 
C1 corresponds to 0.8 ar and br, C2 is equal to ar 
and br, and C3 represents 1.2 ar and br. Thus, the 
larger the values of ar and br, the less strict the 
calculation of DF will be. Hence, from a practical 
point of view, although DF might be larger, that 

Table 1 Experimental design used in the performance analysis of the GA

Experimental design: OA L9(34) with 30 replications
Factor A: mutation probability (pT) Levels: a1 = 0.001 a2 = 0.01 a3 = 0.05
Factor B: crossover probability (pc) Levels: b1 = 0.3 b2 = 0.6 b3 = 0.9
Factor C: desirability limits ar and br Levels: c1 = 0.8 ar,br c2 = 1.0 ar,br c3 = 1.2 ar,br

Factor D: level of fractioning of inner array Levels: d1 = L48 d2 = L64 d3 = L80

Response: 
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does not mean that the adjustment of the response 
to its target value will necessarily be tighter and/
or that the standard deviation of the response 
will be smaller. Figure 1 (a) also suggests that 

factor D (level of fractioning) may affect DF 
and that its effect may be non-linear. However, 
the corresponding ANOVA does not confirm the 
visual conclusion (for effect D, p-value = 0.70).

Table 2 Results for the single objective system response one

Treatment
Combination L9(34)

Level of Factor
Y1 response (T = 200)

Avg. DF Avg. y1 Avg. difference (%) Avg. std. deviation
A B C D

1 1 1 1 1 0.91 205.1 2.54 2.818
2 1 2 3 2 0.95 193.5 -3.24 2.822
3 1 3 2 3 0.95 199.5 -0.25 2.788
4 2 1 3 3 0.97 199.5 -0.25 2.788
5 2 2 2 1 0.95 205.1 2.54 2.818
6 2 3 1 2 0.90 193.5 -3.24 2.822
7 3 1 2 2 0.94 193.5 -3.24 2.822
8 3 2 1 3 0.92 198.5 -0.73 2.770
9 3 3 3 1 0.97 199.3 -0.34 2.984

Statistically significant Main Effects Avg. DF Avg. y1 Avg. |diff.| (%) Avg. std. dev.
C1 0.0533* -1.6000 -0.8945 0.0615
C2 0.0367* 0.3333 -0.1615 0.0060

* = partially statistically significant at the 0.067 level

Table 3 shows the same figures, but for response 
two of the single objective system. The treatment 
combinations are not repeated in this table, since 
they are the same already presented in Table 2. 
For response two, Table 3 indicates that factor 
D significantly impacts the average standard 
deviation attained by response two. In general, 
for level d3 (L80) the GA obtains a larger average 
standard deviation of response two than for 
level d1 (L48). This means that the GA obtains a 

good variance reduction even for high levels of 
fractioning, which is a positive aspect for robust 
design studies. 

Turning to Figure 1 (b), though the lines 
representing factors C and D might indicate 
that the effects of those two factors on DF may 
be important, the ANOVA indicates that the 
corresponding effects on DF are not statistically 
significant (p-value = 0.70).
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(a) (b)

(c) (d)
Figure 1 Average desirability function value (DF) vs. levels of experimental factors for single objective systems: 
(a) y1 (b) y2 (c) y3 (d) y4

Table 3 Results for the single objective system response two

Treatment
Y2 response (T = 50)

Avg. DF Avg. y2 Avg. difference (%) Avg. std. deviation
1 0.86 51.70 3.39 1.674
2 0.91 50.65 1.30 1.770
3 0.86 54.35 8.70 2.271
4 0.89 54.35 8.70 2.271
5 0.88 51.70 3.39 1.674
6 0.87 50.65 1.30 1.770
7 0.89 50.65 1.30 1.770
8 0.82 54.35 8.70 2.271
9 0.90 51.70 3.39 1.674

Stat. sig. Main Effects Avg. DF Avg. y2 Avg. |diff.| (%) Avg. std. dev.
D1 -0.0198 2.6500 5.310 0.5968*

          * = statistically significant at the 0.001 level
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Table 4 shows the results for response three, 
which reveals that factor C has a significant effect 
on DF and factor D a partially significant effect 
on the average standard deviation. Although 
the effects of those two factors on the average 
response y3 seem to be also important, the 
ANOVA shows the contrary, reaching p-values 
equal to 0.438 and 0.110 respectively. The 
effects of the factors on DF are visually shown 

on Figure 1 (c). Inspection of Figure 1 (c) shows 
the significant effect of factor C on DF. As with 
response one, this effect is attributed to the looser 
desirability bounds that those larger values of ar 
and br bring about. Regarding the effect of factor 
D on the average standard deviation, it can be 
concluded that higher levels of fractioning may 
not be detrimental to variance reduction.

Table 4 Results for the single objective system response three

Treatment
Y3 response (T = 1000)

Avg. DF Avg. y3 Avg. difference (%) Avg. std. deviation
1 0.93 998.47 -0.15 36.05
2 0.98 967.00 -3.30 40.67
3 0.97 998.82 -0.12 38.61
4 0.99 998.82 -0.12 38.61
5 0.97 1076.47 7.65 37.75
6 0.91 967.00 -3.30 40.70
7 0.95 943.70 -5.63 40.70
8 0.93 998.82 -0.12 38.61
9 0.99 1024.99 2.50 39.01

Stat. sig. Main Effects Avg. DF Avg. y3 Avg. |diff.| (%) Avg. std. dev.
C1 0.0637** 8.8400 0.78 0.9786
C2 0.0416** 18.2333 3.27 0.5670
D1 -0.0008 -34.4900 -3.31 1.0038*
D2 -0.0209 -74.0767 0.64 3.0870*

* = partially statistically significant at the 0.093 level
** = statistically significant at the 0.001 level

Finally, Table 5 and Figure 1 (d) present the 
averages and statistically significant effects for 
response four. Table 5 shows that for response 
y4, the effects of factor D on all of the outputs 
are statistically significant. For factor C, the 
effect C1 on DF is partially significant and C2 is 
significant. As before, a larger value of ar and br 
augments DF. This can be clearly seen on Figure 

1 (d). Regarding factor D, Figure 1 (d) visually 
corroborates that the effect D1 on DF is positive, 
which means that comparing level d3 with d1, DF 
increases as the level of fractioning decreases. 
However, effect D2 on DF indicates that the 
contrary happens for levels d2 and d1. A negative 
effect D2 implies that DF diminishes as the level 
of fractioning decreases. 
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Thus, the effect of the level of fractioning on DF 
seems to be highly non-linear. The effects of factor 
D on the average response y4 and mean adjustment 
imply that as the level of fractioning decreases, 
mean adjustment gets tighter. This conclusion 
seems intuitively correct. However, since it is 
not the same for each of the four responses, it 
must be treated with caution. Regarding variance 
reduction, the effect D1 is negative, which at first 
might imply that the smaller the fractioning level, 
the smaller the standard deviation that response 
y4 gets. Nevertheless, a positive effect D2 shows 
that the effect of factor D on standard deviation 
is highly non-linear. The standard deviation of 
response y4 increases from level d1 to d2 and then 
decreases from level d2 to d3. Thus, one cannot 
say that a higher level of fractioning is necessarily 
detrimental to variance reduction.

In summary, for the four single objective systems 
as a whole, the previous analyses show that there 

are no big effects of crossover and mutation 
probability on the performance of the GA. On 
the other hand, the desirability limits impact DF. 
As ar and br increase, DF also augments. The 
other factor that influences the value of DF is the 
level of fractioning of the experimental design. 
However, there is no clear conclusion regarding 
whether high levels of fractioning necessarily 
decrease DF. This is a positive conclusion, since 
it indicates that the performance of the GA is not 
strongly influenced by high levels of fractioning. 

Results obtained for the multiobjective 
system

This case study used the same simulator and the 
same experimental design as before, but the GA 
optimized the four responses at the same time. 
This means that the GA is optimizing a four–
dimensional multiobjective system. As in the 

Table 5 Results for the single objective system response four

Treatment
Y4 response (T = 500)

Avg. DF Avg. y4 Avg. difference (%) Avg. std. deviation
1 0.95 427.6 14.47 31.17
2 0.96 567.7 13.54 36.08
3 0.98 461.9 7.62 28.01
4 0.99 461.9 7.62 28.01
5 0.97 427.6 14.47 31.17
6 0.91 567.7 13.54 36.08
7 0.94 567.7 13.54 36.08
8 0.96 461.9 7.62 28.01
9 0.97 423.0 15.40 31.68

Stat. sig. Main Effects Avg. DF Avg. y4 Avg. |diff.| (%) Avg. std. dev.
C1 0.0367* -1.533 0.31 0.1721
C2 0.0257** 0.000 0.00 0.0000
D1 0.0148** 35.833† -7.16† -3.3269†

D2 -0.0274** 141.63† -1.24† 4.7418†

* = partially statistically significant at the 0.070 level
** = statistically significant at the 0.05 level
† = statistically significant at least at the 0.01 level
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previous analysis, 30 runs were carried out for 
each of the nine experimental treatments. Table 6 
shows the figures for the multiobjective system, 
where only the statistically significant effects 
are displayed. The results shown in Table 6 are 
almost the same as the ones shown on the tables 
corresponding to the single-objective systems. 
However, Table 6 presents the average DF, which 
corresponds to the aggregation of the DF’s of 
each of the four responses of the multiobjective 
system (see expression (4)). Additionally, the 
average response, percentage difference with 
regard to the corresponding target value and 
standard deviation is presented for each response. 
The same is done for the corresponding effects. 

Here again, those averages are computed using 
the 30 runs for each treatment and taking into 
account the best five solutions delivered by the 
GA in each run. A first point to note is that the 
DF’s are generally smaller than the ones of the 
one-objective systems (to easily appreciate that, 
compare the levels of DF on Figure 1 with those 
on Figure 2). This is expected, since the GA has a 
tougher task when trying to simultaneously adjust 
the mean of the four responses and decrease their 
variances. Regarding the effects of the factors 
on DF, only the effect C is significant. As with 
the single objective systems, the larger the 
desirability limits, the larger DF becomes. This 
can be clearly seen on Figure 2.

Table 6 Results for the multiobjective system

Treatment Avg. DF Avg. response Avg. difference (%) Avg. std. deviation
All resps. y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4

1 0.749 164.5 48.13 1058.2 555.8 -17.75 -3.73 5.820 11.15 3.308 0.810 36.60 32.16
2 0.852 177.3 44.90 1096 697.3 -11.36 -10.20 9.643 39.45 2.806 0.820 40.26 31.32
3 0.847 206.0 43.34 922.8 674.8 2.98 -13.32 -7.720 34.96 2.100 0.858 38.52 28.00
4 0.881 209.9 43.16 924.4 618.8 4.97 -13.69 -7.564 23.76 2.268 0.843 39.05 28.80
5 0.820 164.5 48.13 1058 555.8 -17.75 -3.73 5.820 11.15 3.308 0.810 36.60 32.16
6 0.752 255.0 47.17 968.6 508.4 27.5 -5.66 -3.143 1.67 2.582 0.873 38.42 31.27
7 0.809 230.3 41.21 1059 475.6 15.14 -17.59 5.979 -4.89 2.530 0.935 37.17 30.08
8 0.775 198.3 41.59 943 543.4 -0.86 -16.81 -5.696 8.67 2.232 0.847 37.58 31.30
9 0.860 170.5 47.72 1019 454.2 -14.73 -4.55 1.900 -9.16 2.879 0.940 39.37 29.37

Stat. sig. 
Main Effects

Avg. DF Avg. response Avg. |diff.| (%) Avg. std. dev.

All resps. y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4
C1 0.1056* -20.01 -0.374 23.33 54.27 -5.017 -0.748 2.333 10.85 -0.056 0.024 2.027 -1.747
C2 0.0669* -5.68 -1.405 23.66 32.88 -3.413 -2.809 2.366 6.577 -0.061 0.024 -0.104 -1.495
D1 0.0247 38.21 -5.30* -115* 90.42 -13.81 -10.6* -11.5* 18.08 -0.97* -0.004 0.857 -1.869
D2 -0.0053 54.34 -3.57* -3.53* 38.48 1.257 -7.15* -0.35* 7.697 -0.53* 0.023 1.094 -0.346

* = statistically significant at least at the 0.05 level

Table 6 and Figure 2 also show that the effects 
D1 and D2 on the average response of y2 and y3 
and their corresponding effects on percentage 
difference with regard to their target values are 
significant. In both cases, the effects are negative, 
which implies that a larger level of fractioning 
entails a tighter mean adjustment. However, note 

that this conclusion is not consistent among all of 
the four responses. Regarding standard deviation, 
those two effects are significant for response y1. 
Since effects D1 and D2 on the average standard 
deviation of y1 are negative, it may be concluded 
that the smaller the level of fractioning, the 
smaller the standard deviation of y1 will be. 
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Here again, this conclusion must be treated with 
caution given that it is not consistent among the 
four responses.

Figure 2 Average desirability function value (DF) vs. 
levels of experimental factors for the responses of the 
multiobjective system

In summary, the previous analyses allow to reach 
almost the same conclusions that were already 
mentioned for the single objective systems. 
Crossover and mutation probability do not 
significantly influence the performance of the 
GA and the desirability limits ar and br affect 
DF. Higher values for ar and br tend to increase 
DF. Contrary to what happened with the single 
objective systems, the level of fractioning impacts 
the average of some of the responses of the 
multiobjective system and their corresponding 
standard deviations. In general, a lower level of 
fractioning entails a tighter mean adjustment and 
smaller variance. However, those effects are not 
consistently found for all the four responses, and 
thus must be treated with caution.

Effect of crossover and mutation 
probabilities

Regarding the effect of the crossover and 
mutation probability on the performance of the 
GA, the results show that they do not significantly 
affect the capability of the GA to find the best 
solutions. However, it should be noted that the 
analysis of all of the solutions found by the GA, 
not only the five best ones, reveals that pc and 
pT might influence the diversity of about 20% of 

the worst solutions found by the GA. From all 
the solutions delivered by the GA, 80% were 
consistently found in all 30 runs and correspond 
to the best ones, i.e. those that achieve a good 
mean adjustment and low variation for the 
responses. The other 20% are relatively worse 
solutions compared with the other 80%. For 
that 20% of worst solutions, an increase in pc 
and pT augmented the diversity among them, i.e. 
the GA found slightly different combinations of 
treatments among runs. That result is expected 
and it is consistent with previous findings [15, 
16], given that a higher pc and pT generally 
increases the searched volume of the parameter 
space. Nevertheless, since the engineer is 
interested only in the best solutions and all of 
them were consistently found by the GA, that 
result is unimportant from a practical point of 
view. Finally, it should be noted that the average 
computational time it took the GA to reach the 
stopping condition was 41.5 [s] with a standard 
deviation of 3.7 [s], using Matlab v. 6.5.0.180913 
and an HP PC with Intel Core i5-2500S CPU @ 
2.70GHz, 3.2 GB RAM, running under OS MS 
Windows 7 Enterprise, v.6.1.7601, SP 1.

Conclusions
The most important result of the performance 
analysis suggests that high levels of fractioning 
of the experimental designs used to gather the 
data for the robust design study do not strongly 
and detrimentally influence the capability of the 
GA to find good solutions. In the experimental 
treatments, the level of fractioning or 
correspondingly, the number of data points fed to 
the GA were 768 (L48(4

10) x L16(4
5)), 1024 (L64(4

10) 
x L16(4

5)) and 1280 (L80(4
10) x L16(4

5)). The 
percentage difference among those numbers are 
- 40% when comparing the extreme cases (1280 
with 768), - 20% (1280 with 1024) and – 25% 
(1024 with 768). Thus, it may be concluded that 
significantly changing the levels of fractioning 
(within high levels) does not negatively impact 
the performance of the GA. Though this result 
may seem rather counterintuitive, it is plausible 
given that the experimental designs were all 
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highly fractioned to begin with. Thus, decreasing 
the original level of fractioning by even 40% 
still entails a high level of fractioning. We must 
note that the use of low fractioning levels might 
have allowed us to better assess the impact 
of fractioning on the performance of the GA. 
However, as already explained in Experimental 
design and levels of factors, we did not use low 
fractioning levels, given that in robust design 
experiments those designs are almost never used 
[5, 6].  

The practical implication of the above discussion 
is that an engineer can apply the GA to robust 
design studies, even when using highly fractional 
designs. This is an important aspect, since 
engineers generally face low budget studies and 
other constraints, such as short periods of time to 
conduct experiments, need to keep the production 
and/or service process running when executing 
the study and short downtime of processes. Hence, 
generally engineers require running rather small 
experiments and gathering a small amount of data, 
which entail using highly fractional designs, like 
the ones used in this study [5, 6]. Also, the short 
computational time it takes the GA to find the 
solutions, makes its application highly practical. 
It should be noted that the claim regarding the 
practical application of the GA-based tool applies 
only to this type of problem, i.e. robust design 
studies, but there are no guarantees that it will 
work in all classes of quality improvement 
studies. However, given that we have applied the 
GA to a diverse range of real life systems with 
good results [6-8] and that the simulator used in 
testing the GA represents difficult to optimize 
systems [1, 3-6], we consider that the claim is 
not overly optimistic. In addition, based on the 
above, this work shows that it is possible to 
reduce the gap between theory and practice in 
some evolutionary computation algorithms, such 
as recommended in [12]. We are aware that we 
are solving local and specific quality problems 
and more holistic approaches are still needed to 
tackle more important and challenging problems 
[11, 12], but for many developing countries, such 
restricted efforts are still worth pursuing.

Regarding the value of the desirability limits, ar 
and br, the analysis shows that they impact the 
value of the DF. However, this result does not 
necessarily imply that the solutions delivered 
by the GA will be better in terms of achieving 
a tighter mean adjustment and/or a smaller 
variation in the responses of the system. Thus, 
varying the desirability limits does not have an 
important practical application. 

Additionally, two other conclusions that may be 
drawn from the experiments are similar to the 
ones already found in previous analyses of the 
GA. In general, the performance of the GA is 
better for single objective than for multiobjective 
systems and the best solutions are consistently 
found by the GA in the runs that were executed 
[7, 8].

Finally, given that the GA has worked rather well 
in its application to real and simulated systems, 
despite its simplicity to treat multiobjective 
systems, a Pareto GA tool is currently under 
development and testing. This new algorithm 
may better reveal the trade-off between mean 
adjustment and variance reduction, and thus 
allow a more sensible selection of the levels of 
control factors to be implemented in the system.
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