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demands with regard to the quality characteristics of food 
products. This has imposed on food science the requirement 
to develop means to determine the relationships between 
the structure of a foodstuff, its properties and its 
functionality, since, in addition to the basic components 
present in a foodstuff, the ways in which these are arranged 
have a significant effect on the properties and attributes 
demanded by consumers [1-4]. 

The arrangement of these basic components has various 
levels of complexity and effects on functionality, with the 
structure of the product as a whole often being the result 

1. Introduction 
With wider markets opening up and with the accompanying 
developments in marketing methods, it has become 
necessary to address more sophisticated consumer 
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of the rearrangement of previous, less complex, structures 
during processing. Thus, the properties of the food product 
are ultimately the result of successive compositional and 
structural changes in the raw material  which is the result 
of the physical and chemical phenomena that occur during 
processing: heat and mass transfer in multiphase systems, 
microstructural and macrostructural changes (including 
deformation and relaxation of structural elements), 
enzymatic reactions, phase transitions, etc. [3, 5-9].

In view of the above, for a proper design of food products 
and processes, it is necessary to understand and to be 
able to model changes in the structure of food during the 
transformation process and to predict the relationship 
between these structural changes and the properties of 
the end product. However, existing models are unrealistic, 
paying little attention to structure and structural changes 
[3], mainly because of the high complexity and heterogeneity 
of the structure at different levels (nano, micro, meso and 
macro) [6, 10]. 

At present, these structure–property–process relationships 
are poorly understood and models based upon them have a 
limited range of application [5, 11]. It is therefore necessary 
to clarify which components and interactions of these 
complex systems are the most significant, so  a model that 
is able to generate results can be developed   and can be 
extrapolated to different processing conditions [7].
Among the different levels of structural complexity, the 
most influential and perhaps one of the least understood 
is the microstructure. At a microstructural level, it is 
necessary to consider the structure and chemistry of the 
cell wall, the turgor pressure and the means of access of 
fluid to the cell, and, at higher levels, the structure of the 
tissue (cell orientation, number of pores and intercellular 
spaces) and types of tissues or organs [4]. 

There have been a number of studies (e.g. [12, 13, 14]) of 
the structure–property–process relationships in materials 
subjected to osmotic dehydration and convective drying. By 
examining the changes generated in mechanical properties 
as a result of density changes and alterations in the 
tissue (cell breakage and formation of air pockets), these 
investigations have shown that the structure before, during 
and after processing affects mass transfer, mechanical 
properties and textural properties.
 
From the above considerations, it can be seen that one of 
the major challenges facing food science and engineering 
is the characterization and prediction of the structural 
changes that food undergoes during processing and the 
effect of these changes on the properties of the final food 
product—in other words, the structure–property–process 
relationships [5, 15, 16]. It is therefore necessary to develop 
and implement methodologies for analyzing structure at 
different levels and incorporate these into the development 
of more realistic models. 

In this context, it is appropriate to consider the use of an 
intelligent system; the general scheme is shown in Figure 1. 
Such systems have been successfully used in classification 

of fruit according to parameters related to maturity [15]. 
Because of their self-learning capability, these systems 
could be applied to recognition of the constituent elements 
in plant tissues (cells and intercellular spaces). 

Figure 1  General scheme of an intelligent 
system. Source: [17]

In these systems, images are quantitatively characterized 
according to morphological characteristics and color 
parameters, among others; these are used to represent the 
food and to train the system. Using these researched data 
previously classified, the researcher trains the data into 
an intelligent classification system, providing the ability to 
classify the unknown cases and simulate the way a trained 
user performs the classification task [17-19]. 

Decisions based on patterns of shape, size, color, etc. 
have been used successfully in fruit classification, harvest 
time prediction, muscle texture analysis, assessment of 
size distribution and identification of seeds and leaves, 
assessment of extruded food, and plant structure analysis 
[16, 20, 21]. 

Although current advances in computer capabilities have 
allowed the construction of sophisticated machines to 
replace human actions, there is still a large gap in those 
activities that require simulation of the five senses, 
especially when this is aimed at systems of classification 
and prediction based on pattern recognition [18, 19, 22, 23].

In this context, computer-generated artificial classifiers 
try to imitate decisions using both neural networks and 
Bayesian discriminants [21, 24], interacting with a database 
at all levels of the process to provide greater accuracy and 
more effective use of the information from that database in 
decision making [17, 25]. 

Neural networks, initially inspired by the human nervous 
system, combine the complexity of statistical techniques 
with self-learning, imitating the human cognitive process. 
Figure 2 illustrates the typical topology of a neural network 
structure; the entire network is a very complicated set of 
interdependences and may incorporate some degree of 
nonlinearity [16]. 
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Figure 2 General Topology of the neural network 
structure. Source [26]

2. Methodology

2.1. Samples

Micrographs of the pumpkin Cucurbita pepo L. were used: 
parenchymal tissue cylinders of the intermediate zone of 
the mesocarp were obtained, parallel to the major axis 
of the fruit, and were treated according to the method of 
[9]. These micrographs were characterized by parameters 
related to the size and shape of their constituent elements, 
as shown in Figure 3. 

Figure 3 Size and shape parameters

2.2. Methods 

(a)   Development of program for analysis 
of size and shape parameters of plant 
tissue 

The program used to analyze the plant tissue microstructure 
was implemented in the mathematical software Matlab 
v.2010a. This program gets parameters of size and shape of the 
structural elements of tissue and used to power the intelligent 
classification system based on probabilistic neural networks.
The details of the program analysis and classification of 
structural elements are as follows:

• Interface pretreatment. This interface, generically 
called the guide in the Matlab software, allows the user 
to load the micrograph in JPEG format (with standard 
compression and digital image coding), producing 
a three-dimensional matrix to which standard 
matrix operations can be applied to perform image 
enhancement. 

• Interface restoration and classification. The user is able 
to perform restoration operations (such as removal 
of spaces and skeletonization). This restoration 
procedure is followed by segmentation (separation 
of the elements that constitute the tissue coloring 
into elements of different colors), which creates an 
image called matrix L. In this interface, automatic 
classification of elements as cells, intercellular spaces 
and unrecognizable elements is also performed, 
generating a labeled image.

The system is based on a probabilistic neural network 
called newppn. This is a feed forward network. It is 
specialized for classification when an input is presented. 
The first layer computes distances from the input vector 
to the training input vectors and produces a vector whose 
elements indicate how close the input is to a training 
input. The second layer sums these contributions for each 
class of inputs to produce as its net output a vector of 
probabilities. Finally, a competitive output layer picks the 
maximum of these probabilities, and produces a 1 for that 
class and a 0 for the other classes. The design parameter 
of this probabilistic neural network is the spread of the 
radial basis transfer function [27, 28]. Little or no training 
is required for a probabilistic neural network (except for 
spread optimization), so the architecture shown in Figure 
4 is used.

Figure 4 Architecture of the probabilistic neural 
network. Source: [29]

Each size and shape parameter of the structural elements 
was first normalized by dividing by a corresponding 
normalization constant from a matrix for normalization 
(Table 1). Each normalization constant was the value that 
achieves 0.95 in cumulative frequency distribution for the 
respective parameter.

Whether or not an output neuron was determined by three 
class identifiers, expressed in binary code (Table 2). With 
this, the classification process was ended. 
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Table 2 Characteristics of inputs and outputs of 
the neural network

(b) Selection and application of shape 
parameters in recognition system

To determine the effect of different combinations of 
parameters on the classification of structural elements 
using the probabilistic neural network, the parameters were 
coded as shown in Table 3. The combinations of parameters 
are determined to avoid repetition and regardless of the 
order within each combination.

Table 3  Parameter codes for the neural network

The parameter combinations were used as input to the 
classification process in the neural network. Figure 5 shows 
the logical sequence for the selection and use of parameter 
combinations in the intelligent classification system. 

The classification was performed on a total of 322 elements, 
of which 169 were cells, 99 intercellular spaces and 54 
unrecognizable elements. 

Figure 5  Logical sequence of the selection 
process and use of the parameter combinations

(c) Evaluation of the error rate in the 
classification of structural elements

The classification results were then compared with the 
results of manual classification performed by a trained 
operator. The efficiency of the classification of the neural 
network was calculated using a confusion matrix, Figure 
6; matrix determines overall classification efficiency and 
also the confusion between classes. Consequently, it is a 
visualization tool used in supervised learning in this, each 
column represents the number of predictions of each class, 
while each row represents the instances in the actual class.
 

Figure 6  Confusion matrix (the shaded entries 
are classifications that are consistent between 

the neural network and the trained observer)

Table 1 Normalization constants
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(d) Determination of combination of size 
and shape parameters generating the 
optimal classification

To find the combination of parameters that generates the 
optimal classification, the combination with the highest 
weighted efficiency rating was determined. This procedure 
also takes into account the efficiency ranking with regard to 
cells and intercellular spaces. 

3. Results 

3.1. Informatics application

The source code was developed, as described in Section 2.2a, 
and implemented in Matlab; this consisted of an interface 
for extracting information of size and shape parameters in 
micrographs and train probabilistic neural networks with 
combinations of the above parameters. This interface was 
developed specially trained to allow users to discriminate 

different structural elements, through a logical sequence 
and guides specially developed for this purpose (Figure 7).

3.2. Application of different 
combinations of size and shape 
parameters 

It is proceeded to determine the number of combinations of 
parameters of shape and size according to the function (1):             

                (1)
Where:

 n = number of parameters of size and shape
r = number of parameters of group [2-7]

Table 4 details the formation, distribution of parameters pi, 
and amount of combinations.

Figure 7  Guide for obtaining training data

Table 4  Conformation and amount of consonant combinations a r
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The sequence of parameters that make up each combination 
was determining implementing an algorithm in Matlab 
script. Table 5 shows some combinations obtained with the 
script before and used in this work. 

Subsequently, each combination of input parameters was 
evaluated in the standings through the neural network, 
determining the percentage of error for each combination. 
The distribution of errors in chart, boxes and whiskers, 
shown in Figure 8.
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Figure 8  Error distribution for each combination 
of parameters

The box-and-whisker plot in Figure 8 shows, for each 
combination of parameters, the minimum error rate as 
the lower whisker. It should be noted that for most of the 
combinations, 50% of the data is within the interquartile 
range. 

The optimal combination of parameters is obtained by 
minimizing the error, as shown in Figure 9; these codes are 
commented in Table 5.

Figure 9  Minimum errors for different 
combinations

Figure 9 shows that this classification system, based on a 
probabilistic neural network is able to sort through a good 
approximation to the various structural elements in the 
cellular tissue of Cucurbita pepo L., getting errors mean 
errors between 12.7 and 14.6%. These results support the 
potential use of artificial intelligence in combination with 
computer vision systems for classification and structure 
prediction in food products [15, 30-33].

4. Discussion 
In the classification of structural elements in plant tissues, 
different combinations of input parameters generate 
different results [17, 33]. However, it appears that neural 
networks are suitable for classification processes, and, 
largely because of their “black-box” nature, they exhibit 
great flexibility. In our case, the topology of the model 
could be adjusted by using different combinations of input 
parameters. 

Figure 8 shows that different combinations of size 
and shape parameters yield different results in the 
classification process; these parameters have already been 
considered in other investigations [9, 16]. The collection of 
cases presented in [17] shows that in both the fresh and 
processed food sectors, artificial intelligence and neural 
networks can be used for classification purposes. However, 
it is also on the experimental results of several researchers 
that the main difficulty is the heterogeneity of criteria when 
determining the classification technique used in one case 
in particular; that is the reason why studies with [19] have 
been developed to compare the technique of regression of 
partial least-squares and more adequate architecture of 
the network or neural networks neural networks applied in 
a study in particular.

Figure 8 also shows that the error rate can be high, and only 
for some cases, there is a relatively low misclassification 
rate compared with the manual procedure. Errors as high 
as 7.5-25% have been found in classification of fish quality 
in blocks of 5% and as high as 11.5% in classification of the 
quality of fresh carrots [17].
 

5. Conclusions 
Different combinations of input parameters in a probabilistic 
neural network used for classifying structural elements in 

Table 5  Some combinations used in this work
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plant tissues generate different levels of error. Exploratory 
data analysis showed that the combination with minimum 
error rate is found by combining four input size and shape 
parameters. 

It was found that the minimum error rate, 12.7%, was 
obtained with a combination of the parameters of major 
axis, minor axis, perimeter, and roundness. 
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