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A matheuristic algorithm for the three-
dimensional loading capacitated vehicle 
routing problem (3L-CVRP) 

ABSTRACT: This paper presents a hybrid algorithm for solving the Capacitated Vehicle 
Routing Problem with practical three-dimensional loading constraint. This problem is 
known as 3L-CVRP (Three-dimensional Loading Capacitated Vehicle Routing Problem). 
The proposed methodology consists of two phases. The first phase uses an optimization 
procedure based on cuts to obtain solutions for the well-known Capacitated Vehicle 
Routing Problem (CVRP). The second phase validates the results of the first phase of a 
GRASP algorithm (Greedy Randomized Adaptive Search Procedure). In particular, the 
GRASP approach evaluates the packing constraints for each performed route of the 
CVRP. The proposed hybrid algorithm uses a relaxation of the classical model of two 
sub-indices for the vehicle routing problem. Specifically different types of cuts are added: 
subtour elimination, capacity-cut constraints, and packing-cut constrains. The proposed 
algorithm is compared with the most efficient approaches for the 3L-CVRP on the set of 
benchmark instances considered in the literature. The computational results indicate that 
the proposed approach is able to obtain good solutions, improving some of the best-known 
solutions from the literature.

RESUMEN: En este artículo se presenta un algoritmo híbrido para resolver el problema 
de ruteo de vehículos con restricciones de capacidad y restricciones prácticas de 
empaquetamiento tridimensional, este problema en la literatura es conocido como 
3L-CVRP (Capacitated Vehicle Routing Problem and Container Loading Problem). La 
metodología de solución propuesta en este trabajo consiste de dos fases. La primera 
utiliza un procedimiento de optimización basado en cortes para el Problema de Rutas 
de Vehículos Capacitados (CVRP). La segunda valida las soluciones de la fase anterior 
a través de un algoritmo GRASP (Greedy Randomized Adaptive Search Procedure), el 
cual evalúa las restricciones de empaquetamiento de cada una de las rutas. Para el 
algoritmo híbrido se utiliza la relajación del modelo clásico de dos subíndices para el 
problema de ruteo de vehículos. En particular diferentes tipos de cortes son adicionados: 
eliminación de subtours, cortes debido a  las restricciones de capacidad y cortes para 
restricciones de empaquetamiento. El algoritmo propuesto ha sido comparado con los 
algoritmos más eficaces para el 3L-CVRP en el conjunto clásico de instancias presentadas 
en la literatura. Los resultados computacionales muestran que el método propuesto es 
capaz de obtener buenos resultados perfeccionando algunas de las mejores soluciones 
conocidas propuestas en la literatura.
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1. Introduction
Many actions in the transit of products involve two 
problems, which have been studied deeply in the last 
decades. The first problem is referred to the design of the 
routes to fulfill the demand of the customers by considering 
the minimum travelling cost (Capacitated Vehicle Routing 
Problem-CVRP).  The second problem considers the 
best way to load the products in the used vehicles for the 
performed routes (Three-dimensional Container Loading 
Problem – 3D-SLOPP).  These problems belong to the 
well-known NP-hard problems for which the solution is 
really challenging.

The Vehicle Routing Problem (VRP) arises in the distribution 
of a set of products to a number of customers who are 
geographically dispersed, by regarding the minimization of 
the distribution costs or the maximization of the net income 
associated with the transportation. The Three-Dimensional 
Container Loading Problem or Three-Dimensional Knapsack 
problem seeks to accommodate a number of elements 
within a rectangular box (container) by considering several 
objective functions and by satisfying determined packing 
constraints. The combination of both problems has several 
realistic applications in many industrial contexts such as 
the transportation of chipboard for furniture, the delivery 
of courier companies, the conveyance of vehicles, and the 
transit of products on pallets, among others.

The combined problem of routing and packing considered 
is a variant of the well-known routing problem called 
Capacitated Vehicle Routing Problem (CVRP) and the 
variant of the packing problem called Container Loading 
Problem (3D-SLOPP). The CVRP seeks to perform a set of 
routes starting and ending at a central depot. The CVRP 
could be defined as a set of K homogeneous vehicles (each 
one having a capacity Q), which must satisfy the demand of 
a set of N customers. Each vehicle is assigned to at least 
one route. A single vehicle must visit each customer one 
time. The sum of the demands of the customer visited on 
a single route must not exceed the vehicle capacity Q. The 
objective is to minimize the sum of the traveling cost for the 
performed routes.

The 3D-SLOPP must be solved for each performed route. 
The 3D-SLOPP consists in loading a set of small boxes 
B inside a container. The set B has different sizes and 
limited amounts. The objective is the maximization of the 
available occupied space. This problem is also well known 
as the three-dimensional knapsack problem (3D-SKP) or 
Three-Dimensional Single Large Object Packing Problem 
(3D-SLOPP). For the 3D-SLOPP, the orientation and the 
fragility of the boxes, the load stability, and the sequence 
of the load must be considered. Several variants of the 
3D-SLOPP are obtained by considering different type of 
packing constraints. In this work, we also study the variant 
of the 3D-SLOPP problems by taking into account that the 
vehicle capacity Q is equal to its volume, which is attractive 
for many real applications of the industry. The integration of 
both problems arises to the well-known problem 3L-CVRP, 
i.e. Three-dimensional Loading Capacitated Vehicle 
Routing Problem.

In this work, we have proposed a matheuristic algorithm, 
which is computationally compared with the most 
effective heuristics for the 3L-CVRP. The new proposed 
approach obtains competitive results on the classical set 
of benchmarking instances for the 3L-CVRP. The main 
contribution of this paper is to propose a new successful 
matheuristic approach for the 3L-CVRP by considering a 
combination of exact techniques with a GRASP approach 
which guarantees the loading constraints. The proposed 
algorithm is a novel matheuristic approach which combines 
a GRASP approach with exact algorithm for getting good 
results. While a combination between exact techniques 
and Tabu Search (TS) has been proposed in the literature 
for the CVRP (see e.g. [1]) no attempt has been proposed 
for combining exact techniques with a GRASP scheme for 
the 3L-CVRP. The former algorithm is able to improve the 
best-known solutions found by the most effective published 
algorithms on a set of instances taken from the literature. 

The paper is organized as follows. The literature associated 
to the Capacitated Vehicle Routing Problem and the 
Packing Problem is described in Section II. Section III gives 
a formal definition of both problems into the 3L-CVRP and 
the literature proposed to solve it. Section IV presents a 
detailed description of the framework used by the proposed 
algorithm. A computational comparative study on the 
classical set of benchmark instances from the literature is 
provided in Section V. Finally, Section VI contains concluding 
remarks and future research.

2. Literature review
The vehicle routing problem considering load constraints 
is a relative new interesting research subject. The interest 
of researchers and practitioners is motivated by the 
intrinsic difficulty in this area, which combines two NP-hard 
problems: the Capacitated Vehicle Routing Problem and the 
Container Loading Problem.

2.1. Capacitated Vehicle Routing 
Problem (CVRP)

The Capacitated Vehicle Routing Problem (CVRP) seeks 
to find a specified number of cycles (routes) to fulfill the 
demand of a set of vertex (customers) by starting and 
finishing at a central depot located in the vertex 0. A 
complete formulation of the CVRP proposed in [2], which 
is well known as formulation of two indices is shown as 
follows:

The CVRP could be described as graph theory problem. Let 
 be a complete graph, where  is 

the vertex set and A is the arc set. Vertices  
correspond to the customers, whereas vertex 0 corresponds 
to the depot. A non-negative traveling cost ,is associated 
with each arc . The traveling cost between (i, i) is 
not allowed. Therefore, the cost . In 
particular, this paper considers the symmetric version of 
the CVRP (SCVRP). Therefore, for all , and 
the arc set could be replaced by a complete set of undirected 



11

L. M. Escobar-Falcón et al.; Revista Facultad de Ingeniería, No. 78, pp. 9-20, 2016

edges, E. Each vertex  is associated with a known 
nonnegative demand, , to be delivered. Note that the 
depot has a fictitious demand  Given an edge 

 denote its endpoint vertices. Given 
a vertex set  denote the set of edges

 that have only one or both endpoints in S, respectively. 
In addition, let  be the total demand of the 
set S.

A set of K  identical vehicles, each with capacity Q, is available 
at the depot. To ensure feasibility we assume that  for 
each  Each vehicle performs only one route. For 
a set  we denote by  r(S) the minimum number 
of vehicles needed to serve all customers in S. Often, r(s) 
is replaced by the trivial Bin Packing Problem lower bound 

. The BPP allows determining the minimum number of
bins (vehicles), each one with capacity Q, required to load 
all the n items, each with nonnegative weight  
being NP-hard in the strong sense. 

The CVRP consists of finding a set of K performed routes 
(each one corresponding to one vehicle) with minimum cost, 
defined as the sum of the costs of the arcs belonging to 
the performed routes. The CVRP is subject to the following 
constraints

i. Each route ends and begins in the depot 
vertex

ii. Each customer vertex is visited by exactly 
once; and

iii. The sum of the demands of the vertices 
visited by a route must not exceed the vehicle 
capacity, Q.

The model employed in this paper, is a two-index vehicle 
flow formulation that uses binary variables x to indicate 
if a vehicle travels an arc  in the optimal solution (7). 
In other words, variable  takes value 1 if arc 
belongs to the optimal solution and takes value 0 otherwise. 
The objective function is to minimize the cost of the traveled 
arcs (1). The Eqs. (2-6) control the visits to the clients and 
the subtour elimination. 

(1)

subject to

(2)

(3)

(4)

(5)

(6)

(7)

Constraints (2) and (3) correspond to the flow constraints of 
the set V (customers) i.e., these constraints guarantee that 
each customer must be visited by one single vehicle only 
once. Constraints (4) and (5) ensure that the same number 
of routes arrive and leave the depot 0. Eq. (6) consider the 
subtour elimination constraints. According to [2], this set 
of constraints could be interpreted as follows in the Eq. (8):

(8)

However, the set of subtour elimination constraints require 
special considerations due to its combinatorial complexity 
when the number of customers is increased. Therefore, we 
have considered the set of constraints (8) for the proposed 
algorithm. In particular, we added the required cuts to 
eliminate subtour until a feasible solution is found during 
the branch and bound procedure. 
    
Note that the considered model is able to represent only 
the CVRP problem. For getting a global representation 
of the 3L-CVRP problem, we have considered the set of 
constraints (9), which are added iteratively together with 
the subtour elimination constrains. This set of constraints 
guarantee the feasibility of the packing requirements (such 
as multi-drop constraints, among others).  
be a subset of customers with a cumulative demand, 
which cannot be packed in the vehicles by considering 
the sequential packing or multi-drop constraints. All the 
possible subsets of customers who can not be packed, are 
controlled by constraints (9):

(9)

By adding this set of constraints, the mathematical 
model could represent properly the 3L-CVRP problem. 
The level of difficulty of the solution of the model (1) – (9) 
increases when the number of nodes increases, due to the 
combinatorial explosion of possible subsets of customers 
controlled by Eq. (8). The high complexity of the CVRP has 
led the development of the various algorithms on exact and 
approximate methods. The CVRP has been investigated 
since the decade of the 50’s. Reviews of the CVRP are 
presented in [2-4]. In [5], a vehicle routing problem arising 
in supply chain management is proposed (including the 
3L-CVRP).
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2.2. Loading and Backing Problem

In realistic loading and packing problems, the demand of 
the customers is not simply characterized by a quantity (as 
in the case of CVRP), but it also is determined by its shape 
and location in the space.  In this case, it is necessary to 
ensure that an item to be carried on must be placed into the 
space used by a vehicle. These constraints are concerned 
with the multidimensional rectangular packing problems, 
which originate as an extension of the one-dimensional 
Bin Packing Problem (BPP). The BPP can be described 
as the problem of placement of a set of segments without 
overlapping. A general introduction to the rectangular 
packing research area is given by [6-9].

3. Problem definition
The 3L-CVRP considers that three-dimensional items 
generate the full weight of demand of customer 

. Each  has a width 
The loading surface 

of each vehicle has a width W, a high H and a length 
, be the set of customers visited by 

the vehicle K. The 3L-CVRP imposes a packing constraint 
without any variety of three-dimensional overlap of all 
items ordered by each customer   S(K) within the cargo 
space of dimensions WxHxL The packing constraints for the 
3L-CVRP are characterized by the following aspects:

• Orientation: Items have a fixed orientation or can 
be rotated 90 º in the horizontal plane by keeping 
off the rotation of the vertical orientation.

• Fragility: An item  could have a fragility . If 
 is equal to 1,  is fragile, and 0 otherwise. In 

this case, non-fragile items cannot be placed over 
fragile items.

• Area support: Each item   is packaged over other 
items. Let be the area of the bottom of product 

. The packaging is feasible only if  
where  is a given threshold and 
represents the minimum portion of the area of the 
box, which is contacted with box of item  (item 
for which the current box is supported).

• Sequential load: When an item is unloaded, there 
must be a chronological succession of straight 
movements in the direction of the rear of the 
vehicle, allowing the process of unloading without 
moving any other item. In other words, any item 
requested after customer  may be placed on  or 
between  and the backside of the vehicle.

This work considers all the packing constraints by 
characterizing them as previously expressed. It is worth to 
note that this characterization considers many assumptions 
limiting the functionality and applicability on a real context. 
For example, the constraint of fragility could be formulated 
as a binary expression depending of the load-bearing 
strength and the orientation of the boxes [10].

The previous published works for the 3L-CVRP have 
tried to eliminate some of the packing constraints in 
order to distinguish the most critical. In [11], the authors 
indicate that the loading sequence is usually the dominant 
constraint. In this work, other features of the problem are 
studied; particularly, the fact of the vehicle capacity Q is 
usually specified as a parameter without any relation to the 
type of load. Therefore, this aspect implies that the value 
of (demand for each customer) assumes that all the 
boxes for the set of customers have the same density of 
material with different demand; i.e. each customer has 
different types of boxes with different density but all the 
boxes must have the same density.

There are two type of assumptions respect to the vehicle 
capacity constraints:

• Transportation of all the type of material density of 
boxes for each customer 

• Transportation of one type of material density of 
the boxes (which is assumed as 1, being the weight 
of each box equal to its volume). 

The previous published works only consider the first 
assumption. We have considered both assumptions (see 
results of Matheuristic column and Matheuristic (3L-VRP) 
column in Table 1). Indeed, one contribution of the proposed 
work is to examine the effect of the density equal to 1. 
Consequently, for the second assumption, the new value of 
d(s) will be  and the new 
vehicle capacity 

All the set of packing constraints are modeled and linked 
with the transportation model in [12], but due to the high 
complexity of the model, the proposed methodology is 
inadequate for solving medium and large size problems. 
In this work, a GRASP algorithm within the mathematical 
model guarantees these constraints, allowing the solution 
of real problems of the companies. Several approximate 
algorithms have been proposed to solve the 3L-CVRP.

The problem of 3L-CVRP by considering time window 
constraints is proposed in [13]. In this work, several 
constructive heuristics are addressed. In [14], an extension 
of the previous described work [13] is presented. In 
particular, a multi objective scheme is proposed by 
considering the following objective functions: minimizing 
the number of vehicles, minimizing the total travel distance, 
and maximizing the used volume.

In [15], a Tabu Search algorithm is proposed for solving the 
3L-CVRP. In this work, for each neighborhood solution of 
the vehicle routing problem, the payload is determined by 
another Tabu Search scheme for the Three-dimensional 
Strip Packing Problem (3SPP). If the resulting load exceeds 
the capacity of the vehicle, the solution is accepted by 
considering a penalization scheme. Other Tabu Search 
algorithm has been proposed by [16]. The loading problem 
is solved by a heuristic for the minimal waste of space. 
Finally, a tabu search algorithm solves the corresponding 
routing problem. [17] propose a generalization of the three-
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dimensional for the bi-dimensional case. In [18], an Ant 
Colony Optimization (ACO) is presented for the 3L-CVRP.  
Heuristic approaches for which the vehicle routing problem 
is solved by metaheuristic algorithms based on population 
are given in [19, 20]. In [19], a bee metaheuristic algorithm 
with a Tabu Search is proposed for the 3L-CVRP. A heuristic 
algorithm for the loading problem with a genetic algorithm 
for the 3L-CVRP has been proposed in [20]. In [21], two 
heuristics for the packing problem are improved and 
introduced within a Tabu search scheme for solving the 
considered problem. Experiments computational show the 
efficiency of the proposed approach.

An uncapacitated 3L-CVRP is introduced in [22]. Two 
heuristic approaches to solve this variant of the original 
problem are proposed and compared. A two-stage heuristic 
for solving the problem considered in [13] is presented in 
[23]. The first stage optimizes the packing problem, while 
the second deals with the aspect of the corresponding 
routing problem. Computational experiments show the 
high efficiency of the method.

In [24], the author introduces an efficient hybrid approach 
based on a Tabu search algorithm for the vehicle routing 
subproblem. In the proposed approach, the generated 
routes are ordered in a list, which is sorted increasingly 
according to the travelling cost. For each solution in the 
resulting list, a tree search algorithm for solving the loading 
subproblem is performed. Computational experiments 
show the effectiveness of the proposed methodology.

Note that all the proposed approaches proposed for the 
3L-CVRP are based on heuristic schemes except for [24]. 
In this paper, we propose a matheuristic algorithm, which 
differs from [24] because the routing problem is solved by an 
exact method and the packing problem by an approximate 
algorithm. The proposed algorithm is explained in the 
following sections.

4. Matheuristic approach
The general solution strategy proposed addresses both 
problems separately: the Capacitated Vehicle Routing 
Problem (CVRP) and the Three Dimensional Container 
Loading Problem (3D-SLOPP). In particular, for each 
solution of a CVRP, a validation of the packing constraints 
of the cargo of the containers for each route is performed.  
The main strength of the proposed approach is that 
the computational effort is mainly focused on the exact 
solution for the CVRP, while the loading problem is solved 
by a GRASP approach of high performance. The GRASP 
approach is calibrated according to the characteristics of 
the items to be delivered, i.e., the cumulative demand of the 
customers covered by each route.

The mathematical model of two-index (1-9) is relaxed by 
eliminating the capability and the subtour elimination 
constraints. The proposed approach gradually inserts 
these constraints during the branch and cut scheme in 
order to obtain feasible solutions. Indeed, the proposed 

algorithm begins with an initial solution generated by the 
well-known Clark & Wright algorithm and validated by the 
GRASP algorithm. The objective function value of the initial 
solution is used as upper bound of the proposed approach. 

The algorithm allows infeasible solutions for the 3L-CVRP 
due to that the first feasible solution found during the 
search corresponds to the optimum of the problem. 
In particular, when a feasible solution for the routing 
problem is found, it provides a lower bound for the original 
problem. Therefore, it can be used as initialization for the 
3L-CVRP during the search. The upper bound is given by 
the corresponding load demand for the K performed routes 
(the problem is studied as a bin-packing). However, the 
effort of the proposed algorithm is totally oriented to find 
feasible solutions for the vehicle routing problem guided by 
the minimization of total travelling cost. Although the two-
index model (1-9) requires a notable computational effort, it 
allows articulating properly the constraints related with the 
management of the loading of the boxes in the container.

The 3L-CVRP has been addressed by applying an exact 
method (branch-and-cut) for the vehicle routing problem 
solved by ILOG Concert Technology and CPLEX. The packing 
problem is solved by a GRASP approach. Initially, the relaxed 
version of the model (1-9) is solved without the capacity and 
elimination of subtour constraints. Then, these constraints 
are added iteratively to the branch and cut process together 
with the packing constraints during the search procedure. 
The algorithm finishes when a solution is found for the 
model involving all the constraints. The matheuristic 
algorithm is described as follows:

4.1. Exact method for the Vehicle 
Routing Problem

In the proposed algorithm, we have considered the two-
index model (1-9) to solve the subproblem of CVRP. This 
formulation is based on subsets of S customers to control 
the appearance of subtours and the capacity constraints of 
the vehicles. Constraints (6) or (8) are eliminated obtaining 
a relaxed model (MCVRP). 

In particular, the proposed approach starts by solving the 
MCVRP and by keeping its optimal solution in S. Then, the 
current optimal solution for the MCVRP is checked to find 
violations of capacity constraints or the presence 
of subtours . If this solution is infeasible, the 
corresponding cuts are added to avoid infeasibilities by 
the function  If the 
solution is feasible, the procedure must check the packing 
of demand for each route by a GRASP approach, which 
determines whether it is possible to pack the boxes into the 
vehicles with a pattern of loading without rearrangement. 
In addition, if the inverse route (inverse position of the 
customers) is impossible to pack, the considered routes 
must be prohibited . The pseudocode of the proposed 

algorithm is detailed in Figure 1.
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Figure 1 Matheuristic Branch & Cut - GRASP 
Algorithm

In order to avoid the appearance of routes violating the 
packing constraints, the cuts  
(9) are added to the model MCVRP. The edges of the routes 
with customers belonging to U (subset of customers of the 
infeasible routes by packing constraint) on a determined 
sequence will be restricted. However, several sequences of 
the customers are evaluated for a given route seeking to 
find feasible solutions by considering packing constraints. 
Figure 2 shows an example of the performed packing cuts:

Figure 2  Solution obtained with the relaxed 
model

A solution for the relaxed MCVRP could consider subtours 
and also routes that are unfeasible respect to the packing 
constraints (see Route a in Figure 2). The customers 

belonging to Route a cannot be packed by the violation 
the sequential loading constraints, i.e., the route 0 – 1 
– 5 – 8 – 11 – 7 – 0 must be eliminated. However, several 
permutations of Route a (example 0 – 7 – 11 – 8 – 5 – 1 
– 0) are examined in order to check feasible solutions for 
the packing constraints. If any permutation of the route 
is possible to pack, its edges are considered for the next 
iterations of the Matheuristic. Therefore, the customers 
belonging to the unfeasible Route a make up the set 

 Then, according 
to the Eq. (9), the following cut (10) is applied:

(10)

Consequently, any subsets of those edges are allowed, 
but the complete route sequence in the initial order is 
restricted on the following iterations once the model 
MCVRP applies the cut (10). This process iterates on feasible 
solutions for the vehicle routing problem, but infeasible 
for the three-dimensional container loading problem. The 
optimal solution is found when the entire load of the routes 
of the optimal solution for the CVRP is also feasible for the 
3D-SLOPP.

4.2. GRASP approach

In this work, we have considered an adapted version of the 
GRASP (Greedy Randomized Adaptive Search Procedure) 
algorithm presented in [11]. The proposed approach is 
based on the representation of maximum spaces, which 
allows obtaining feasible solutions by the control of 
the generation and the upgrade of these spaces in the 
constructive phase. The GRASP satisfies the constraints 
of the orientation of the boxes, load-bearing strength, the 
limit of the weight, the stability of the load, and the multi-
drop patterns (loading with multiple destinations).

The GRASP algorithm was developed by [25] to solve difficult 
combinatorial optimization problems. Different researches 
show its quality and its robustness [26]. GRASP is an iterative 
procedure that combines a constructive phase and an 
improvement phase. In the constructive phase, a solution is 
built step by step, by adding items. The improvement phase 
is iterative, greedy, random and adaptive. In the following 
subsections the constructive phase, the random strategy, 
the moves developed for the improvement phase, and the 
diversification process, are described. The proposed search 
strategy allows randomizing the choice of the type and 
number of boxes to be located at each maximal space. The 
improvement phase applies several moves (compression of 
loading boxes and the refilling process). 

4.3. Constructive algorithm

The constructive algorithm is based on the idea proposed 
by [27] for the classic container-loading problem. The main 
difference respect to this algorithm is the consideration 
of vertical stability, which must be guaranteed by packing 
patterns with full support. In addition, a special treatment 
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to upgrade structures of the remaining available spaces is 
considered. This aspect is important due to the management 
of the empty spaces is not longer trivial by trying to remove 
some items.

The constructive algorithm is based on the utilization of the 
maximal spaces. In this case, each selected box is packed 
in a new space, creating three new maximal spaces (see 
Figure 3). The constructive algorithm uses an updated list 
(FS) of the maximal spaces and a list B that contains the 
boxes of the current customers, which are not ready to be 
packed. The steps of the constructive algorithm are defined 
below.

Figure 3 Box location into an empty space 
generating three maximal sub-spaces

Step 0: Initialization of FS. A list FS of empty spaces has 
been created for locating the selected boxes. Let B = B1, ... , 
B2 , Bn be the list of the set of remaining boxes to be packed 
for a given customer.

Step 1: Choose a maximal space of FS. Since FS represents 
the maximum empty spaces with the largest available 
parallelepipeds to locate the boxes, it is necessary to 
determine a mechanism of selection of spaces based on 
some criteria of quality or packing strategies. In this paper, 
two criteria are proposed: choose the maximum space with 
the minimum distance to the backside of the container and 
choose the maximum space with the minimum distance to 
the roof of the container. In addition, the lower rear corner 
of the container is selected for the selected space as a 
reference to locate the boxes in the empty space.

Step 2: Select the boxes to be packed. Once the maximal 
space FS’ has been selected, it is necessary to consider the 
sorted list B of the first box i that fits inside FS’. If there are 
multiple boxes type i, it is mandatory to generate each of 
the possible layers. Therefore, the boxes must be packed in 
arrays of columns or rows by combining the different axes. 
As in [27], two criteria are considered to select one of the 
configurations of boxes:

• Select the layer of boxes that produces the largest 
increase in the objective function (maximum 
volume). This is a greedy approach filling the space 
with the layer of a greater volume of the boxes.

• Select the layer of boxes that best fit in the 
maximum space. This is a criterion for which 
the distances between each side of the layer of 
boxes and each face of the maximum space are 
computed. The distances of each configuration 
are ordered in non-decreasing way for selecting 
the configuration with the lowest distance (which 
best fits to the space).

Step 3: Update the list FS. The packing process produces 
new maximal spaces FS‘ to be replaced in the list  FS, except 
for the case either the box or the layer fits exactly in the 
space  FS. Moreover, as the maximal spaces are not disjoint, 
the packed box (or the layer) can be intercepted with other 
maximal spaces, which could be reduced or eliminated.

The list FS is verified and updated once the new spaces 
have been added and some existing spaces have been 
modified. The list B is also updated and the maximal spaces 
that cannot locate of any of the boxes that still remain to 
pack must be removed from  this 
phase is finished. Otherwise, if there are still boxes to be 
packed of the current customer, the algorithm must return 
to step 1.

The list must be verified and the possible options be 
removed of the list, once the maximum spaces have been 
added and some existing spaces have been modified.

Step 4: Update the list S for a new customer. When the 
current customer has been packed, the maximal spaces 
must be updated depending of the criterion of multi-drop.

• Visible: The maximal spaces that are completely 
invisible from the door of the container must be 
removed from the list. In addition, the maximal 
spaces having a visible and an invisible part must 
be modified.  

• Achievable: The unreachable spaces must be 
removed or updated.

4.4. Randomization

A layer is built according to the selected criterion 
(maximum volume or best fit) for each type of box and 
for each allowed orientation. Each layer is called as: 
configuration or candidate. When the full range of potential 
layers is constructed, a restricted list of candidates is 
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considered by selecting one of these layers randomly. 
We used a Restricted Candidate List (RCL) according to 
a determined value (this means that the candidates are 
sorted according to their quality value). If the value of 
the objective function of the candidate is greater than a 
threshold (δ), the candidate is located in the list RCL. In the 
process of building layers, we have considered the value 
C for each candidate, its lowest (Cmin) value and its highest 
value (Cmax). The candidate is accepted into the RCL only if it 
satisfies  The parameter 

 controls the size of the list of candidates. If δ=0, 
all the configurations are randomly selected and considered 
to the list. In contrast, δ=1 indicates a completely greedy 
selection, because only the best candidate would be the 
only element in the list and it always be chosen. For values 
of  the number of configurations in the list 
is not predefined, depending on the relative values of the 
candidates. In this case, δ takes randomly one value of 
11 possibilities 0, 0.1, …, 0.9 and 1. This value is selected 
depending on its performance in previous iterations. 
Indeed, if the value of δ has improved the current solution 
previously, the probability of its selection is increased and 
decreased otherwise.

4.5. Improvement

The improvement movement consists of eliminating the last 
k% boxes packed in the complete solution. We choose the 
value k at random from the interval (30, 90) as in [11]. The 
removed items plus the items that were left unpacked in 
the solution are then packed again using the deterministic 
constructive procedure guide by the objective function of 
Best-Volume. In this call of the deterministic algorithm, we 
can use the objective function Best-Volume. We consider 
that a solution has improved if the total volume of the 
packed boxes has increased.

The improvement phase is only called if the solution of 
the constructive phase is considered to be promising, that 
is, if it is considered a good starting point for improving 
on the best known solution. Therefore, we only consider 
those solutions that are above a certain threshold. At the 
beginning, the threshold takes the value of the first solution 
of the constructive algorithm. Then, if at an iteration the 
solution value is greater than the threshold, we update this 
threshold to this value and go to the improvement phase. If 
the solution value is lower than the threshold, the solution 
is not improved and the reject counter (niter) is increased. 
When the number of rejected solutions is greater than a 
value maxFilter, the threshold is decreased according to the 
expression:

threshold = threshold − λ(1+threshold) where λ is set at 0.2 
(as in [28]), and maxFilter = 50% total iterations.

Figure 4 shows the GRASP approach used to solve the 
packing subproblem of the proposed algorithm. The GRASP 
Algorithm begins by selecting one of the empty spaces (FSi), 
and then the list of layers of boxes (CS) that fit in the space 
FSi  is generated. Then, the list  C is reduced to the Restricted 
Candidate List (RCL). One element is randomly selected of 
the list CS. The layer C is located generating the pattern P 

and forcing to update the lists of maximum spaces and 
the lists of the remaining boxes (FS  and B, respectively). 
When all the boxes demanded by a customer  are 
assigned, the objective function is analyzed determining its 
quality. If it has good quality, the best solution found so far 
is updated. If there are still empty remaining spaces and 
there are customers for packing, then the maximum space 
list must be updated by changing customers (it should be 
necessary to eliminate the spaces that violate the multi-
drop constraints). Finally, if there are no empty spaces, the 
process finishes.
 

Figure 4 GRASP Algorithm

5. Computational results
We have considered the classical set of benchmark 
instances (27 instances) to validate the performance of 
the proposed methodology. The proposed matheuristic 
has been compared with [15, 17-19, 24, 29]. Several best 
known results have been improved. The computing time of 
the proposed methodology is quite high compared to the 
published approaches. The benchmark set for the 3L-CVRP 
has been taken from the library published in http://or.dei.
unibo.it/instances/three-dimensional-capacitated-vehicle-
routing-problem-3l-cvrp.

Table 1 shows the total cost of the performed routes to 
deliver all the boxes for the customers (objective function 
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of 3L-CVRP). The Figure 5 shows the routes obtained for the 
proposed algorithm. Figures 6-9 show the packing patterns 
corresponding to the routes of the solution for Instance 1. 
As is shown, the packing patterns satisfy the constraints 
of static stability, brittleness of the boxes and unloading 
without rearrangement (multi-drop or LIFO policy).

Figure 5 Routing for the first instance with 
feasible packing

Figure 6 Route 3-8-7-6 

Figure 7 Route 4-13-14 

Figure 8 Route 9-10-15-5-12

Figure 9  Route 11-2-1 

The proposed methodology outperforms the quality of 
the solution found by the previous published algorithms 
presented in the literature. The computational times are 
high due to the use of exact method for the vehicle routing 
problem. The solutions obtained for the integrated 3L-CVRP 
problem by including packing constraints, make difficult the 
solution of the generation of routes to deliver products to the 
customers. The Figure 6 shows the performed routes for 
Instance 1. Note that some routes are not convex envelopes 
as in the traditional CVRP (see route located to the right in 
Figure 4). In addition, the performed routes clearly indicate 
a worse objective function for the CVRP. Indeed, the CVRP 
could be considered as a lower bound for the vehicle routing 
problem of the 3L-CVRP. 

For the case of transportation of one type of structure of the 
boxes, the obtained results of the proposed approach respect 
to the packing constraints (see column Matheuristic (3L-VRP) 
in Table 1) are aligned with the conclusions of [10]. Indeed, 
the obtained solutions for the benchmarking set are at least 
of the same quality than the case where all the type of density 
of boxes for each customer (see column Matheuristic of Table 
1). In this paper, the proposed algorithm considers infeasible 
solutions, iteratively by worsening the transportation costs 
until reaching a feasible solution of minimum cost packing 
the demand of customers of the vehicles.
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6. Concluding remarks and 
future research
In this paper, a successful matheuristic algorithm has been 
proposed for solving the 3L-CVRP. The hybrid methodology 
decomposes the 3L-CVRP into two subproblems: the 
Capacitated Vehicle Routing Problem (CVRP) and the Three-
dimensional Container Loading Problem (3D-SLOPP). The 
proposed approach combines a branch-and-cut algorithm 
for solving the vehicle routing problem (CVRP) with a 
GRASP approach in order to find a feasible solution for the 
3D-SLOPP. The proposed algorithm has been compared 
with [15, 17-19, 24, 29] on the classical set of benchmark 
instances proposed for the 3L-CVRP. The results show the 
effectiveness of the proposed approach (some new best 
known solutions are found).

For future research, we will consider other mathematical 
formulations (i.e. three index mathematical formulation) 
that can be decomposed by exploiting the benefits of a 
brach-and-cut technique or a generation of columns. This 
consideration has advantages for solving the CVRP due to 
provides the control of the routes individually. In addition, 
it is possible to remove easily the capacity and subtour 
elimination constraints. However, it is necessary to make 
a careful treatment of this model because it implies an 
increase remarkable of the number of variables.

7. References
1. P. Augerat et al., “Computational results with a branch 

and cut code for the capacitated vehicle routing 
problem”, Université Joseph Fourier, Grenoble, France, 
Tech. Rep. 949-M, 1995.

2. P. Toth and D. Vigo, The Vehicle Routing Problem, 
Monographs on Discrete Mathematics and Applications, 
Philadelphia, USA, 2002.

3. B. Golden, S. Raghavan and E. Wasil, The Vehicle 
Routing Problem: Latest Advances and New Challenges. 
USA: Springer, 2008.

4. R. Baldacci, P. Toth and  D. Vigo, “Exact algorithms for 
routing problems under vehicle capacity constraints”, 
Annals of Operations Research, vol. 175, no. 1, pp. 213-
245, 2010.

5. V. Schmid, K. Doerner and G. Laporte, “Rich routing 
problems arising in supply chain management”, 
European Journal of Operational Research, vol. 224, no. 
3, pp. 435-448, 2013.

6. A. Lodi, S. Martello and M. Monaci, “Two-dimensional 
packing problems: A survey”, European Journal of 
Operational Research, vol. 141, no. 2, pp. 241-252, 2002.

7. V. Paschos, Paradigms of Combinatorial Optimization: 
Problems and New Approaches. John Wiley & Sons, 2013. 

8. G. Wascher, H. Haubner and H. Shchumann, “An 
improved typology of cutting and packing problems”, 
European Journal of Operational Research, vol. 183, no. 
3, pp. 1109-1130, 2007.

9. E. Coffman, J. Csirik, G. Galambos, S. Martello and D. 
Vigo, “Bin Packing Approximation Algorithms: Survey 
and Classification”, in Handbook of Combinatorial 

Optimization, 2nd ed., P. Pardalos, D. Du and R. Graham 
(eds): New York, USA: Springer, 2013, pp. 455-531.

10. M. Alonso, R. Alvarez, J. Tamarit and F. Parreño, “A 
reactive GRASP algorithm for the container loading 
problem with load-bearing constraints”, European 
Journal of Industrial Engineering, vol. 8, no. 5, pp. 669-
694, 2014.

11. D. Álvarez, F. Parreño, R. Álvarez and F. Parreno, “A 
grasp algorithm for the container loading problem with 
multi-drop constraints”, Pesqui. Oper., vol. 35, no. 1, pp. 
1-24, 2015.

12. L. Junqueira, J. Oliveira, M. Carravilla and R. Morabito, 
“An optimization model for the vehicle routing problem 
with practical three-dimensional loading constraints”, 
International Transactions in Operational Research, vol. 
20, no. 5, pp. 645-666, 2013.

13. A. Moura and J. Oliveira, “An integrated approach to 
vehicle routing and container loading problems”, OR 
Spectrum, vol. 31, no. 4, pp. 775-800, 2009.

14. A. Moura, “A multi-objective genetic algorithm for 
the vehicle routing with time windows and loading 
problem”, in Intelligent Decision Support, 1st ed., A. 
Bortfeldt, J. Homberger, H. Kopfer, G. Pankratz and 
R. Strangmeier (eds). Frankfurt, Germany: Springer, 
2008, pp. 187-201.

15. M. Gendreau, M. Iori, G. Laporte and S. Martello, “A 
tabu search algorithm for a routing and container 
loading problem”, Transportation Science, vol. 40, no. 3, 
pp. 342-350, 2006.

16. Y. Tao and F. Wang, “A new packing heuristic based 
algorithm for vehicle routing problem with three-
dimensional loading constraints”, in Conference on 
Automation Science and Engineering (CASE), Toronto, 
Canada, 2010, pp. 972-977.

17. C. Tarantilis, E. Zachariadis, and C. Kiranoudis, “A 
hybrid metaheuristic algorithm for the integrated 
vehicle routing and three-dimensional container-
loading problem”, IEEE Transactions on Intelligent 
Transportation Systems, vol. 10, no. 2, pp. 255-271, 2009.

18. G. Fuellerer, K. Doerner, R. Hartl and M. Iori, 
“Metaheuristics for vehicle routing problems with 
three-dimensional loading constraints”, European 
Journal of Operational Research, vol. 201, no. 3, pp. 751-
759, 2010.

19. Q. Ruan, Z. Zhang, L. Miao and H. Shen, “A hybrid 
approach for the vehicle routing problem with three-
dimensional loading constraints”, Computers & 
Operations Research, vol. 40, no. 6, pp. 1579-1589, 2013.

20. L. Miao, Q. Ruan, K. Woghiren and Q. Ruo, “A hybrid 
genetic algorithm for the vehicle routing problem 
with three-dimensional loading constraints”, RAIRO - 
Operations Research, vol. 46, no. 1, pp. 63-82, 2012.

21. W. Zhu, H. Qin, A. Lim and L. Wang, “A two-stage tabu 
search algorithm with enhanced packing heuristics 
for the 3l-cvrp and m3l-cvrp”, Computers & Operations 
Research, vol. 39, no. 9, pp. 2178-2195, 2012.

22. G. Koloch and B. Kaminski, “Nested vs. joint 
optimization of vehicle routing problems with three-
dimensional loading constraints”, Engineering Letters, 
vol. 18, no. 2, pp. 193-198, 2010.

23. A. Bortfeldt and J. Homberger, “Packing first, routing 
second - a heuristic for the vehicle routing and loading 



20

L. M. Escobar-Falcón et al.; Revista Facultad de Ingeniería, No. 78, pp. 9-20, 2016

problem”, Computers & Operations Research, vol. 40, 
no. 3, pp. 873-885, 2013.

24. A. Bortfeldt, “A hybrid algorithm for the capacitated 
vehicle routing problem with three-dimensional loading 
constraints”, Computers & Operations Research, vol. 39, 
no. 9, pp. 2248-2257, 2012.

25. T. Feo and M. Resende, “A probabilistic heuristic for 
a computationally difficult set covering problem”, 
Operations Research Letters, vol. 8, no. 2, pp. 
67-71, 1989.

26. M. Resende and C. Ribeiro, “Greedy Randomized 
Adaptive Search Procedures”, in Handbook of 
Metaheuristics, 1st ed., F. Glover and G. Kochenberger 

(eds). Norwell, USA: Kluwer Academic Publishers, 
2003, pp. 219-249.

27. F. Parreño, R. Álvarez, J. Tamarit and J. Oliveira, 
“Neighborhood structures or the container loading 
problem: A VNS implementation”, Journal of Heuristics, 
vol. 16, no. 1, pp. 1-22, 2010.

28. R. Marti and J. Moreno, “Métodos multiarranque”, 
Inteligencia Artificial, vol. 7, no. 19, pp. 49-60, 2003.

29. Y. Tao and F. Wang, “An effective tabu search 
approach with improved loading algorithms for the 
3l-cvrp,” Computers Operations Research, vol. 55, pp. 
127-140, 2015. 


