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physiological drawbacks [2]. As the relationship between 
bowel pressure and myoelectric signal of bowel smooth 
muscle has been demonstrated and is widely accepted [3], 
myoelectric techniques can be an alternative to the problem 
of monitoring intestinal motility; in the case of the small 
bowel the technique is known as electroenterogram (EEnG). 
However, the application of internal myoelectric techniques 
for clinical diagnostic purposes is restrained because 
surgery is required for the implantation of the electrodes. 
Surface EEnG recording could be a noninvasive alternative 
for monitoring intestinal motility [4-6]. Nowadays, 
noninvasive techniques based on intestinal ultrasounds, 
bioelectromagnetism, and myoelectric recordings are 
being developed [7]. None of these methods can yet be used 
in clinical diagnosis, either because they require high-cost 
equipment, or because they are still in the experimental 
stage. The identifi cation of bowel slow wave (SW) activity 
at the abdominal surface has been accomplished by 
other authors [4, 6, 8]. In dogs, it has been proven that 
the dominant frequency of the external myoelectrical 
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1. Introduction
Th  e study of intestinal motility is an important fi eld in 
gastroenterology, since abnormal motility patterns are 
related to several intestinal pathologies [1], such as 
intestinal ischemia, irritable bowel syndrome, mechanical 
obstruction, bacterial overgrowth, and paralytic ileus. 
Therefore, identifying the bowel segment affected by any 
disease would help shorten observation periods and make 
more accurate and less subjective medical diagnosis. 
Most methods of studying bowel motility are invasive. Only 
manometric techniques are used in clinical diagnosis. 
However, this method entails several technical and 



115

J. J. Moreno-Vázquez et. al; Revista Facultad de Ingeniería, No. 76, pp. 114-122, 2015

intestinal signal coincides with the repetition rate of the 
internal intestinal SW both in physiological conditions [4] 
and in pathological conditions [8]. Nevertheless, the clinical 
application of surface EEnG recording still poses a series 
of difficulties: Surface-recorded myoelectrical signals are 
very weak [5, 8], due to spatial filtering and the insulating 
effects of the abdominal layers [8]. In addition, external 
EEnG recording is contaminated by strong physiological 
interferences: cardiac activity, respiration, very low-
frequency components, and movement artifacts. The main 
sources of interference in the SW range are respiration and 
very low frequency components [9].

Figure 1 shows the EEnG recorded with bipolar electrodes 
implanted in the small bowel serous layer. The EEnG is 
the result of SW (upper trace) and sporadic spike bursts 
(SB: lower trace). The SW is always present and does not 
represent intestinal motility. The SW frequency (SWf) of 
the intestinal signal is around 18 cycles per minute (cpm) 
in dogs. SBs are generated only when the smooth muscle 
cells contract and locate at the SW plateau.

Figure 1 Internal electroenterogram in dogs (f =18 
cpm or 0.3 Hz) without contractions (upper trace) 

and with maximum contractions (lower trace)

To obtain the SWf of the external EEnG signal, some 
researchers have used nonparametric spectral estimation 
techniques [4, 5]. These studies have showed the utility 
of these techniques for the identification of the intestinal 
SW activity on the abdominal surface, and it has been 
determined that the energy associated with the intestinal 
SW is concentrated between 0.15 and 2  Hz in the animal 
model [4]. Nevertheless, these techniques present some 
disadvantages: the selection of the window length to be 
used in the analysis has an important repercussion on 
the frequency resolution and on the stationarity of the 
signal. The limited frequency resolution of nonparametric 
techniques can be partially overcome by parametric spectral 
analysis. Parametric techniques based on autoregressive 
models [8, 10, 11] or on autoregressive moving average 
models [12, 13] have also been used to obtain the SWf of 
the external signal. The advantage of these techniques with 
respect to the nonparametric techniques is that they enable 
determination of the dominant frequency of the signal with 
better frequency resolution, even with a shorter window of 
analysis. The application of Prony’s method usually applies 
to power systems [14, 15]. However, only a few studies have 
been performed in the biomedical area using the Prony’s 

method, but not in the gastrointestinal area [16, 17]. Prony’s 
analysis can be an alternative to identifying the SWf on 
the abdominal surface EEnG recording. Prony’s analysis 
is a viable technique to model a linear sum of complex 
exponentials to signals that are uniformly sampled [18]. 
Spectrum Prony’s estimator has better resolution than 
the nonparametric models when using the same amount 
of data [19]. Therefore, Prony’s method can be very 
attractive to processing signals from various areas, such 
as electrogastrogram (EGG), electroencephalogram (EEG), 
and, of course, electroenterogram (EEnG).

The aim of the present study is to identify the slow wave 
on internal and external EEnG recordings using Prony’s 
method, in order to determine what is the internal recording 
point of the small bowel that produces this signal at the 
abdominal surface. Then, identifying the bowel segment 
affected by any disease would help shorten observation 
periods and make medical diagnosis more accurate and 
less subjective with a noninvasive method.

2. Material and methods
Five beagle dogs were studied in 10 recording sessions. 
Six internal bipolar electrodes were implanted along the 
small bowel, at the following points: duodenum, Treitz 
angle, jejunum (located at a distance of 45 cm, 90 cm, 
and 135 cm from the Treitz angle), and ileum level. One 
monopolar contact electrode was placed at the abdominal 
surface for external EEnG recording. Recording sessions 
were carried out with animals in a fasting state of more 
than 16 hours. Each session implied the recording of more 
than 95 minutes of combined signal (external and internal) 
with a total number of 1565 minutes per analyzed point of 
measurement. Signals were amplified and bandpass filtered 
between 0.05 Hz and 30 Hz. The bioelectric recording in this 
study was obtained with a sampling frequency  = 100 Hz. 
Each signal minute was simultaneously recorded with both 
surface and internal EEnG. Signals were digitally filtered 
with a low pass filter: Butterworth with cutoff frequency of 
2 Hz, in order to analyze the signal in the frequency range 
of the slow wave energy and reduce the effect of “aliasing” 
and decimated by 25; i.e., the sampling frequency was 4 Hz. 

One of the most important features of a spectral estimator 
is its frequency resolution. The resolution of the Prony (p, q) 
method was obtained by means of the generation of a signal 
composed of two sine signals with different frequencies (
, ) and the addition of white noise. Frequency resolution 
( =  0.06 Hz) was calculated as the minimum detectable 
difference between  and . The selection of the orders 
is important; the response of the model depends on it. The 
fact that a criterion provides a minimum error based on the 
chosen orders does not indicate that the ideal order has 
been obtained. AIC minimum error was calculated for each 
of the minutes from different recording points. Different 
orders were obtained for each of the analyzed minutes. This 
means that, depending on the morphology of the analyzed 
signal, it will be the resulting order. The best choice of 



116

J. J. Moreno-Vázquez et. al; Revista Facultad de Ingeniería, No. 76, pp. 114-122, 2015

Prony’s model order is not usually known, so it is necessary 
to estimate several model orders. If the order chosen is too 
low, some spectral components are not estimated, while 
an order that is too high introduces extra components not 
present in the original signal. Thus, model order selection 
is a trade-off between increased resolution and decreased 
variance in the estimated spectrum [20]. 

Therefore, it was necessary to study the performance 
of order selection criteria to obtain the optimal order of 
Prony’s method to represent the electroenterogram signal. 
This study was carried out obtaining the appropriated 
model order given by the Akaike’s Information Criterion 
(AIC) for electroenterogram signal from different recording 
points. The model order of selection criteria is based on the 
concepts of mathematical statistics. The order of p and q 
for the Prony model was calculated by Eq. (1).

                      
                          (1)

where is the estimated variance of the prediction error 
for the p and q orders, and N is the number of sample data 
on 1 minute of electroenterogram recording. The order p 
and q is the model order, and the one for which the AIC is 
minimum. 

The Prony’s function implements the Prony analysis for 
time-domain design of IIR filters [21]. Prony’s method 
is a technique for modeling sampled data as a linear 
combination of exponentials. The parameters of the 
exponentials are determined by a least squares fit to the 
data.

Let Eq. (2) be a transfer function of discrete time system 
H(z). 

 (2)
                                            
where H(z) is the z-transform of h[n], q is the number of 
zeroes, and p is the number of poles. Performing cross-
multiplication with the output of the denominator of the 
transfer function, we can rewrite Eq. (2) and obtain Eq. (3).  

                                                                               
                                (3)

Eq. (3) is the z-transform of the discrete-time convolution, 
and it can be written as a matrix multiplication, considering 
h[n] = x[n] for n = 0,1 ... N. The matrix is given by Eq. (4) [21]. 

                           
                             

                                                                                          (4)  

The ap and bq coefficients are obtained by the partition into 
two parts of the matrix Eq. (4) such that taking only the 
lower partition of the matrix, Eq. (5) is given by:

                          
                                                                                              (5)  

Expanding Eq. (5), this can be written as Eq. (6).

                                                                      
                                       

                                                                                                 
                                                                                                   (6)

where Eq. (7) can be obtained from Eq. (6).

                                    
      (7)

                                                                                                         
      

(7)   

Solutions for the coefficients vector ap at the denominator 
are obtained through Eq. (8), taking the pseudo-inverse of 

 to solve for :

		
                         (8)

Once  is determined, it can be substituted back into the 
top partition of Eq. (4), shown below (Eq. 9), to find the 
numerator coefficients, :  

                                                                    
        

(9) 

where Eq. (10) can be obtained from Eq. (9).

                                                                                                  (10)

        
                                        bq   

Solving for , Eq. (9), the numerator coefficient vectors are 
obtained through Eq. (11).
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                                (11)

Using in Eq. (2) and substituting values ​​of Eqs. (8) 
and (11), the Prony spectrum estimation method is given by 
Eq. (12). Every minute was analyzed with Prony model using 
order p and q, respectively.  

                                                      
        (12)

On the other hand, the global order p parameter was 
calculated at each recording point (OGpPRmax), obtained from 
the average orders of the maximum value  of each 
session for each recording point by using Eq. (13), where 
s=10, which corresponds to session numbers evaluated.

                                   
        (13)

  

Furthermore, the global order total p of the maximum 
values (OGpTmax) of all recording points was calculated using 
Eq. (14).

                              

          (14)

where OGpTmax is the global total average of all the OGpPRmax 
calculated at each recording point and PR=7, which 
corresponds to the recording point number of each of the 
sessions. In addition, the global minimum order p value of 
each recording point (OGpPRmin) was obtained using Eq. (15). 

                                            

           (15)
 

where OGpPRmin is the average value of the orders of the 
minimum value  at each session for each recording 
point and the total global order p of the minimum values 
(OGpTmin) is given by Eq. (16).

                                        
      (16)

where OGpTmin is the global total average of all the OGpPRmin 
calculated at each recording point.

The order q parameters were calculated in similar form, 
only replacing p with q in Eqs. (13) to (16).

3. Results and discussion
Figure 2 shows the evaluation of AIC for the order estimation 
of the Prony model on 1 minute of electroenterogram 
recording, with p and q order values from 1 to 50. The plots 
were obtained for every analyzed minute of the 10 sessions 
to observe the relationship between the orders and the 
minimum error that produces the criteria; in this case, an 
order of p = 30 and q = 1 was obtained.

Figure 2  AIC obtained for the p and q orders 
estimation of the Prony model in 1 signal minute

Figure 3 shows order progression obtained in each of the 
analyzed minutes with the AIC in recording session 4 (this 
was carried out for all recording sessions). The results 
show that the order estimation changes for each of 95 
minutes in all the points of measurement in external and 
internal signals. Moreover, it is observed that the order q 
does not present changes and remains around 1. However, 
the order p exhibits changes between 1 and 30 while the 
measurement point at the abdominal surface exhibits few 
variations in the order value.

The global evaluation of all sessions of the maximum and 
minimum orders p and q is shown in Table 1. It is possible 
to see the total global order p and q of maximum values 
(OGpTmax) and (OGqTmax), respectively, are  and , 
while the total global order p and q of minimum (OGpTmin) 
and (OGqTmin), respectively, are around  and q ≈ 1. 
The selection of the criterion was carried out based on 
which presented the maximum order in all the points 
of measurement, resulting in the AIC. Thus, in the Prony 
method analysis, the order used was p = 29 and q = 1 to 
estimate the power spectrum of the serosal signal with a 
better resolution.

Figure 4 shows the signal captured simultaneously from 
internal and external points of measurement. The Prony 
(29,1) model was used to evaluate every minute of each 
session, considering only 1-minute lengths in analyzing 
the performance of the SW. The frequency of the maximum 
peaks on the spectrum of the signal can be found near 0.3 
Hz.

Figure 5 shows the response of the Prony’s model for each 
of the 128 minutes in a session at the abdominal surface 
and each of the internal measurement points. All the 
minutes are overlapped (black trace) with the purpose of 
observing the performance of the SW in each of the points 
of record of the small bowel. Average power spectral 
density (PSD) of all session minutes is also observed (white 
trace) for each recording point. Table 2 shows the average 
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Table 1  The global average value of the maximum and minimum orders at the internal and external 
measurement points, obtained by the estimation of AIC from the Prony model

Figure 3  Order (p, q) progression evaluated for Prony’s model with AIC, for session 4 with 95 minutes: a) 
abdominal surface; b) duodenum; c) Treitz l igament; d, e, f) jejunum (located at a distance of 45 cm, 90 cm, 

and 135 cm from the Treitz angle, respectively); g) i leum
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of the electroenterogram, making it possible to observe 
that the SW was largely reflected in the abdominal surface 
recording. 

The frequency domain representation provides knowledge 
about the frequency components that influence EEnG 
signals, so most experimental studies for the identification 
of the component of SW signal from EEnG in animals and 
humans have used spectral analysis techniques [4, 5, 
22, 23]. However, the nonparametric technique provides 
a real energy spectrum to analyze energy distribution. 
This technique has the disadvantage that due to window 
length, cause spectral spreading effect, and to provide high 

slow wave frequency  obtained in each of the points of 
record, as well as global frequency (FGOL) for all sessions. 
Furthermore, recordings that do not present statistically 
significant differences among the records of surface and 
internal recording are marked with an asterisk (*). It is 
observed that most of the ​​  measured point record values 
of jejunum 2 do not show statistically significant differences 
with the  recording point values of the abdominal 
surface. However, there are other measurement points 
where the  values do not show statistically significant 
differences with the surface record. The frequencies for 
which the closest relation was observed between the 
external and internal signal PSD corresponded to the SW 

Figure 4  Simultaneously captured seven measurement points throughout the small bowel, a) surface; b) 
duodenum; c) Treitz angle; d,e,f) jejunum (located at a distance of 45 cm, 90 cm, and 135 cm from the Treitz 

angle, respectively); e) i leum
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Table 2  Average slow wave frequency in each of the measurement points and global slow wave frequency 
obtained with Prony’s (29,1) method for N=1565

Figure 5  Spectral density power of the Prony (29,1) for a session with 128 minutes: a) abdominal surface; b) 
duodenum; c) Treitz angle; d,e,f) jejunum (located at a distance of 45 cm, 90 cm, and 135 cm from the Treitz 

angle, respectively); e) i leum
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the Treitz angle). Sixty percent of the recording sessions 
in jejunum 2 showed that the signals do not present 
significant differences from those in the abdominal surface 
recording. Abdominal recording of the EEnG could be a 
useful noninvasive tool to assess the small bowel activity. 
Slow wave energy of the EEnG, which is omnipresent in 
internal signal, is strongly reflected in abdominal surface 
recordings. Furthermore, identifying the bowel segment 
affected by any disease would help shorten observation 
periods and make medical diagnosis more accurate and 
less subjective.
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