
211 

Rev. Fac. Ing. Univ. Antioquia N. º 75 pp. 211-221, June, 2015

Robust tracking control for linear vibrating 
mechanical systems

Control de seguimiento robusto para sistemas 
mecánicos vibratorios lineales

Francisco Beltrán-Carbajal*

Departamento de Energía, Unidad Azcapotzalco, Universidad Autónoma 
Metropolitana. Av. San Pablo N.° 180, Colonia Reynosa Tamaulipas. México 
D.F., México.

(Received March 01, 2015; accepted April 20, 2015)

Abstract 

A novel output feedback tracking control approach is proposed for 
underactuated linear mass-spring-damper vibrating mechanical systems of 
multiple degrees of freedom. The presented control design methodology 
considers robustness against unmodeled dynamics and external forces. The 
proposed control scheme only requires measurements of the position output 
variable. Tracking error integral compensation is properly used to avoid 
real-time disturbance estimation. Analytical and numerical results prove the 
effectiveness of the introduced active vibration control scheme for resonant 
and chaotic vibration attenuation on the output variable response.

----------Keywords: mechanical vibration systems, mass-spring-
damper systems, multiple degrees-of-freedom mechanical systems, 
active vibration control

Resumen

Se propone un enfoque de control novedoso para seguimiento por 
realimentación de la salida para sistemas mecánicos vibratorios del tipo 
masa-resorte-amortiguador lineales sub-actuados. La metodología de diseño 
de control que se presenta considera robustez con respecto de dinámicas no 
modeladas y fuerzas externas. El esquema de control propuesto solamente 
requiere mediciones de la variable de la salida de posición. Se utiliza 
compensación integral del error de seguimiento de manera apropiada 
para evitar la estimación en tiempo real de las perturbaciones. Resultados 
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analíticos y numéricos muestran la efectividad del esquema de control activo 
de vibración para atenuación de vibraciones resonantes y caóticas afectando 
la respuesta de la variable de salida.

----------Palabras clave: sistemas mecánicos vibratorios, sistemas 
masa-resorte-amortiguador, sistemas mecánicos de múltiples grados 
de libertad, control activo de vibraciones

Introduction 
Active vibration control design for complex 
vibrating mechanical systems of multiple degrees 
of freedom is commonly based on reduced 
order models. Moreover, weakly damped 
flexible mechanical structures can be perturbed 
by completely unknown resonant excitation 
forces during their operation; as a consequence, 
undesirable forced vibrations are amplified. 
This problem becomes quite defiant for practical 
applications where the available number of 
sensors and actuators is much less than the 
number of degrees of freedom of the flexible 
structure to be controlled.

Thus, output feedback control of dynamical 
systems subjected to endogenous and exogenous 
disturbances represents a long standing 
challenging research topic. In this regard, active 
disturbance rejection control has been recently 
proposed to deal with these issues [1, 2]. Here, 
disturbances are estimated and compensated by 
the controller in real time. In [3], disturbance 
rejection has been also addressed from a model-
free control perspective, introducing recently 
the algebraic design methodology of intelligent 
Proportional-Integral-Derivative controllers 
(iPIDs), where an unknown mathematical model 
is replaced by an ultra-local model.

This paper deals with efficient and robust tracking 
control in underactuated linear mass-spring-
damper systems with multiple degrees of freedom 
without on-line disturbance estimation. A wide 
variety of vibrating mechanical engineering 
systems can be represented by mass-spring-
damper models. Some practical application 
examples of mass-spring-damper systems can 

be found in dynamic vibration absorbers [4-7], 
balancing of rotating machinery [8-10], metal-
cutting machine tools [11, 12], vehicle suspension 
systems [13] and other real engineering systems 
(see, e.g., [14-16]). Thence, efficient control of 
mass-spring-damper systems is a high relevance 
research topic in practical engineering systems.

In previous works, it has been shown theoretically 
and experimentally the potential application of the 
Generalized Proportional-Integral (GPI) control 
design methodology for robust perturbation 
rejection in a mass-spring-damper mechanical 
system of one degree of freedom [17] and in the 
synthesis of active vibration absorption schemes 
to attenuate undesirable harmonic vibrations [18]. 
GPI control and integral reconstructors of the 
state variables for constant linear systems were 
introduced in [19] to avoid the use of asymptotic 
state observers. Thus, GPI control represents a 
good alternative for active control of controllable 
mechanical systems using only measurements of 
the output variables.

In this paper, a novel output feedback dynamic 
control scheme is proposed for robust reference 
position trajectory tracking tasks in perturbed 
underactuated linear mass-spring-damper system 
with multiple degrees of freedom. It is shown that 
the mechanical system exhibits the differential 
flatness property [20], which is advantageous 
exploited in our study. A simplified mathematical 
model of the transformed differentially flat 
mechanical system is used for control design 
purposes. Unmodeled dynamics and external 
forces are lumped in a state-dependent 
perturbation affecting the known system 
dynamics. The perturbation signal is locally 
approximated by a family of certain order Taylor 
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polynomials into a small time window. Then, 
GPI control, differential flatness and Taylor 
polynomial expansion of the perturbation signal 
are properly combined for the synthesis of the 
presented control scheme, which only requires 
measurements of the system position output 
variable. 

A challenging simulation case study was purposely 
selected to evaluate the dynamic performance 
of the proposed control approach, showing 
satisfactory results. Robustness is considered 
with respect to unmodeled dynamics, resonant 
excitation forces and chaotic disturbances 
generated by an uncertain symmetric gyro with 
linear-plus-cubic damping subjected to harmonic 
excitation as well [21].

Multiple degrees-of-freedom 
mass-spring-damper system

Consider the Multiple - Degrees-Of-Freedom 
(MDOF) vibrating mechanical system 
schematically represented in Figure 1. The 
vibration system consists of a completely 
controllable state main system (∑1) and an 
uncertain dynamic perturbation generator 
system (∑2) subjected to unknown time varying 
bounded disturbances ξ(t), possibly generated by 
another dynamic system as well. The generalized 
coordinates are the positions of the mass carriages, 
xi and ρj , i = 1, 2, ..., n, j = 1, 2, ..., q. In addition, 
u is a single force control input for regulation 
and trajectory-tracking tasks on the mechanical 
system, and y=xn represents the position output 
variable to be controlled. mi, ki and ci denote 
mass, stiffness and viscous damping associated 
to the i-th degree-of-freedom.

The vibration mechanical system can also 
be represented by the feedback energetic 
interconnection of Figure 2. Here, the main 
mechanical system and the perturbation generator 
are modeled by Σ1 and Σ2, respectively, where f is 
the induced disturbance force affecting the main 
system. Notice that the main system resembles 
a highly perturbed underactuated MDOF system 
with a single input (u) and a single output (y). The 
mathematical model of the mechanical system is 
described by the coupled ordinary differential 
Eqs. (1) and (2).

 (1)

 (2)

Figure 1 MDOF mass-spring-damper system
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Figure 2 Interconnection between main mechanical 
system and perturbation generator

The augmented system given by (1) and (2) is 
stable in the case of u ≡ 0 and ξ ≡ 0 . Indeed, 
defining the storage function (3) as the total 
energy of the system, with x0 = 0 and ρ0 = xn.

  (3)

And taking the time derivative of V along the 
system trajectories results in the expression (4).

  (4)

Then V
.
 ≡ 0  if and only if x.i = ρ. ≡ 0, and hence  

xi =ρj ≡ 0. Therefore, from the LaSalle’s Theorem 
[22] is proved that the augmented system (1) and 
(2) is globally asymptotically stable. In addition, 
as a consequence, it is widely known that for any 
bounded (control or disturbance) input signals, 
the state variables will also remain bounded (see, 
e.g., [23]).

A robust output feedback tracking 
control scheme

Firstly, we consider that, without any loss of 
generality and for simplicity, the dynamics 
associated to the first two masses is only 
known. Therefore, the two degree-of-freedom 
underactuated mechanical system is perturbed by 
the unknown force (5).

 f = k3(ρ1–x2) (5)

Notice that the force f is, strictly speaking, a 
time-varying disturbance depending on the 
unknown dynamics of the perturbation generator 
system coupled to the second mass m2 through 
the spring k3.

Moreover, the equilibrium points of the properly 
controlled dynamical system (1) and control 
input parameterized in terms of the desired 
output position  are given by (6), where the 
notation ( ) is used to denote stable equilibrium 
operation condition.

  (6)

Let z1 = x1, z2 = x1, z3 = x2, z4 = x.2, we have the state 
space description (7).

 (7)

The known mass-spring-damper system dynamics 
(7) exhibits the differential flatness property and, 
hence, the controllability property as well [20]. 
Therefore all state variables and the control input 
can be parameterized in terms of the flat output 
y and a finite number of its time derivatives. For 
this, the time derivatives up to fourth order for y 
are obtained as (8).

 (8)
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Therefore the differential parameterization 
results in (9) with positive constants (10).

  (9)

  (10)

The flat output y then satisfies the perturbed 
input-output differential Eq. (11).

  (11)

Thus, the structural property of differential 
flatness can be conveniently used to design 
an output feedback dynamic control scheme 
for reference trajectory tracking tasks for the 
output position variable y and, consequently, all 
trajectories of the dynamical system as described 
by (9).

The perturbed input-output mathematical model 
(11) can also be rewritten in the form (12), where 

we assume that the position output variable y 
is the only available measurement signal for 
the synthesis of some tracking control scheme. 
Evidently, this assumption is established in order 
to reduce control implementation costs.

  (12)

where η is a completely unknown disturbance 
signal affecting the dynamics of the output 
variable y, which is given by (13).

  (13)

Note that, one can additionally consider small 
parametric uncertainties into the disturbance 
signal η.

It is assumed that the bounded disturbance signal 
η can be approximately reconstructed into a 
sufficiently short time interval by a family of 
Taylor polynomials of r th degree as (14) around 
a given time instant t0 ≥ 0 [5, 17].

  (14)

where coefficients aj are completely unknown, 
and residual terms of the truncated Taylor 
expansion are negligible if t↓t0 or r→∞.

Note that, one could simply choose a (straight line) 
first order truncated Taylor polynomial function 
to get an approximation of a time-varying signal 
into a quite small time window. Nevertheless, a 
Taylor polynomial family of higher order will 
allow to get a better reconstruction of some signal 
into a short period of time, say, (t0,t0+ε), where ε 
is a positive and sufficiently small value.

Hence, by using the polynomial approximation 
(14) for the signal η, the dynamics of the 
mechanical system can be locally described as 
(15).

 (15)
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From Eq. (15), one can then obtain, by successive 
integrations with respect to time, the structural 
estimates (16) for the time derivatives up to third 
order of the flat output y [19]. Here the notation  
“ ” is used to represent derivative estimates.

 (16)

For simplicity, the integral  is described 
by  and  by , and so on.

In the integral reconstruction of the time 
derivatives of the position output signal, the 
system initial conditions and the coefficients 
aj were intentionally ignored. Therefore, the 
structural estimates (16) differ from the actual 
values by an algebraic polynomial up to (r+3)th 
degree of the form (17).

  (17)

where constants λj depend on the unknown initial 
conditions at t0 ≥ 0 and the coefficients of the 
disturbance model (14).

The robust output feedback tracking dynamic 
controller (18) using integral reconstruction of 
the time derivatives (16) is then proposed.

  (18)

The auxiliary control input v given by expression 
(19) is synthesized to get the desired asymptotic 
output tracking of the reference position trajectory 
y*(t) specified for the mechanical system.

 (19)

The last integral error compensation terms 
are used to actively reject disturbances due to 
estimation errors, unmodeled dynamics and 
parametric uncertainty.

Substitution of the controller (18) into system 
(15), and differentiating r+4 times the resulting 
expression with respect to time, results in the 
closed loop dynamics of the tracking error (20), 
e = y – y*.

  (20)

The characteristic polynomial associated with the 
closed loop tracking error dynamics (20) is then 
given by (21).

  (21)

Therefore, the control gains αj, j = 0, 1, 2, ..., r+7, 
are selected so that the characteristic polynomial 
(21) is a Hurwitz polynomial, sufficiently far 
from the imaginary axis in the left half of the 
complex plane, faster than the highest excitation 
frequencies present in disturbances. In this way, 
the asymptotic tracking of the desired reference 
position trajectory y*(t) can then be verified. 
Since the characteristic polynomial (21) does not 
depend of the coefficients aj of the polynomial 
expansion of the disturbance signal (14) and the 
constants λj of the derivatives reconstruction 
error polynomial (17), the control scheme (19) 
continually self-updates for any operation time 
interval of the mechanical system. Notice that 
under the assumption of a small residual term of 
the truncated Taylor polynomial expansion of the 
disturbance signal η in the vicinity of the current 
time t, the tracking error dynamics represents 
an asymptotically exponentially stable system 
perturbed by a uniformly bounded signal of very 
small amplitude. Therefore, the tracking error 
remains uniformly bounded by a small radius 
disk centered at the origin [23].

Finally, we now consider the tracking control 
problem for the n DOF linear vibrating 
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mechanical system using a single control input 
u applied to the first mass m1. Since the vibrating 
mechanical system (1) is a differentially flat 
dynamical system, we get the disturbed input-
output transformed system dynamics (22), where 
yn denotes the available output position variable of 
the mass mn to be used in the controller synthesis. 
Again, η represents the disturbances affecting the 
known system dynamics.

  (22)

Hence, by following the control design 
methodology described above, we propose 
the output feedback tracking dynamic control 
scheme (23) for asymptotic reference trajectory 
tracking tasks, yn(t), for n DOF linear vibrating 
mechanical systems.

  (23)

Where the auxiliary control input v is now given 
by Eq. (24).

 (24)

One can likewise get, by successive integrations 
of Eq. (22), integral recontructors , k = 1, 2,…, 
n-1, for the time derivatives of the flat output yn. 

The closed loop dynamics of the tracking error, 
e=yn–y*

n, is thus described by Eq. (25).

  (25)

Hence, the asymptotic tracking of the desired 
reference trajectory y*

n(t) can be accomplished by 
the proper selection of the control gains αj, j = 0, 
1, 2, ..., r+2n – 1 as it is stated above.

A study case: simulation results
The robust and efficient performance of the 
proposed control approach was verified for the 
weakly damping vibrating mechanical system 
shown in Figure 3. Our case study considers 
unmodeled dynamics associated with the 
unknown secondary mechanical system (m3, c3, 
k3) perturbed as well. The mechanical system 
of three degrees of freedom is characterized by 
the set of parameters given in Table 1. Then, the 
natural frequencies of the mechanical system 
are computed as: ωn1

= 6.6854 rad/s, ωn2
=17.361 

rad/s and ωn3=35.174 rad/s.

Table 1 System parameters

Parameter Value
m1 2 kg
k1 500 N/m
c1 0 Ns/m
m2 2 kg
k2 1000 N/m
c2 0 Ns/m
m3 3 kg
k3 400 N/m
c3 0 Ns/m

Figure 3 Configuration of the perturbed vibrating 
mechanical system of the case study

Moreover, resonant and chaotic dynamical 
disturbance forces ξ described by (26) were 
purposely taken into account in the robustness 
assessment. Evidently, this situation is the worst 
operation scenario for any vibrating mechanical 
system.

 (26)
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The perturbation force amplitudes are: F1=0.5 N, 
F2=0.25 N, F3=0.3 N and F4=4  N. The chaotic 
force term η1 is generated by a symmetric gyro 
shaker with linear-plus-cubic damping given 
by (27), which is also subjected to harmonic 
excitation [21]. The parameter values of this 
highly nonlinear dynamical system are: α2=100, 
β=1, b1=0.5, b2=0.05, ω = 2 and g=36, with 
initial conditions: η1(0)=1, η2(0)=0.2. Figure 4 
depicts the time response and phase trajectory of 

the perturbation force generator exhibiting both 
regular and chaotic dynamics (motions).

   

  (27)

Figure 4 Chaotic disturbance forces induced by a harmonically excited symmetric gyro with nonlinear damping

Figure 5 Resonant and chaotic nonlinear vibrations affecting the output variable response
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Figure 5 shows the presence of large nonlinear 
vibrations when the mechanical system is 
subjected to resonant and chaotic disturbance 
forces ξ and operated without active vibration 
control (u≡0). Certainly, these vibration levels 
are prohibited, and the active vibration control 
should hence supress undesirable vibrations 
below acceptable vibration attenuation levels.

On the other hand, the active vibration control 
scheme (23) was specified to suppress vibrations 
and simultaneously achieve robust tracking of the 
reference trajectory y*(t) on the position output 
variable, y=x2. The motion profile y*(t) planned 
for the mechanical system is described by (28).

 (28)

where y1= 0 m, y2=0.01 m, T1=5 s, T2=10 s, and 
ψ(t, T1,T2) is a Bézier polynomial, with ψ(T1, 
T1,T2)=0 and ψ(T2, T1,T2) = 1, given by (23).

  (29)

with r1=252, r2=1050, r3=1800, r4=1575, r5=700, 
r6=126.

The disturbance signal η(t) was locally 
approximated by a family of Taylor polynomials 
of fourth degree. Thus, the design parameters 
for the controller were selected to have a twelfth 
order closed-loop characteristic polynomial of 
the form (30).

  (30)

with natural frequency ωn=100 rad/s and damping 
ratio ζ=0.7071.

Figure 6 manifests the robust and efficient 
performance of the proposed output feedback 
control scheme. The vibration suppression and 
satisfactory tracking of the reference position 
trajectory are clearly verified. Therefore, the 
presented design methodology represents a 
good alternative for the controller synthesis 
for underactuated perturbed linear mass-
spring-damper mechanical systems employing 
measurements of the single position output 
variable only.

Figure 6 Active vibration suppression and reference trajectory tracking
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Conclusions
In this paper, a novel output feedback dynamic 
control scheme has been proposed for robust 
reference position trajectory tracking tasks for 
underactuated linear MDOF mass-spring-damper 
mechanical systems subjected to disturbances 
due to un-modeled dynamics and exogenous 
forces. The state dependent disturbances are 
induced by couplings of the system with another 
unknown mass-spring-damper system. The 
perturbation signal was locally approximated 
by a family of Taylor polynomials of certain 
degree in order to reduce the complexity of the 
controller design. Then, GPI control, differential 
flatness and the Taylor polynomial expansion of 
the perturbation signal were properly combined 
for the synthesis of the presented control scheme. 
An important feature of the control scheme is its 
capability of rejecting disturbances using only 
measurements of the position output variable and 
simultaneously to perform the motion planning 
specified for the mechanical system. The robust 
performance of the control scheme was verified 
for resonant vibration suppression and active 
rejection of chaotic disturbances generated by 
an uncertain symmetric gyro with linear-plus-
cubic damping perturbed by harmonic excitation 
as well, showing satisfactory results. Therefore, 
the presented control approach represents a 
good alternative for the controller synthesis for 
underactuated perturbed linear mass-spring-
damper systems.
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