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Data envelopment analysis and Pareto 
genetic algorithm applied to robust design
in multiresponse systems

ABSTRACT: This paper shows the use of Data Envelopment Analysis (DEA) to rank and 
select the solutions found by a Pareto Genetic Algorithm (PGA) to problems of robust design 
in multiresponse systems with many control and noise factors. The efficiency analysis of 
the solutions using DEA shows that the PGA finds a good approximation to the efficient 
frontier. Additionally, DEA is used to determine the combination of a given level of mean 
adjustment and variance in the responses of a system, so as to minimize the economic cost 
of achieving those two objectives. By linking that cost with other technical and/or economic 
considerations, the solution that best matches a predefined level of quality can be more 
sensibly selected.

RESUMEN: Se presenta el uso de Análisis Envolvente de Datos (AED) para priorizar y 
seleccionar soluciones encontradas por un Algoritmo Genético de Pareto (AGP) a problemas 
de diseño robusto en sistemas multirespuesta con muchos factores de control y ruido. El 
análisis de eficiencia de las soluciones con AED muestra que el AGP encuentra una buena 
aproximación a la frontera eficiente. Además, se usa AED para determinar la combinación 
del nivel de ajuste de media y variación de las respuestas del sistema, y con la finalidad 
de minimizar el costo económico de alcanzar dichos objetivos. Al unir ese costo con otras 
consideraciones técnicas y/o económicas, la solución que mejor se ajuste con un nivel 
predeterminado de calidad puede ser seleccionada más apropiadamente.
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1. Introduction
Robust design is a technique developed by Genichi Taguchi 
that tries to enhance the quality of products and/or services 
by reducing the variability of the outputs of the service or 
manufacturing process and, simultaneously, adjusting 
the mean of the outputs as close as possible to their 
corresponding target values [1]. Generally, the procedure 
involves experimenting with controllable input variables 
of the system (control factors) under different settings 
of variables that increase the variability of outputs and/
or move the outputs away from their target values (noise 
factors), and analyzing the output data to find combinations 
of values of control factors that achieve both objectives 
of robust design [2].  Although the technique can be 
straightforwardly applied to single response systems with 
a small number of control and noise factors, it becomes 
hard to use in multiresponse systems with many outputs, 

control, and noise factors [3-6].  Among the alternatives to 
overcome the complexity of multiresponse systems, it has 
been widely noticed that Genetic Algorithms (GA) [7, 8] are 
well-suited for robust design [4, 9] due to its ability to handle 
in parallel populations related to multiple solutions. One of 
the Genetic Algorithm models that handle multiresponse 
systems in robust design is a Pareto GA (PGA) developed 
in [10]. This PGA finds the efficient solutions, which 
attain the lowest possible variation of the outputs of the 
system, without degrading the mean adjustment of them 
and vice-versa. However, even selecting the best solution 
among the Pareto efficient ones will depend on a variety 
of considerations, i.e., the cost, time, and/or constraints 
of implementing each of them; or the relative influence of 
reducing variability and increasing mean adjustment on the 
quality of the service or product delivered to customers. 
As there are many trade-offs that can be considered, it is 
usually difficult to decide among the candidate solutions. 

To help in that decision, this paper presents the use of 
Data Envelopment Analysis (DEA) [11] as a method for 
assessing the relative merit of each solution obtained 
by the PGA model. DEA is a nonparametric method of 
operations research for estimating production frontiers 
of a set of Decision Making Units (DMUs). DEA calculates 
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the relative technical efficiency of DMU’s according to the 
level of inputs that each DMU uses to obtain a given output 
production level. In this work, each solution obtained by 
the PGA is treated as a DMU, and thus the solutions can 
be ranked and the best solution can be obtained. DEA has 
the advantage that it can handle multiple outputs and 
multiple inputs [11]. It also has the advantage, over other 
similar techniques such as Stochastic Frontier Analysis 
–SFA [12], that it is non parametric. That is, SFA requires 
specification of the functional relationship between 
inputs and outputs which is usually hard to establish 
while in DEA, being non-parametric, such relationship 
is not required a priori [11]. Moreover, the DEA analysis 
allows considering the economic cost of the input factors 
and selecting the solution with minimum economic cost. 
Thus, by considering the factors as the mean adjustment 
and standard deviation of the responses, it is possible to 
use DEA to obtain the solutions with minimum cost, for a 
given mean adjustment and standard deviation making it 
relatively easy to better decide which one to implement. To 
the best of our knowledge, this is the first work in which the 
relative costs of incurring in a given mean adjustment and 
standard deviation is incorporated to better decide which 
one to implement in the system. 

The remainder of the paper is organized as follows: 
Section Two presents some details of the framework 
that uses PGA and DEA. Then, Section Three shows the 
application of the procedure to solutions found by the PGA 
for single-response and multiresponse systems. The paper 
ends with a summary of the results and their implications 
for the use of the PGA and DEA in robust design.

2. Framework for multiresponse 
robust design evaluation
The framework combines two well-established techniques: 
the PGA that generates various solutions, and data 
envelopment analysis for evaluating those solutions.  An 
additional step includes the evaluation of the optimal 
combination of inputs with minimum cost to achieve the 
specified quality measures. The framework steps are 
summarized as follows:

• Generate the feasible solutions using k control factors 
that are combined such that each may take s different 
levels (values) of a robust design experiment using 
the PGA.

• Evaluate the relative efficiency of each feasible solution 
and their associated responses, using DEA.

• Calculate the optimal combination of inputs to achieve 
the desired performance measure extending the DEA 
model.

The following subsections provide details of each of the 
steps.

2.1. Generation of feasible solutions 
using the PGA

In this paper, we use the PGA developed in [10] to generate 
the feasible solutions for obtaining the performance 
measures (responses). For completion, we briefly 
summarize the procedure for both, a single response and 
later extend the procedure for multiple responses.

PGA for single response

The PGA represents the combinations of k control factors 
that may take s different levels (values) of a robust design 
experiment using an integer codification. One chromosome 
will be composed of a combination of different levels of 
each factor, which corresponds to a particular treatment 
of the experiment. For instance, let flj be the factor j of 
chromosome l, with j = 1,2, …, k and l = 1,2, …, N. Each flj can 
take the value of a given level of the factor j, that is 1,2, …, s. 
One chromosome (or solution) is expressed as a row vector 
(see Eq. 1). The matrix representing the total population 
of solutions X will be composed of N chromosomes (see 
Eq. 2). 

               (1)
 

              (2)

Each of the chromosomes (solutions) xl will generate 
a different response y of the system when the control 
factors are set to the corresponding levels specified in 
the chromosome xl. The PGA searches through the space 
of possible treatment combinations, finding those that 
minimize the variance of the response and adjust its mean 
as close as possible to its corresponding target value.  In 
single-response systems, according to [10], the PGA states 
a multiobjective optimization problem (MOP) by means of 
expression (3):
     

(3)

In model (3) expresses the 
adjustment of the mean to its target value τ, and the term  

 represents the variance, which must be 
minimized. The constraint in (3) simply sets a lower (L) 
and upper tolerance limit (H) for the mean. These limits 
must be established by the experimenter, accordingly. The 
necessary dominance relations between two solutions 
for single-response systems are stated in Eq. (4): x1 will 
dominate x2 if and only if:
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          (4)

PGA for multiple responses

In the case of a multiple response system, it will have r 
responses  so that the PGA needs to decrease 

 and minimize . To deal with this 
MOP and to be able to represent the solutions in a two-
dimensional graph, showing the trade-off between variance 
reduction and adjustment of the mean, the PGA aggregates 
the variance of each response and the square deviation 
between the mean and the target value of each output using 
the same approach used in [10], by defining a desirability 
Dl(φ1r(xl)) and penalty function Pl(xl) as shown in Eqs. (5) and 
(6):

 (5)

 (6)

Following [13, 14], the desirability for each response is 
calculated by expression (7):

  (7)

Where br corresponds to the most desirable case and ar to 
the least desirable case and must be set by the engineer. 

Moreover, each element of the penalty function (6) can be 
expressed as expression (8): 

(8)

Each response yr has a target value τr and a lower and 
upper limit given by Lr and Hr respectively, in which 

 For chromosome xl to be 
feasible, the corresponding response must be within those 
limits  The constant c avoids pr from 
becoming zero if infeasible cases arise, and thus, ensures 
that a non-zero P is calculated for a non-feasible solution 
(see [13]). A value of 0.0001 is assigned to c, which does not 
influence the value of the final solution [13]. To use similar 

expressions to Eq. (4) to establish the MOP and necessary 
dominance relations between pairs of chromosomes 
(solutions) for multiresponse systems, the PGA defines for 
those systems (see Eq. (9)):
      

(9)

where in (9) D1 is the desirability (see eq. (5)) corresponding 
to mean adjustment and D2 to variance reduction, 
aggregated across the R  responses.

Thus, using (9) and noting that the PGA must maximize 
 the MOP for multiresponse systems and 

corresponding dominance relations between two solutions 
are as shown in Eq. (10): 
    

      (10)

and x1 will dominate x2 if and only if the conditions in (11) 
are satisfied:
     

(11)

2.2. Evaluation of the relative 
efficiency using DEA

DEA is used to calculate the relative efficiencies of the 
responses obtained by the PGA. DEA is a nonparametric 
method of operations research for estimating production 
frontiers of a set of Decision Making Units (DMU). Based 
on the work of [11, 15] used DEA to measure the relative 
technical efficiency of DMUs, with multiple inputs and 
outputs. The measurement of technical efficiency oriented 
to inputs identifies the quantity to which the inputs must 
be reduced, for keeping the specified level of the outputs. 
Correspondingly, DEA can also find the increase in the level 
of outputs, using the same level of inputs. 

As we are interested in assessing the merit of each of the 
solutions obtained given a choice in the mean deviation 
and standard deviation and that it cannot be expected a 
proportional effect in the output due to a change in the 
inputs, the input-oriented model with variable returns to 
scale is more appropriate than the output-oriented model. 
The input-oriented model with variable returns to scale can 
be defined as follows: Given D DMUs, producing Q outputs, 
using I inputs, Eq. (12) presents the Charnes, Cooper and 
Rhodes’ model [11, 15, 16] oriented to inputs and variable 
return to scale, for the case of the DMU d:
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For the robust design application, we can first define cm as 
the economic cost incurred per unit of mean adjustment 
(i.e., cm = $ monetary unit / unit in which mean adjustment is 
measured) and cs as the economic cost incurred per unit of 
standard deviation (i.e., cs = $ monetary unit / unit in which 
the standard deviation is measured). These costs may be 
established by the firm’s Quality Assurance Department. 
For simplicity, the relative cost of mean adjustment to 
standard deviation   can be considered and select 
the solutions with that minimum relative cost. Thus, using 
model (13) the vector cd can be constructed by assigning the 
relative cost c to the mean adjustment, and cost 1.0 to the 
standard deviation, while the matrix of responses Z and the 
matrix of inputs K are the same as defined in Section 2.2. 
Thus, the model (13) can be used to select the solution with 
minimum relative cost (i.e. the one which allows incurring 
the minimum penalty, in economic terms) for each decision 
unit, in this case, for each solution achieved by the PGA. 
Once the values are obtained, the solutions can be ranked 
by their total cost (the objective function of problem (13)) 
and the less costly solution can be selected.

3. Examples of the application 
of DEA to analyze the solutions 
found by the PGA
To apply the proposed DEA method to the evaluation of the 
solutions delivered by the PGA, two case studies were used. 
The first one corresponds to a real application of robust 
design to adjust the automatic body painting process in 
a car manufacturing plant. The second case study uses 
a multiresponse process simulator with four responses, 
ten control factors and five noise factors. This simulator is 
described in [18]. 

3.1. Analysis of the solutions 
obtained for the single-response real 
system

In this case, a robust design experiment was carried out 
to adjust the width of the painted strip of a car painting 
system to a nominal width of 40.0 [cm]. The design of the 
experiment consisted of an orthogonal array L9(3

4) for the 
four control factors and a L4(2

3) for the three noise factors. 
More details and the data may be found in [19, 20]. Figure 
1 shows a graph of the solutions delivered by the PGA. The 
solutions are plotted using │Y-τ│as a measure of mean 
adjustment and s (the standard deviation) as a measure of 
variation. Note that we use │Y-τ│ instead of  (Y-τ)2  to only 
have a smaller measure of mean adjustment, and thus 
make more readable graphs. However, the PGA always uses  
(Y-τ)2  in its fitness function. The figure shows the solutions 
that lie on the efficient frontier along with other solutions 
found. Table 1 presents the relative technical efficiency of 
the 10 highest efficiency solutions. In Table 1, the solutions 
correspond to the combination of the control factors. For 
example, solution [2-3-1-2] means that the combination of 
control factors A = 2 (spray gun type 2), B = 3 (paint flow 

(12)

where the scalar  is the technical efficiency 
measurement of DMU d, d =1,…, D; Z is the matrix of products 
zqd, q = 1,…, Q, K is the matrix of inputs kid , i = 1,…, I, and λ is a 
column vector variable with all values non-negative. A fully 
efficient solution should have E = 1.

Using the notation of the PGA problem described in Section 
2.1, Z can be the solution expressed in each chromosome 
that should be achieved by the system. Taking for instance 
the following example, in which we need to adjust the 
width of the painted strip of a car painting system to a 
nominal width of 40.0 [cm]. In that case, considering each 
solution achieved by the PGA as a DMU, the vector Z will 
be replaced by the vector of solutions achieved by the PGA. 
Correspondingly, the K vector of inputs consists of the vector 
of mean deviation from the target: │Y-τ│ (with τ = 40.0 [cm]) 
and the vector of standard deviation s of the painted strip 
achieved by each solution found by the PGA. The constraints 
Zλd ≥zd and Kλd ≤ Edkd define the technology frontier for the 
observed output vectors zd and the observed input vectors 
kd. The summation 1T λ = 1 together with the non-negative 
condition of the λ imposes a convexity condition on how the 
inputs and outputs of the units can be combined [16]. 

The technical efficiency of each solution delivered by the 
PGA will be computed and the solutions ranked according 
to their respective technical efficiencies. 

The corresponding will be done for multiple response 
systems, each solution obtained by the PGA delivers a set 
of outputs φ1(xl) and φ2(xl ). The responses φ1(xl) and φ2(xl) can 
be used to build the matrix of outputs Z while the inputs 
still form the matrix K respectively. Again, the technical 
efficiency of each solution delivered by the PGA can be 
computed and the solutions ranked according to their 
respective technical efficiencies.

2.3 Optimal combination of inputs 

The last step of our framework is the selection of the 
combination of inputs that can be improved in order to 
achieve a predefined quality measure. In particular, we use 
the model developed by [17], described by model. (13):
 

(13)

 where cd is the cost vector of DMU d.  
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cm and cs economic costs or penalties may be furnished by 
management, based on the contract signed with the client, 
i.e. the importance to customers to get products and/or 
services with a maximum mean adjustment and variation; 
the cost of implementing each solution in the system; the 
cost to the firm when achieving a certain level of mean 
adjustment and variation in its products and/or services, 
and/or any other consideration. For example, for any of 
the above-mentioned reasons, management may calculate 
that for each [cm] that the painted strip is out of the target 
value of 40 [cm], the firm will incur in a cost of 300 [US$/
cm]  (cm), due to the overspraying of the surfaces and thus, 
the additional paint used. On the other hand, for each [cm] 
of standard deviation of the painted strip, the cost may be 
2,000 [US$/cm] (cs), because if a high variation exists, that 
may cause serious quality problems and much rework to be 
done. For those values, the relative cost is c = cm / cs = 0.15.  
Then, the engineer will set up model (13) using that value of 
c, and the model will select the solution with the minimum 
cost. Actually, model (13) will deliver the corresponding 
mean adjustment and standard deviation attained by that 
solution. On the other hand, using model (13) the ranges 
of relative costs c can be computed, within which each of 
the efficient solutions provides the best alternative (i.e. the 
minimum penalty value in economic terms). Table 2 shows 
those ranges. For this system and the above-mentioned 
considerations, Table 2 indicates that the engineers should 
select solution [2-3-1-2]. Incidentally, [19]  states that the 
engineers indeed valued more achieving a painted strip 
with low variation rather than one with a very good mean 
adjustment. Additionally, given that solution [2-3-1-3] was 
less expensive to implement than solution [2-3-1-2], they 
chose the former one [19]. Although [19] does not give 
economic data in his paper, using model (13) the cost c for that 
solution can be computed, which is 0.158. That cost means 
that indeed the engineers valued much more attaining a low 
variation than a good mean adjustment, determination that 
is aligned to the recommendation of several practitioners 
of quality improvement [21]. Remarkably, using model (12), 

of 390 [cc / min]), C = 1 (fan air flow of 260 [Nl / min]) and 
D = 2 (atomizing air flow of 330 [Nl / min]) should achieve 
a painted strip with a mean width of 41.03 [cm] (mean 
adjustment is 1.030 [cm], and thus yavg = 40 [cm] + 1.030 
[cm]) and a standard deviation of 1.440 [cm]. As expected, 
the three solutions that lie on the efficient frontier have 
technical efficiency equal to 1.0. Thus, we can corroborate 
that the approximation to the Pareto frontier delivered by 
the PGA is good.

Figure 1  Efficient frontier and other solutions for 
the real single-response system

The rest of the solutions shown in Table 1 have efficiencies 
below 0.73, and thus are not Pareto efficient. Without 
regard to other considerations, the engineers should 
select among the three different efficient solutions, the 
one to be implemented in the system. However, depending 
on the cost to implement each solution, that decision 
may be different. In that regard, using model (13) and 
knowing the economic cost or penalty per unit of mean 
adjustment (cm) and the economic cost or penalty per unit 
of standard deviation (cs), DEA can determine the efficient 
solution with the smallest combined cost or penalty. The 

Table 1 Solutions obtained for the real single-response system (10 best solutions)
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[2-3-1-1], then the technical efficiency will be 0.724 (see 
Table 1), a 27.6% less than if he/she had selected any of the 
efficient solutions. Additionally, the increment in penalty 
incurred by implementing solution [2-3-1-1] instead of the 
efficient solution [2-3-1-2] is high. Using cm = 300 [US$/cm] 
and cs = 2,000 [US$/cm] (the same applied in the previous 
analysis), the penalty for solution [2-3-1-1] is equal to: c = 
300 [US$/cm] x 1.4 [cm] + 2,000 [US$/cm] x 3.48 [cm] = US$ 
7,380, where the mean adjustment and standard deviation 
was obtained from Table 1. On the other hand, the penalty 
for solution [2-3-1-2] is: c = 300 [US$/cm] x 1.03 [cm] + 2,000 
[US$/cm] x 1.44 [cm] = US$ 3,189. The difference between 
both penalties is US$ 4,191 or the penalty for solution [2-3-
1-1] is 2.134 times higher than that for solution [2-3-1-2].

the technical efficiency calculated for that solution is 1.0, 
achieving a mean adjustment of 6.067 [cm] and a standard 
deviation of 0.6442 [cm] of the painted strip. From Table 1 
and Figure 1, it can be seen that the PGA did not find that 
extreme solution. This is not surprising, because PGAs find 
only approximations to the efficient frontier and tend to 
miss extreme solutions [22].

Notwithstanding all the aforementioned considerations, if 
for any reason, the manager decides to select a solution that 
does not belong to the efficient frontier (i.e. an inefficient 
solution), he /she can consult the technical efficiency of it 
to assess the decrease in efficiency brought about by his/
her decision. For example, if the manager chooses solution 

Table 2 Relative cost of mean adjustment to standard deviation for the case studies
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3.2. Analysis of the solutions 
obtained for the single-response 
complex systems

To apply the DEA analysis to a more complex situation, a 
simulator was used, which is described in detail in [18]. 
The robust design for this situation considers using an 
inner array L64(4

10) for the ten control factors and an outer 
array L16(4

5) for the five noise factors. For the following case 
studies, the four responses of the simulator are optimized 
independent from each other, so that the DEA analysis 
is applied to the results delivered by the PGA for four 
single-response systems. Table 3 presents the efficiencies 
of the best 10 solutions found by the PGA for response one of 
the system simulator and Figure 2(a) shows a graph of those 
solutions. Note that three solutions that were regarded as 
efficient by the PGA, do not have a DEA efficiency equal 

to 1.0, although their efficiency is very good. This can be 
clearly seen in Figure 2(a), where the approximation to the 
efficient frontier found by the PGA is not totally convex. 
Here again, this result is not surprising because the PGA 
finds an approximate Pareto frontier and given that it is 
working with few input data points, its estimation could be 
modest [22]. The worst solution (not shown in Table 3) has 
an efficiency of 0.636 and the average efficiency for all 35 
solutions found by the PGA is rather good (0.803). On the 
other hand, as stated before, using model (13) the ranges 
of relative costs c can be computed, within which each of 
the efficient solutions provides the best alternative (i.e. 
the minimum penalty value in economic terms). Table 2 
shows those ranges. Those ranges indicate the solution 
that should be selected by management, according to the 
relative importance of mean adjustment and standard 
deviation for the response, per a similar consideration as 
the one already presented in subsection 3.1 for the real 
system.

Table 3  Solutions obtained for the single-objective complex system response Y1 (10 best solutions)

Table 4 Solutions obtained for the single-response complex system response Y2 (10 best solutions)
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good solutions. Table 2 shows the corresponding ranges of 
cost c for helping to select the solution that may best meet 
the management needs.

3.3. Analysis of the solutions 
obtained for the multiresponse 
complex system

This case study used the same simulator and the same 
experimental design as before, but the solutions found by the 
PGA should optimize the four responses at the same time. 
This means that the PGA is optimizing a four–dimensional 
multiresponse system. Before presenting the solutions, the 
reader should bear in mind that for this case, the PGA is 
maximizing the measures φ1(xl  ) (related to mean adjustment) 
and φ2 (xl ) (related to reduction of variation), thus the higher 
φ1 (xl ) and φ2 (xl ), the better. The model (13) can be restated to 
account for this change of purpose by simply replacing the c 
costs by prices p and maximizing the function. The resulting 
model is now a maximization problem that calculates the 
increase in value (expressed in a bonus or price) that a 
customer gets for incrementing φ1 (xl ) and φ2 (xl ) (i.e. getting 

Table 4 and Figure 2(b) show the results for the solutions 
found by the PGA for response two of the single-objective 
complex system. Here the DEA analysis indicates that the 
PGA found a good approximation to the efficient frontier and 
that the 40 solutions delivered are good, as suggested by an 
average efficiency of 0.905 and a minimum one of 0.749. 
The same can be said regarding the solutions for response 
three, whose values are shown in Table 5 and depicted on 
Figure 2(c). 

The solutions for response three are somewhat inferior to 
those for response two, since the average efficiency for the 
32 solutions of response three is only 0.726 with a minimum 
of 0.519. As before, Table 2 presents the ranges of c that 
help to select among the efficient solutions, the one to be 
implemented in the system for response two and three.

Finally, Table 6 presents the efficiencies for the solutions 
found by the PGA for response four and Figure 2(d) shows 
the corresponding graph. For response four, the DEA 
efficient frontier is defined by four solutions. The average 
efficiency of the 53 solutions is 0.833 with a minimum of 
0.659. Thus, the PGA did well in finding a large number of 

Figure 2  Efficient frontier and other solutions for responses of the complex single- response system: 
(a) Y1, (b) Y2, (c) Y3, (d) Y4

     (c)                                                                                                                  (d)

     (a)                                                                                                                  (b)
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a tighter mean adjustment and a smaller variation). The 
prices p will be used by the management of the system in 
the same way that the c costs were used, but from a strict 
conceptual economic point of view, the aforementioned 
difference is worth noting. Table 7 and Figure 3 present the 
results and corresponding graph of the solutions found by 
the PGA. Since this is a maximization problem, the frontier 
should be concave and the non-efficient solutions should 
lie to the left of that frontier. Note that the frontier is not 
totally concave and that the middle solution of the frontier 
should not belong to it. That solution [2 - 1 - 2 - 3 - 4 - 3 - 4 
- 1 - 2 - 3] withφ1(xl) equal to 0.665 and φ2(xl) equal to 0.893, 
has a DEA efficiency of 0.981. Thus, it is near the frontier, 
but strictly speaking is not part of it. Here again, the PGA 
found a reasonable approximation to that frontier, but due 

Table 5  Solutions obtained for the single-response complex system response Y3 (10 best solutions)

Table 6  Solutions obtained for the single-response complex system response Y4 (10 best solutions)

to the small number of input data points, the approximation 
may be modest  [22].

Using model (13) for this case, the ranges of relative prices 
p can be computed, within which each of the efficient 
solutions provides the best alternative (i.e. the maximum 
economic benefit). Table 2 shows those ranges. For 
example, if management estimates that the price pm clients 
may pay for mean adjustment relative to the price for 
reduction in variance pv is p = pm / pv = 0.3, then they should 
select solution [3 - 3 - 1 - 2 - 4 - 4 - 2 - 1 - 3 - 2]. In that case, 
management believes that clients value more variance 
reduction than mean adjustment. On the contrary, if the 
estimate of p is for example 1.5, that means that customers 
value more mean adjustment than variance reduction and 
solution [3 - 4 - 2 - 1 - 3 - 3 - 1 - 2 - 4 - 2] should be selected.
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4. Conclusions
The analyses of the solutions found by the PGA for all 
the case studies using DEA’s model (12) show that the 
approximation to the efficient frontier found by the PGA 
is rather good. Additionally, and perhaps more important, 
DEA’s model (13) will help decision makers to make the 
right decision regarding the solution to be selected for being 
implemented in the system. In the case of single-response 
systems, by estimating cm (the cost or penalty of achieving 
a certain value of mean adjustment) and cs (the cost or 
penalty of getting a given standard deviation), the approach 
presented can clearly show the trade-off between mean 
adjustment and variation reduction in the production and/
or service process and thus management can consciously 
select the alternative that better meets a specified quality 
level. For multiresponse systems, the same can be said, but 
using the prices pm and pv. In any case, if for any reason, a 

solution that does not lie on the efficient frontier is selected, 
the presented approach can be used to compare the 
technical efficiencies and penalties of the solutions, so that 
management can clearly assess the relative downgrading 
of those values.

Finally, because the DEA analyses of the solutions delivered 
by the PGA show that the algorithm seems to work reasonably 
well in the case studies, it is meaningful to continue 
developing and improving it. One of such enhancements 
could be to try to achieve a better approximation of the 
efficient frontier, both in terms of obtaining more points of 
the frontier and a more convex or concave one. Although 
robust design studies use highly fractioned experimental 
designs to reduce experimental costs, and thus the PGA 
works with a relatively small number of data points, the 
PGA could try to counterbalance that by using additional 
points calculated by response surface methodology (RSM) 
[23]. In this case, RSM may be applied for estimating the 
response surface of the system using the experimental 
data and then employing the response surface to calculate 
additional points that will be used by the PGA.  The authors 
are working on such improvement and preliminary results 
show that such refinement is worth investigating.
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