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ABSTRACT: In order to obtain the envelope curve of shear force and bending moment
induced by vehicle live loads along Mexican isostatic bridges with spans from 15.0 to 50.0
m, first and second-degree equations are calculated by considering the position from the
initial right joint to the final left joint of a beam as the independent variable. Additional
to the professional use of this elementary tool, it can be used in academic courses
of bridge design in order to avoid the illegal use of commercial software. By using a
simple-short algorithm developed in a free software application, the theoretical envelope
curves are obtained. In order to simplify the process, these curves are used to calculate
the coefficients of shear force and bending moment equations by means of a statistical
analysis. The minimum value of correlation coefficient for both methodologies was 0.98.
This proposed method could be also extended to other vehicle loads used worldwide.
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RESUMEN: Este articulo presenta un método practico para calcular la curva envolvente
de cortante y momento en puentes isostaticos con longitudes entre 15,0 y 50,0 m,
considerando las cargas vivas del reglamento mexicano. La curva de cortante es una
funcion de primer grado mientras que el momento flector es de segundo grado, en ambos
casos la distancia a partir del extremo izquierdo de la viga es la variable independiente.
Esta herramienta puede utilizarse ya sea en el diseno de puentes en el campo profesional
0 en cursos académicos, evitando asi el uso ilegal de software profesional. Mediante un
algoritmo simple desarrollado en software libre se calcularon las envolventes de ambos
elementos mecanicos, utilizadas posteriormente para evaluar, mediante un analisis
estadistico, los coeficientes de las ecuaciones respectivas. El minimo coeficiente de
correlacion entre ambos métodos fue 0,98, lo cual muestra la capacidad del método.
Este proceso puede ser implementado para cualquier tipo de carga viva en puentes.

Puentes, curva envolvente,
cortante, momento, software
libre

In the field of design of bridges, either in Civil Engineering
education or professional work, maximum values of shear
force and bending moment for isostatic superstructures
are often evaluated by the influence line method. This
could have two disadvantages: a) it is a complex task, b)
only some points of the envelope curve are calculated.
Another alternative may be to use professional software
for structural analysis. However, for academic institutions
of Civil Engineering or small design companies located in
developing countries, the latter option can result in high
costs. Therefore, illegal use of professional structural
analysis software is very frequent. In fact, this situation
reaches 65% of the whole software employed in Latin
America [1].

1. Introduction

Design of bridges is a complex process where some
branches of Civil Engineering converge, for example:
Structural Analysis, Hydraulic-Hydrology, Geotechnical
Engineering, Earthquake Engineering, and Design of
Reinforced or Precast Concrete. To simplify this process, it
is necessary to develop some basic tools for computerized
calculation. Thus, coefficients of First-degree and Second-
degree equations to define the envelope curve of shear
force and bending moment caused by the most common
Mexican standardized vehicle live loads were calculated.
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For structural design, the envelope curve of bending
moment is used to define either the length of longitudinal
reinforcement or the trajectory of tendons in precast
concrete beams. For steel superstructures, this curve
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can also help to define the position of reinforcing flexural
plates. In the same case, the backbone curve of shear force
defines the type or characteristics of shear reinforcing.

Thus, due to the high cost of professional software for
structural analysis, a technical teaching tool was developed
to be used in a bridge Design course at the Autonomous
University of Guerrero (Mexico) taking into account two
main aspects: a) To develop a designing basic tool using free
software, considering the main principles of Mechanics,
Matrix Algebra, and Statistics, c) To produce a simple-short
algorithm of easy implementation for other vehicle live
loads defined worldwide.

2. Materials and methods

2.1. Mexican vehicle live loads

Mexican Standards define two kinds of virtual vehicle live
loads for bridge design. Figure 1a shows the vehicle live
load used in bridges with span greater or equal to 15.0 m
in roads Type D, it is called IMT20.5. For roads Type ET, A,
B and C, the vehicle live load is called IMT66.5; when the
length of the bridge is less than 30.0 m, this vehicle live load
has six loads, Figure 1b. If the bridges span is greater than
30.0 m, the system has three point loads and a distributed
uniform load, Figure 2a. The weight of this virtual vehicle
live load is 654 KN [2].

P5= 177k P4=25 kN
w =8.8 kN/m
' v v v v vy
‘ 6.0m ‘
al
123 kN 123 kN 123 kN 118 kN 118 kN P1=49 kN
o —f= 7.2m : 44m !

1.2m'1.2m

1
L

b

Figure 1 a) Vehicle live load IMT20.5, b) Vehicle
live load IMT66.5 for bridge’s length up to 30.0 m

In some cases, bridge design is still based on other
vehicle live loads defined by earlier Mexican standards, for
example: Trucks T3S3 and T3S2R4 with weight of 478 KN
and 758 KN, respectively, Figure 2b - Figure 3 [3].
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Figure 2 a) Vehicle live load IMT66.5 for brid?e's
length greater or equal than 30 m, b) Vehicle live
load T3S3
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Figure 3 Vehicle live load T3S2R4

2.2. Methodology proposed

In order to evaluate the backbone curve of shear force and
bending moment, a practical algorithm in a free software
application [4] was developed. The process consists of the
following steps:

Step 1. The bridge superstructure is modeled as an
isostatic beam, Figure 4. The load position is defined by
the L, variable, L is the length of isostatic beam. The First
Law of Newton was used to calculate the beam reactions.
Mechanical internal elements caused by this load, shear
force (V) and bending moment (M), were evaluated by Egs.
(1-4) according to the analysis length X, Figure 5.
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Figure 4 Superstructure of bridge modeled as
isostatic beam
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Figure 5 Body free diagram, a) when 0 s X< L7, b)
when X 2 L1
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V=P1(L-L,)/L (1)
M=VXx (2)
V=—-P1L/L (3)
M=V(L-X) (4)

In Egs. (1-4), the distance X defines the analysis section. In
this study, the load P7 was placed in 101 positions (variable
L,); for each load position, the mechanical internal elements
(shear force and bending moment] were calculated in 101
points along the longitudinal axis of the beam (distance
X), including the initial and final sections (X=0.0, X=L). This
information was stored in an array called [M,] (101x101].
Each row of this array has 101 values of shear force or
bending moment that correspond to position of load P7
defined by L. If the vehicle live load has three loads (PT1,
P2, and P3), additional arrays [M2] and [M3] are calculated.

101

Step 2. Figure 6 shows a defined position of the load
distribution. In this situation and respect to the node A,
the load P3 is over it, the load P2 is positioned at distance
b, and the load P17 is at distance b+a. For this load system
position, mechanical internal elements (101 values] of
each individual load array correspond to: a) n, -row of [M]
array for load P7, b} n’ - row of [M,] array for load P2, and
c) first row of [M,] array for load P3. The n”, and n,values
are obtained according to Egs. (5) and (é); Figure 7 shows
the position of these mechanical elements in arrays [M1],
[M2], and [M3].

P3 P2 P1

L

Figure 6 Load distribution
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Figure 7 Position of mechanical elements in arrays for the load system of Figure 6, a) First row of [M ]
caused by load P3, b) n'_-row of [M,] caused by load P2, and c) n,-row of [M ] caused by load P71
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Figure 8 Arrays [M_] and general matrix [M ], a) array [M_] caused by load P7, b) array [M_,] caused
by load P2, c) array [M_] caused by load P3, d) superposition of arrays [M_], [M_], and [M_]
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n, = Upper Integer(100b/L) + 1 (5)

n, = Upper Integer (100 (a +b)/L) +1 (6)

According to Eqg. (6], the number of rows of load system
array [M,] for a vehicle live load composed by m-loads can
be evaluated by Eq. (7], the Zsymbol shows the total length
of the load train system and l/ is the distance between two
consecutive loads.

T = Upper Integer (100 £%7* [;/L ) +101  (7)

Step 3. For the superposition process, the proposed

matrix [T.] (T, 101), which premultiplies the matrix [M], is
required, Eq. (8). Eq. (9] defines the limits of index of these
arrays: [, k, and p.

Mg (LK) = Tr(l,p) M;(p, k) (8)

1 <I<T 1<k <101,1<p<101 (9)

The relation among the index of general array [M_] and
individual array [M] must be established. In upward order
from P71 to P3, where i has values from 1 to 3, Egs. (10-12)

were obtained, Figs. 8a, 8b, and 8c.

The row n, of Eq. (11) can be evaluated by Eq. (13). In the
same way, Eq. (14) values the [M,] array associated to the

algorithm transforms each individual matrix [M] (101, 101) ~ load Piwhen i >1, Eq. (15) defines the value of n,, where |,
in a general matrix [M,] (T, 101), then a transformation is the distance between two consecutive loads.
P {if 1 <1<101, l=p, Te(l,p) = 1.0, My, (LK) = My (p, k)
“ T lif 1> 101, TR(l,p) = 0.0, Mgz (I, k) = 0.00 (10)
i=2 { if l <niandl > (n, +100), Tr(l,p) = 0.0, Mg, (Lk) =0.0
“ 2 lifn, <1 < (ng +100), l=p+n,—1, Tr(l,p) = 1.0, Mg (L k) = My(p, k) (1)
._3{ ifl<n,, Tg(Lp)=00, Mg(k) =00
TP lifn, <1 <(mp+100), l=p4+n,—1, Tp(p) =10, Mgs(Lk) = Ms(p,k) (12)
n, = Upper Integer (100 a/L)+ 1 (13)
i
o1 { if 1 <ng_pyand 1> (ng_qy +100),  Tp(Lp) =00,  Mg(L k) =0.0
"Ufng-ny <1 < (- +100), I=p+ngqy—1,  Tel,p) =10, Mg k) =M;(p,k) (14)
-1y = Upper Integer (100 £/} 1;/L) + 1 (15)

The superposition of the effects of load system composed
by m-loads is defined by Eq. (16), it is showed in Figure 8d.

Mg = Xi%; Mg (16)

For any load system, the distance among loads defines the
first cell where each load begins to cause either shear force
or bending moments in the beam. The first black block of
Fig 8d shows the first value effect of load P7 in the first
section of beam analysis. The second black block indicates
the cell that records the first effect of load P2, this cell is on
the n,- row. The third black block, in the n,- row, contains
the first effect of load P3.

Step 4. The maximum value of each column of array
[M.], which is the point of envelope curve of shear or
bending moment for this analysis section of beam, was

obtained. If the load system includes a uniform distributed
load, Figure 1a and Figure 2a, the correspondent shear
force and bending moment were evaluated and added to
the original values.

3. Results and
Discussions

3.1. Envelope curve of shear
force and bending moment

Four load systems of the Mexican Standard were analyzed.
According to the common practice of bridges design in
Mexico, spans from 15.0 m to 35.0 m were considered for the
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analysis of the IMT20.5 vehicle. Three additional envelope
curves of shear force and bending moment for IMT66.6
vehicle, T3S3 vehicle, and T3S2R4 vehicle, were calculated
for 25.0 m to 50.0 m spanned bridges. As it be can seen in
Figure 9, both, the envelope curve of bending moment and
shear force, can be defined by a Second-degree and a First-
degree equation, respectively.
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Figure 9 Envelope curve of IMT 20.5 vehicle, a)
Bending moment, b) Shear force

3.2. Coefficients of shear
force and bending moment
equations

In order to simplify the evaluation of coefficients of bending
moment equations, two half of the curves were plotted. In
this way, it was necessary to define which segment could
be used for the evaluation. Figure 10 presents the two half
parabolas of the four analyzed curves. The dotted line is the
left half parabola used in this process. Egs. (17) and (18)
define the shear force and bending moment, where X is
the distance from the left joint to the analysis section, the
domainis 0 < X< L/2.

V=mX+b (17)

M = AX? + b,X (18)

Egs. (19) and (20) [5] give the coefficients of Egs. (17) and
(18], V and M are the values of shear force and bending
moments of envelope curve. Tables 1, 2, 3 and 4 show the
coefficients of four load systems (IMT 20.5, IMT66.5, T3S3,
and T3S2R4).

-1
[frll]: [27;( ZZ))((Z] [ZVEZX (19)

-

Figure 11 shows the evaluated curves with the coefficients
of Table 4 and the envelope curve evaluated for the T3S2R4
vehicle. As it can be seen, there is an adequate correlation
between two procedures. For the four load systems and
spans of analyzed bridges, the minimum value of correlation
factor is 0.98

X2

S

3.3. Examples of application to
evaluate the envelope curves

Example 1. Evaluate the envelope curve of shear force
and bending moment for an IMT66.5 vehicle considering a
44.0 m bridge span. According to Table 2 for this length,
with the coefficients of shear force and moment, Egs. (21)
and (22) can be obtained.

V =—17.118X + 639.936b, (21)
M = —15.971X% + 639.936X (22)

The domain of variable X is 0 < X < L/2 (22.0 m), Figure 12
shows the graphs of Egs. (21) and (22). In order to obtain
the envelope curve along the whole bridge span, a half right
curve is plotted by considering the mid-span as the axis of
symmetry.

Example 2. Evaluate the envelope curve of shear
force and bending moment for a T3S3R4 vehicle considering
a 44.0 m bridge span. According to Table 4 for a bridge span
equal to 44.0 m, with the coefficients of shear force and
moment, Egs. (23) and (24) can be obtained.

V =-17.275X + 603.021 (23)

M = —13.283X2 + 579.457X (24)

The domain of variable X is 0 < X < L/2 (22.0 m), Figure 13
shows the graphs of Egs. (23) and (24). In order to obtain
the envelope curve along the whole bridge span, a half
right curve is plotted by considering the midspan as the
axis of symmetry. Additionally, Figures 12 and 13 show the
calculated curves with a professional structural analysis
program [6].
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Figure 10 Envelope curve of bending moment divided in two half parabolas

Table 1 Coefficients of bending moment and shear force equations for IMT20.5. (kN-m, KN)

Bending moment Shear Bending moment Shear
L(m) L(m)
A bz m b1 A bz m b1

15  -17.825 257513 -22.239 257513 26  -12,145 309.996 -16.559 309.996
16 16.981 262.418 -21.396 262.418 27 -11.860 314.656 -16.275 314.656
17 -16.275 267.323 -20.660 267.323 28 -11.595 319.316 -16.010 319.316
18  -15.588 272.228 -20.003 272.228 29 -11.350 323.975 -15.765 323.975
19  -14.999 277.133 -19.414 277.133 30 -11.115 328.635 -15.529 328.635
20 -14.470 282.038 -18.884 282.038 31 -10.889 333.050 -15.313 333.050
21  -13.989 286.697 -18.404 286.697 32  -10.703 337.709 -15.107 337.709
22 -13.577 291.357 -17.962 291.357 33  -10.507 342,124 -14.921 342,124
23 -13.155 296.017 -17.570 296.017 34 -10.330 346.784 -14.744 346.784
24 12,792 300.922 -17.207 300.922 35 -10.163 351.198 -14.578 351.198
25  -12.459 305.582 -16.873 305.582

Table 2 Coefficients of bending moment and shear force equations for IMT66.5. (kN-m, kN)

Bending moment Shear L(m) Bending moment Shear
A bz m b1 A bz m b1
25 -24.505 526.071 -26.046 534.576 38 -17.825 604.914 -18.472 604.914
26 -23.603 529.711 -25.084 538.088 39 -17.462 609.250 -18.198 609.250
27 -22.730 534.223 -24.182 542.719 40 -17.128 616.097 -17.942 616.097
28 -21.916 537.559 -23.338 546.103 41 -16.814 620.267 -17.707 620.267
29 -21.160 540.403 -22.534 548948 42 -16.510 625.093 -17.491 625.093
30 -21.749 558.680 -21.749 558.680 43 -16.236  632.431 -17.295 632.431
31 -21.121 564.055 -21.209 564.055 44 -15.971 639.936 -17.118 639.936
32 -20.552 570.089 -20.709 570.089 45 -15.725 644.762 -16.942 644.762
33 -20.012 575.798 -20.258 575.798 46 -15.490 650.236 -16.795 650.236
34 -19.512 579.310 -19.846 579.310 47 -15.274 658.231 -16.657 658.231
35 -19.051 588.188 -19.453 588.188 48 -15.058 663.548 -16.530 663.548
36 -18.610 592.034 -15.100 592.034 49 -14.862 671.867 -16.422 671.867
37 -18.198 598.390 -18.776 598.350 50 -14.686 677.999 -16.314 677.999

L(m)
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Table 3 Coefficients of bending moment and shear force equations for T353 (kN-m, kN)

Bending moment Shear Bending moment Shear
L(m) L(m)
A b, m b; A b, m b:
25 -15.882 367.875 -19.031 378.985 38 -11.272 407.841 -12.518 414.649
26 -15.578 374.771 -18.296 385.562 39  -10.830 404.800 -12.204 412.952
27 -14970 375.988 -17.619 385.464 40 -10.703 408.479 -11.900 415.287
28  -14.489 379.706 -16.991 390.340 41 -10.457 411.186 -11.605 417.837
29 -13.969 383.002 -16.402 392.155 42  -10.212 411.186 -11.331 417.837
30 -13.754 387.848 -15.863 396.815 43 -9.967 412,775 -11.066 419.436
31 -13.332 390.556 -15.353 399.365 44 -9.918 416.032 -10.811 422.497
32 -12.910 391.193 -14.872 400.003 45 -9.535 414,531 -10.575 421.026
33  -12.714 395981 -14.421 403.289 46 -9.496 418.740 -10.340 425.048
34  -12.341 397.570 -13.999 404.888 47 -9.270 419.319 -10.124 424.312
35 -12.007 399.326 -13.597 406.477 48 -9.094 420.329 -9.908 426.637
36 -11.713 401.455 -13.214 409.764 49 -8.888 420,918 -9.810 425.901
37 -11.556 405.133 -12.861 412.098 50 -8.741 422.085 -9.516 428.236

Table 4 Coefficients of bending moment and shear force equations for T352R4 (kN-m, kN)

Bending moment Shear Bending moment Shear
L(m) L(m)
b, m b, A b, m b,

25  -18.001 441.489 -27.694 478.100 38 -14.656 551.420 -19.993 579.702
26 -17.648 455.086 -27.242 491.216 39 -14.303 553.971 -19.483 582.067
27  -17.099 461.335 -26.477 494,767 40  -14.264 564.291 -19.012 590.268
28 -16.873 471.675 -25.967 507.618 41 -13.920 566.596 -18.541 592.573
29  -17.158 479.052 -25.457 522.167 42 -13.606 570.913 -18.099 596.644
30 -16.618 493.718 -24.751 527.346 43 -13.450 574.984 -17.678 1598.950
31 -16.334 502.998 -24.103 535.253 44  -13.283 579.457 -17.275 603.021
32 -16.010 508.884 -23.446 541.178 45 -12.988 581.762 -16.893 605.326
33 -15.912 520.077 -22.828 550.616 46  -12.871 588.728 -16.530 610.280
34  -15.588 525.944 -22.220 558.179 47 -12.606 591916 -16.177 613.468
35  -15.225 529.897 -21.611 558.846 48 -12.400 592975 -15.843 617.540
36 -15.107 538.804 -21.052 569.000 49 -12.292 598.822 -15.519 621.611
37 -14.774 543.641 -20.503 570.520 50 -12.164 602.403 -15.206 624.799
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al

Figure 11 Comparison between the envelope curves and Eqs. (17) and (18) for T3S3R4 vehicle, a)
Shear force, b) Bending moment

6 500
600+ 6000 A e
5500 Eh
500 _ 5000 ff S
4 500
< 400 2 4000 7 %
. 3500 Z Y
5 300 3000 jf Kx’&&
5}
o= £ 2500
% 200 i e S 2000 f 3
100 : : : i : .: h 1500 J \‘(
8alculaﬁeg wgm Scﬂfafb et 10004 gaIcuIaEeg wim Scil?fb_ . %
x—x=xCalculated with coerriclents | : h 2 ~Calculatea with coertficients |
Of----- Calculated with SAP2000 > SO s Caloulated with SAP2000_| 5
O 5 10 15 20 25 30 35 40 45 e 8 g L & 3 8 &%
Span, m pa

al b)

Figure 12 Comparison among envelope curves for IMT66.5 vehicle, a) Shear force, b) Bending moment







