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An insight to the automatic categorization of 
speakers according to sex and its application 
to the detection of voice pathologies: A 
comparative study

ABSTRACT: An automatic categorization of the speakers according to their sex improves 
the performance of an automatic detector of voice pathologies. This is grounded on 
findings demonstrating perceptual, acoustical and anatomical differences in males’ and 
females’ voices. In particular, this paper follows two objectives: 1) to design a system which 
automatically discriminates the sex of a speaker when using normophonic and pathological 
speech, 2) to study the influence that this sex detector has on the accuracy of a further 
voice pathology detector. The parameterization of the automatic sex detector relies on MFCC 
applied to speech; and MFCC applied to glottal waveforms plus parameters modeling the 
vocal tract. The glottal waveforms are extracted from speech via iterative lattice inverse 
filters. Regarding the pathology detector, a MFCC parameterization is applied to speech 
signals. Classification, in both sex and pathology detectors, is carried out using state of 
the art techniques based on universal background models. Experiments are performed 
in the Saarbrücken database, employing the sustained phonation of vowel /a/. Results 
indicate that the sex of the speaker may be discriminated automatically using normophonic 
and pathological speech, obtaining accuracy up to 95%. Moreover, including the a-priori 
information about the sex of the speaker produces an absolute performance improvement in 
EER of about 2% on pathology detection tasks.

RESUMEN: Una categorización automática de los hablantes de acuerdo con su sexo 
mejora el rendimiento de un detector automático de patologías de voz. Esto se fundamenta 
en hallazgos que demuestran diferencias perceptuales, acústicas y anatómicas en voces 
masculinas y femeninas. En particular, este trabajo persigue dos objetivos: 1) diseñar un 
sistema que discrimine automáticamente el sexo de hablantes utilizando habla normofónica 
y patológica, 2) estudiar la influencia que este detector de sexo tiene sobre el acierto de 
un posterior detector de patologías de voz. La parametrización del detector automático 
de sexo se basa en MFCC aplicados sobre señales de voz; y MFCC aplicados a formas de 
onda glotal junto a parámetros que modelan el tracto vocal. Las formas de onda glotal se 
extraen de la voz a través de un filtrado inverso iterativo en celosía. En cuanto al detector 
de patologías, una parametrización MFCC se aplica a señales de voz. La clasificación, tanto 
en los detectores de sexo como de patología, se lleva a cabo con técnicas del estado del arte 
basadas en modelos de base universal. Experimentos son realizados sobre la base de datos 
Saarbrücken empleando la fonación sostenida de la vocal /a/. Los resultados indican que el 
sexo del hablante puede ser discriminado automáticamente utilizando habla normofónica y 
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1. Introduction
Systems that automatically detect pathologies by means 
of voice present potential advantages respect to traditional 
detection and evaluation procedures. In particular, they 
provide an objective assessment of the clinical state 
of patients, reduce the evaluation time and the cost of 
diagnosis and treatment [1]. Furthermore, they avoid 
invasive procedures by employing signals which are easily 
recorded by inexpensive means. Nonetheless, the usage 
of speech signals poses a difficulty due to the intrinsic 
variability of the voice which compromises the potential 
performance of automatic detection systems. In this regard, 
it is known that speech not only conveys linguistic but also a 
large amount of information about the speaker, such as sex 
(For discussions on the preferences of using this term over 
gender, please refer to [2]), age, regional origin, health, 
etc. [3]. Therefore, the design of automatic systems for the 
detection of voice pathologies should be carried out paying 
special attention to the influence of these acoustic and 
paralinguistic traits.

One major finding that facilitates the design process of 
automatic systems to classify speakers is described in 
[4]. In this work, accent and gender are identified as the 
most important sources of variability between speakers 
in speech recognition systems. Hence, differentiating 
speakers according to their sex and removing the influence 
of the accent should improve the results of any automatic 
system designed to categorize the speech. To this extent, 
a naive yet useful manner to counteract the influence of 
the accent in automatic pathology detection systems is to 
use sustained vowels instead of continuous speech. This 
also reduces the variability related to the prosody of the 
speakers since sustained vowels are relatively devoid of 
individual speech characteristics such as speaking rate, 
speaker’s dialect, intonation, and idiosyncratic articulatory 
behavior. Also, variations due to the phonetic context and 
stress are reduced [5]. It might be argued that by using 
sustained vowels the phonetic richness of the speech is 
restrained. Nonetheless, several automatic voice pathology 
detectors have performed successfully when using this 
acoustic material [6-8].

On the other hand, the variability introduced by the sex 
of the speaker remains as a major concern in the design 
of speech recognition systems. Certainly, the literature 
reports that by exploiting a priori information about the 
sex of the speaker, the performance of speech recognition, 
identification or verification systems improves [9]. For 
instance, authors in [10] enhanced the accuracy of an 
automatic emotion recognizer by incorporating information 
about the sex of the speaker. In [11], a speaker recognition 
system obtained a 2% accuracy improvement at equal error 
rate (EER) when using sex-specific models. Likewise, in [12], 
a sex classification stage improved accuracy and decreased 
computational load of a speaker diarization system.

The nature of the variability introduced by the sex of 
the speaker stands on physiological, acoustic, and 
psychophysical factors [13]. Regarding perceptual 
differences parameters such as effort, pitch, stress, nasality, 
melodic patterns of intonation and co-articulation are used 
for characterizing female voices, while male voices are 
judged on the basis of effort, pitch and hoarseness [14]. It is 
also argued that female voices possess a “breathier” quality 
than male voices [15]. Regarding physiological differences, 
the human laryngeal anatomy differs between sexes at a 
variety of levels. Particularly, males tend to have a more 
acute thyroid angle; thicker vocal folds; a longer vocal 
tract; a larger pharyngeal-oral apparatus, thyroid lamina 
and skull compared to that of females [16, 17]. Studies of 
excised human larynges have shown that anteroposterior 
dimensions of the glottis are 1.5 times larger in men than 
in women [18]. Besides that, the female pharynx has been 
found to be shorter than of males during the production 
of the three cardinal vowels. This may be a key factor in 
distinguishing between male and female voice qualities 
during speech production [17]. In addition, the observation 
of the glottis during phonation has suggested the presence 
of a posterior glottal opening that persists throughout a 
vibratory cycle and which is common for female speakers, 
but occurs much less frequently among male speakers 
[19]. Indeed, about 80% of females and 20% of males have a 
visible posterior glottal aperture during the closed portion 
of a vocal period [15]. Regarding acoustical differences, the 
pitch is the most known trait differentiating sexes [14], 
with females’ pitch higher than of males’ by as much as 
an octave [20]. There are also several important acoustic 
consequences of the posterior glottal opening during the 
closed phase of phonation, and which is more frequent in 
females. A first consequence is a breathier voice quality 
which is the result of a larger amount of air passing through 
the vocal tract [16] and that affects the relative amplitude 
of the first harmonic of the speech spectra [18, 21]. A 
second consequence is the widening of the first-formant 
bandwidths. This is because the glottal aperture produces 
energy losses particularly at low frequencies, resulting 
in a bigger bandwidth of the first formant [19, 21]. A third 
acoustic consequence is the generation of turbulence noise 
in the vicinity of the glottis [21] perceived as a high level 
of aspiration noise in the spectral regions corresponding 
to the third formant, contributing to a breathier voice [20]. 
A final consequence is a lower spectral tilt due to the 
presence of aspiration noise [20], which turns out to be a 
significant parameter for differentiating between male and 
female speech samples [19].

In addition to the acoustic differences reported from the 
study of the raw speech, there are some differences in 
the glottal components among sexes. On one hand and 
regarding the female glottal waveform, this presents a 
shorter period, lower peaks and lower peak-to-peak flow 
amplitude than of males [22]. Likewise, the derivative of the 
glottal waveform does not present an abrupt discontinuity 

patológica, obteniendo una precisión de hasta un 95%. Por otra parte, al incluir información a 
priori sobre el sexo del hablante se produce una mejora de alrededor del 2% de rendimiento 
absoluto en EER, en tareas de detección de patología.



52

J. A. Gómez-García et al.; Revista Facultad de Ingeniería, No. 79, pp. 50-62, 2016

during the closing time due to the incomplete closure of the 
vocal folds [13]. In general, it is stated that female glottal 
components are symmetric, with opening and closing 
portions of the waveform tending toward equal duration 
[23]. Conversely, and regarding the glottal waveform of 
male speakers, it is found that the open quotient is smaller 
and the maximum flow declination rate is greater than of 
females [19]. Moreover, the closing portion of the waveform 
generally occupies 20%–40% of the total period and it might 
not exist an easily identifiable closed period [14]. In general, 
it is stated that male glottal waveform are asymmetrical 
and present a hump in the opening phase.

The abovementioned differences evidence that the design of 
an automatic sex recognition system is feasible, either from 
the speech or from the glottal waveform. Indeed, automatic 
sex recognition in normophonic voice has been discussed 
before in the literature. In [24] the authors employ cepstral 
features and support vector machines (SVM) for sex 
recognition, obtaining 100% classification accuracy when 
using English allophones as acoustic material. In [25] the 
authors develop a methodology based on relative spectral 
perceptual linear predictive coefficients and Gaussian 
mixture models (GMM). Experiments are performed 
in noisy and clean utterances of different languages, 
providing classification accuracy up to 98% for clean 
speech and 95% for noisy speech. In [26], Mel frequency 
cepstral coefficients (MFCC) are used in connected speech. 
The MFCC are employed to characterize speech signals, 
glottal waveforms and deglottized voices. At the end, a 
performance up to 99% is obtained by using principal 
component analysis and quadratic linear discrimination 
analysis. In spite of the performance of abovementioned 
studies, and even when they take into consideration 
different languages or noise levels, the acoustic material 
is restrained to normophonic speakers. Hence, the 
application of these systems for pathological voices is not 
demonstrated, being this a challenging problem due to the 
presence of perturbations inherent to pathological states. 
Respecting pathological voice detection, it is evidenced in 
[27] that a manual segmentation of the speakers’ database 
according to their sex improves accuracy in an automatic 
pathology detection system. Furthermore, authors in [28] 
determined a significant sex-specific separation of control 
and pathological classes in the Saarbrücken database, 
by using statistical analysis and a series of acoustical 
and spectral measurements. Above studies suggest that 
profiting from the a priori information about the sex of 
speakers might be helpful in normophonic vs. pathological 
discrimination tasks.

The present paper proposes in a first instance to 
automatically differentiate the sex of the speaker to latter 
categorize normophonic and pathological speakers. 
The objective of this cascading procedure is to improve 
classification accuracy by simplifying the statistical models 
used in the identification of the presence/absence of 
voice pathologies. For this end, a state of the art pattern 
recognition framework based on GMM for classification 
and MFCC features for characterization is considered. For 
comparison purposes’, the parameterization is applied 
to the raw speech and to glottal waveforms extracted by 

following the inverse filtering approach in [29, 30].

The expected contributions by following the 
aforementioned scheme are:

• To test out if it is feasible to automatically extract 
information about the sex of speakers from 
normophonic and pathological voice. To our knowledge 
this work is one of the first attempts to extract this 
type of information automatically from such acoustic 
material.

• To test out if separating glottal source and vocal tract 
components produce an increment in automatic sex 
identification compared to just using the voice signal. 
This is supported by the mentioned differences 
between vocal and glottal signals among sexes.

• To test out if including automatically extracted 
information about the sex of the speaker might improve 
the performance of automatic pathology detectors.

The structure of the paper is as follows: Section 2 includes 
the theoretical review of some of the tools employed in 
this study. Section 3 presents the methodological setup 
employed in the different experiments of the paper. Section 
4 includes the results. Finally, section 5 presents the 
discussions, conclusions and future work.

2. Theoretical background
The scheme proposed in this paper is divided in two main 
stages running in cascade: the automatic detection of 
the speaker’s sex, followed by the automatic detection of 
pathologies. For the sake of comparison, the sex detection 
stage employs raw speech and glottal waveform extracted 
using inverse filtering techniques, whereas the pathology 
detection stage employs only raw speech signals. 
Firstly, a short view of the inverse filtering procedure for 
glottal waveforms extraction is presented. Latter, the 
parameterization approach is outlined. Finally, the pattern 
recognition approach used for classification is described.

2.1. Inverse filtering

Voice is formed by a glottal excitation that is filtered by 
the vocal tract to yield the air-flow at the mouth, which in 
turn is converted to a pressure waveform at the lips and 
propagated as sound waves. Since the glottal flow and the 
vocal tract can be assumed to be linearly separable [31], 
several methods have been proposed to extract the glottal 
excitation waveform from the speech, most of them based on 
inverse filtering. One succeeding inverse filtering algorithm 
is the iterative adaptive inverse filtering technique [32], 
which employs an iterative refinement of the vocal tract 
model and the glottal signal to produce a better estimate 
of the glottal waveform. This method depends on a correct 
modeling of the vocal tract by means of Linear Predictive 
Coefficients (LPC). However, due to deficiencies of LPC 
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with high pitched voices, variations have been proposed 
employing lattice filters [29]. This technique allows a 
precise reconstruction of the pressure and flow variables 
along the tube and of glottal signals. Such approach has 
been successfully used in pathological voice applications 
[29, 30], and therefore is considered in the present paper. 
The iterative inverse filter process based on lattice filters 
is illustrated in Figure 1 and includes the following stages 
[29]:

• Elimination of the lip-radiation effects: The input voice 
 is filtered using an inverse radiation model filter 

 to compensate the radiation effects at the lips to 
produce a trace of radiation compensated voice 

• Elimination of the glottal source spectral fingerprint of 
the input voice: a simple glottal pulse inverse model 
filter  is used to cancel the behavior of the glottal 
source in the radiation compensated voice, producing 
a trace of deglottalized voice .

• Estimation of the vocal tract transfer function by inverse 
linear predictive filtering using adaptive paired lattices: 
The previous signal is inverse-filtered using lattice 
filters to extract the model of the vocal tract given by 
the transfer function .

• Elimination of the vocal tract transfer function on input 
voice: The inverse of the function in previous step is 
applied to the radiation compensated voice , 
producing a residual trace containing only information 
on the glottal source derivative .

• Estimation of the glottal source transfer function to be 
applied in 2.

The process is iterated 2-3 times to obtain a refined glottal 
source derivative , which is then integrated to obtain 
the glottal source waveform. Besides that waveform, the 
vocal tract model  obtained in stage 3 is considered a 
set of parameters by itself.

2.2. Parameterization
The MFCC [33] are calculated following a method based 
on the human auditory perception system. The mapping 
between the real frequency scale  and the perceived 
frequency scale  is approximately linear below 1

 and logarithmic for higher frequencies. Such mapping 
converts real into perceived frequency. MFCC features are 
examined in this study due to their ability to model acoustic 
signals and their widespread usage in speech technology 
applications. MFCC are applied on one hand to the raw 
speech, and on the other to the glottal waveforms extracted 
via inverse filtering. With respect to the latter, the MFCC are 
concatenated with the vocal tract model  to form a 
new set of parameters.

2.3. Classification

The parameterization module provides for each speaker a 
set of feature vectors  of dimension , one for each time 
window under analysis. Each of these feature vectors is 
analyzed and categorized using a GMM-based detector.

A GMM models the probability density of a random variable. 
For a particular class , Eq. (1) defines a finite mixture of 

 multivariate Gaussian components, where  are scalar 
mixture weights,  are Gaussian density functions 

Figure 1 Outline of the iterative inverse filtering approach based on lattice filters employed in this 
paper
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presented in Eq. (6).

            (6)

A further improvement of the GMM-UBM is the 
GMM-UBM-iVector [35]. The method relies on mapping 
from an utterance to a -dimensional vector  called 
supervector, which is usually obtained by stacking the mean 
vectors of UBM models:  
[36]. The objective is to model the nuisances introduced 
in the database due to speakers, recording conditions, 
etc., into a space of total variability,  This variability is 
later compensated by using, typically, linear discriminant 
analysis and probabilistic linear discriminant analysis. 
The variability-dependent supervector for a speaker  of 
a class  is modeled as in Eq. (7), where  is a rectangular 
matrix of low rank and  is a random vector called iVector 
having a standard normal distribution  [35].

                               (7)

The GMM-SVM is another GMM improvement which 
combines the discriminating power of a SVM with the 
GMM modeling capabilities. A SVM is a discriminative 
binary classifier constructed from sums of a kernel function 

 which is of the form of Eq. (8), where  are ideal 
outputs taking values   are weights such that  

 is a learned constant; and  are 
the  support vectors obtained from a training set by an 
optimization process.

                   (8)

This Kernel function must fulfill the Mercer condition 
presented in Eq. (9), where  is a mapping from the input 
space to a possibly infinite dimensional expansion space.

                               (9)

By defining  as supervectors of the target and 
non-target classes respectively, a linear sequence kernel might 
be employed. This follows the form of Eq. (10) [37].

    (10)

Using this scheme for a test utterance  the classification 
is carried out as the inner product between the target 
model and the GMM supervector as in Eq. (11).

          (11)

The aforementioned classification schemes (i.e. GMM, 
GMM-UBM, GMM-UBM-iVector and GMM-SVM) have 
been applied to the automatic detection of sex and voice 
pathologies, aiming to identify the best classification 
framework.

with mean  of dimension  and covariance matrix 
 of dimension is formed by 

comprising the above mentioned set of parameters and 
can be estimated by using the expectation-maximization 
algorithm in a maximum likelihood maximization scheme.

             (1)

Since the design of a pathology or a sex detector is 
a two-class problem, two models are required, one 
representing the target class  and the non-target 
class

An enhancement of the GMM that has improved the results 
in speaker identification systems is the GMM-UBM [34]. 
The idea is to employ a generic GMM model, referred as 
Universal Background Model (UBM), which is trained using 
some background data typically belonging to a different 
database. The UBM serves as a well-trained initialization 
model, for which is possible to adapt specific models using 
the provided, and scarcer, training data. The adaptation 
procedure is typically applied to the mean of the UBM rather 
than to the whole set  Literature on speech processing 
reports different algorithms to adapt the UBM. However, in 
this paper the adaptation is carried out using the maximum 
a posteriori (MAP) algorithm. Given a collection of training 
data  the MAP technique 
adapts the mean  for the -th Gaussian as in Eq. (2); 
where  is the UBM mean and  
is a data-dependent adaptation coefficient that controls 
the balance between old and new estimates (  is usually 
set to  and  are sufficient statistics defined in 
Eq. (3), and  are responsibilities representing the 
probability of the component  in explaining the value  
as defined in Eq. (4).
     

            (2)

     

 

        (4)

The result of this adaptation procedure is a GMM-UBM 
model as in Eq. (5).

   

  (5)

In general it is possible to derive a log-likelihood decision 
function  for discriminating if a test data  belongs to 
the target class or to the complementary. This function is 

(3)
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3.2. Methodology

The proposed methodology comprises two main stages: 
an automatic sex detector and an automatic detector of 
voice pathologies. The combination in cascade of these 
subsystems forms a sex-dependent pathology detector. 
In this manner, the sex detector identifies if the speaker is 
male/female, and then feeds the sex-dependent pathology 
detector to check for the speakers’ condition.

Sex detector

Figure 2(a) represents the scheme of the automatic sex 
detector developed in this study. A detailed description of 
each one of the stages is presented next.

• In the preprocessing stage, all speech signals 
are down-sampled to 25 . In addition, a 
[−1, 1] normalization is carried out to homogenize the 
amplitude of processed recordings.

• In the inverse filtering stage, the glottal waveform and 
the vocal tract model  are further extracted 
from the speech via inverse filtering. For modeling 
the vocal tract 2 coefficients are used, 
whereas 4 coefficients are used for modeling the 
glottal waveform, being  the sampling frequency of 
the input voice recording. is obtained by inverse 
filtering the deglottalized voice using adaptive paired 
lattices, as explained in the stage 3 of the section 2.1.

• In the parameterization stage two experiments are 
considered. Firstly,  MFCC  features  are applied to 

3. Experimental Set–Up

3.1. Saarbrücken Database

The  Saarbrücken voice  disorders  database  [28, 38]  holds  
a  collection  of  speech  registers from more than 2000 
normal and pathological German speakers. It contains 
the recordings of the sustained phonation of vowels  

 produced at normal, high and low pitch, 
as well as with rising-falling pitch. Voice is recorded at a 
sampling frequency 50  and 16-bits of resolution. For 
the purpose of this work, only the  vowel at normal 
pitch is considered. Additionally, a subset of the database 
is segmented by a speech therapist, removing recordings 
with a low dynamic range or interferences and selecting 
registers according to an age balance. Table 1 comprises 
the final distribution of the data according to sex and 
condition after the speech therapist assessment. Similarly, 
the database employed for training the UBM models is 
presented in [27].

Table 1  Distribution of patients according to sex 
and pathology in the Saarbrücken database

 Figure 2  Outline of the proposed systems employed in the paper: (a) presents an automatic sex 
detector, whereas (b) presents a pathology detector. Both schemes are combined in a cascading 

framework, forming the proposed automatic sex-dependent pathology detection system in (c)

(a) Automatic sex detector system

(b) Automatic pathology detector system (c) Automatic sex-dependent pathology detection system
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4. Results

4.1. Sex detector

The sex detector is fed with parameters extracted from the 
raw speech signal and from the glottal waveform extracted 
by inverse filtering. In this respect Figure 3 presents some 
samples of the speech and extracted glottal signals for 
normophonic  and  pathological   speakers.

The MFCC coefficients are used to characterize the 
raw speech signal, whereas the glottal waveforms are 
parameterized using MFCC coefficients concatenated with 
the parameters modelling the vocal tract obtained during 
the inverse filtering process. Figure 4 shows the DET curve 
that represents the performance of the sex detector for 
these two approaches. Additionally, Table 2 summarizes the 
performance in terms of 

4.2. Sex-dependent voice pathology 
detector

Firstly, a sex independent pathology detector is used 
as baseline. It represents a system with no a priori sex 
information taken into account. Thus, the classifier has 
two statistical models, one for normophonic speakers and 
the other for pathological. The DET curve evaluating the 
performance is shown in Figure 5, while Table 3 summarizes 
the results in terms of 

Finally, a baseline sex-dependent pathology detection system 
developed segmenting manually the database according 
to the sex of the speaker is considered and contrasted with 
the proposed sex-dependent pathology detector employing 
automatic sex detection. In both cases, the classifier  has  four 
statistical models, two for normophonic speakers (one for males 
and another for females) and two for pathological. Regarding 
the proposed sex-dependent voice pathology detector, the 
operation point which produced the best performance in the 
sex detector is employed for this further stage. This operation 
point is obtained with 22 MFCC and using the GMM-SVM 
classifier with 4 Gaussians.

The DET curves for the baseline and the proposed 
system are shown in Figure 6, whereas the performance 
summarized in Table 4.

5. Discussions  and  conclusions
The present work studies the influence of the speaker’s sex 
in the performance of voice pathology detection systems. 
Two parameterization schemes have been employed for 
the design of the sex detector. In particular, a comparison 
is carried out using MFCC coefficients extracted from the 
raw speech, and MFCC coefficients extracted from the 
glottal waveform fused with parameters of the vocal tract 
model obtained via inverse filtering. Performance has been 
assessed by means of GMM, GMM-UBM, GMM-UBM-iVector 
and GMM-SVM classifiers. These classifiers represent 

speech signals. Secondly, MFCC features are applied 
to glottal waveform and concatenated with the vocal 
tract model , resulting from the inverse filtering 
procedure. In all cases, the number of MFCC coefficients 
is varied as: [4:2:22].

 
• In the classification stage, a GMM, a GMM-UBM, a 

GMM-UBM-iVector and a GMM-SVM are employed. 
The number of Gaussians is varied in the following 
set: {4, 8, 16, 24, 32, 64, 128, 200, 256}. Training of the 
UBM model is carried out using a private database 
belonging to “Universidad Politécnica de Madrid” [27]. 
The performance of the classifiers is assessed using 
a 10-fold cross-validation strategy, calculating the 
classifier accuracy  within a given confidence interval 

. Assuming a 95% value, the  range is estimated 
as  where  is the total 
number of patterns classified. Moreover, detection 
error trade-off curves (DET) are employed, as well as 
specificity  and sensitivity  at the EER point.

Sex-dependent voice pathology detector

Figure 2(c) presents an outline of the sex-dependent 
voice pathology detector used in this work. This system 
is composed by  two  modules connected in  cascade, 
so the above-described sex detector is used to categorize 
the speakers according to their sex to further discriminate 
between normophonic and pathological speakers with two 
different detectors, one for each sex using the scheme in 2(b).

In addition to the proposed sex-dependent pathology 
detector, two extra experiments are considered. These 
constitute the baseline systems used to contrast the 
performance of the proposed scheme. On one hand, a 
sex-independent pathology detection system is employed to 
compare whether or not sex influences the performance of 
the automatic detector of pathology. The sex-independent 
system follows the scheme presented in 2(b), leaving aside 
the sex of the speaker. On the other, the sex-dependent 
pathology detector of 2(c) is used, but fed with speakers 
manually categorized according to their sex. The advantage 
of this scheme is the avoidance of errors committed by the 
automatic sex detector.

The main stages of the experiments followed are described 
next, remarking that all three systems follow the same 
methodology but differ only on the manner on which the a 
priori information about the sex of the speaker is exploited.

• In the preprocessing, the methods are the same as in the 
automatic sex detector.

• Regarding parameterization, the speech is 
characterized using MFCC coefficients, varying the 
number in the interval [4:2:22].

• Finally, the classification and validation is carried out 
following the same approach as in the sex detector.
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Figure 3  Speech and glottal waveform extracted via inverse filtering. For a male speaker: (a) 
normophonic and (b) pathological. And for a female speaker: (c) normophonic and (d) pathological

Table 2 Performance of the sex detector using the two proposed sets of parameterizations: MFCC 
applied to speech and MFCC applied to glottal waveforms along with the vocal tract model
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Figure 4  DET curve for the sex detector. The features used in (a) are MFCC extracted from voice 
signals, and in (b) MFCC extracted of glottal waveform along with vocal tract coefficients. The legend 

shows in parentheses the number of Gaussians used for each classifier and the number of MFCC 
coefficients that reported the best results

Figure 5 Baseline sex-independent pathology detector. The legend shows in parentheses the number 
of Gaussians used for each classifier and the number of MFCC coefficients that reported the best 

results

Table 3 Performance of the sex-independent pathology detector using the Saarbrücken database
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the state of the art in other application domains such as 
speaker recognition. In a second stage and with the results 
obtained in the first phase of the study, a sex-dependent 
pathology detector is considered. MFCC features and 
GMM, GMM-UBM, GMM-UBM-iVector and GMM-SVM 
classifiers are employed. Additionally, and for the sake of 
completeness, a sex-independent pathology detector, and 
a manually segmented sex-dependent pathology detector 
are also tested.

In relation to the glottal waveforms obtained by inverse 
filtering, the glottal components obtained for male speakers 
are characterized by an asymmetrical shape, presenting a 
hump in the open phase of the glottal cycle for both normal 
and pathological speakers. This behavior match well with 
the observations reported in the literature. Similarly, female 
glottal waveforms exhibit a symmetrical appearance, which 

Figure 6  DET curve for the sex-dependent pathology detector using manual segmentation for (a) 
females and (b) males. Similarly, using automatic sex detection the results for (c) females and (d) 

males are shown.
is also expected, for both normal and pathological speech. 
This suggests the usefulness of the inverse filtering 
algorithm even for pathological speech, thus ensuring 
a more trustworthy parameterization process. However, 
results are not significantly better than those obtained with 
a parameterization of the raw speech. This, combined with 
the higher computational cost of having to inverse filter 
voice signals, suggest that studying the glottal waveform 
via inverse filtering might not worthwhile for sex detection 
tasks in normal and pathological voices.

With respect to the voice pathology detector, results 
indicate that a manual segmentation of the database 
produces a slight improvement in performance compared 
to not using a priori information about the sex of the 
speaker. However this improvement is not significant. 
In particular, the accuracy in the mixed scenario for the 
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Table 4  Performance of the sex-dependent pathology detector using the Saarbrücken database and 
manual and automatic segmentation of the sex of the speaker. Results are given for male, female and 

mixed sexes, where the latter refers to combining male’s and female’s performance measures

manually segmented sex-dependent system is 72.38%, 
mildly higher than the baseline sex-independent pathology 
detector which performed 71.65%. Results are in line 
with those in [27] where the classification accuracy of an 
automatic detector of pathology is lightly improved by using 
a manual segmentation of the database according to the sex 
of the speakers. Concerning the proposed sex-dependent 
pathology detector, and in comparison with the two 
previous baselines, a light performance improvement is 
also observed. Specifically, an accuracy rate of 73.27% 
is achieved, implying an absolute improvement of 1% 
compared to using manual segmentation, and 2% when no 
a priori information about the sex of the speaker is included.

On the other hand, the results suggest that the classification 
approaches tested based on UBM have not provided clear 
improvements. This might be attributable to the number 
of speakers of the secondary database used to train the 
universal models. In particular, and in view of the results, 
the material used to train the UBM models and to train the 
total variability space matrix might have been insufficient.

Regarding the corpus of speakers used in this study, it 
is important to remark that the Saarbrücken  database  
represents  an  interesting  challenge  to  study  the  effect  
of  pathologies in the speech. Although it remains almost 
unexplored in the literature, this database is of great 
interest due to the size, wide range of pathologies, and 
variety of speakers. It also illustrates the difficulty that the 
voice pathology detection problem encompasses. Indeed, 
the  Saarbrücken  database  has  been  used  for  highlighting  
the  necessity  for  a  differentiated classification of normal 
and pathological phonation into additional subgroups since 
a strong overlapping between normal and pathological 
phonation is evidenced [28].

Regarding automatic detection of pathologies on the 
Saarbrücken database, other study reveals performances 

that are in line with those obtained in the present work. In 
particular, the accuracy rates in [39] are about 70%, when 
employing MFCC coefficients, noise related features, GMM 
classifiers and the vowel /a/ at normal pitch. Fusing vowels 
at different conditions (normal, high, low and rising-falling 
pitch), accuracy raised to 72%. In addition, the literature 
reports that fusing information from other vowels at 
different pitch conditions, and in over-optimistic scenarios, 
accuracies could reach 90% [39, 40].

It is also worth mentioning that the performance of the 
pathology detection system turns out to be better in male 
speakers than in female ones. This follows the results in 
[27] where similar findings are presented: the authors 
hypothesized that using a cepstral analysis, female voices 
presented wider distributions making the detection 
scenario more troublesome.

To sum up, results evidence that sex might be effectively 
distinguished from normal and pathological speech using 
sustained vowels with the proposed methodology. Also, 
there are not significant differences when analyzing speech 
and glottal and vocal tract components for sex detection, 
suggesting that the sole speech signal is as informative 
as its decomposition when employing inverse filtering. 
Results also provide evidences that despite the limitations 
attributable to the secondary database employed to train 
the UBM, to the used acoustic material, and to the simple 
parameterization methods utilized in this study, an a priori 
automatic categorization of the speakers according to their 
sex improves the performance of the automatic detectors of 
pathology. With that in mind, it would be interesting to study 
other stratification strategies which in turn might affect 
speech (e.g. age) to design new hierarchical pathology 
detection systems. The influence of other approaches to 
stratify the speakers remains as future work.
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