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ABSTRACT: Spectral imaging systems capture spectral and spatial information from
a scene to produce a spectral data cube. Technical progress has allowed developing
multispectral filter array (MSFA)-based sensors in order to expand the reconstruction of
more bands than RGB cameras. However, reconstructing the spectral image with traditional
methods following a least squares or demosaicing approach is unfeasible. Some works
in the literature implement multispectral demosaicing for reconstructing images with
specific spatio-spectral resolution depending on the number of pixels in the detector and
the filter mosaic. Recently, compressive sensing technique has been developed that allows
reconstructing signals with fewer measurements than the traditional methods by using the
sparse representation of a signal. The selection of neighborhoods pixels in the MSFA-based
sensor to calculate the spectral response of a single pixel in the reconstructed spectral
images could improve the reconstruction, based on exploiting the sparse representation of
the spectralimages. This paper proposes two models for spectralimages reconstruction from
the selection of MSFA-based sensor measurements neighborhoods using the principle of
compressive sensing. The spatial resolution of the reconstructed spectral images is adjusted
depending the size of the neighborhood. To verify the effectiveness of the reconstruction
models simulated measurements for synthetic spectral images and real spectral images
based on MSFA are used. Ensembles of random dichroic and random band pass filters are
used. The two approaches with traditional scheme reconstructions of mosaic filters are
compared. The proposed methods improve the quality [PSNR) of the image reconstruction
up 7 dB for real spectral images.

RESUMEN: Los sistemas de adquisicion de imagenes espectrales capturan la informacion
espectral y espacial de una escena para producir un cubo de datos. El avance tecnoldgico
ha permitido desarrollar sensores basados en arreglos de filtros multiespectrales (MSFA,
de su sigla en inglés) con el propésito de expandir la reconstruccién de las cdmaras RGB a
mas bandas. Sin embargo, reconstruir la imagen espectral con los métodos tradicionales
siguiendo una aproximacién de minimos cuadrados es inviable. Algunos trabajos en la
literatura implementan interpolaciones multiespectrales para reconstruir imagenes con
resoluciones espectrales y espaciales especificas que dependen del numero de pixeles
en el detector y el mosaico de filtros. Recientemente ha surgido la técnica de muestreo
compresivo que permite reconstruir senales con menor cantidad de medidas que los métodos
tradicionales usando la representacion dispersa de la senal subyacente. La seleccion de
vecindarios de pixeles en el sensor basado en MSFA para calcular la respuesta espectral
de un Unico pixel en la reconstruccién podria mejorar la reconstruccion, explotando las
caracteristicas de dispersion en las imagenes espectrales. En este trabajo se proponen dos
modelos que usan el principio de muestreo compresivo, para la reconstruccion de imagenes
espectrales, a partir de la seleccién de vecindarios de pixeles de sensores basados en
MSFA. La resolucion espacial de la reconstruccion se ajusta dependiendo del tamafo del
vecindario. Para verificar la efectividad de los modelos de reconstruccion se usan medidas
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simuladas de imagenes espectrales sintéticas e imagenes espectrales reales. Para obtener
las medidas se usan un conjunto aleatorio de filtros dicroicos y pasabanda. Se comparan los
dos enfoques con las reconstrucciones del esquema tradicional de mosaicos de filtros. EL
método propuesto mejora la calidad [PSNR) de laimagen hasta en 7 dB para las pruebas con

imagenes espectrales reales.

1. Introduction

Spectral imaging senses a scene where at every location
of the image plane the spectral information is collected.
The applications of spectral images are many and cover
ocean research, food safety, geology, and medical. Some
examples of these applications involve the characterization
of phytoplankton in the ocean [1], quality evaluation in
the area of food safety [2], plant stress assessment [3],
characterization of different bacterial colonies [4], disease
diagnosis, and image-guided surgery [5].

In some spectral images, the scene is beamsplit into the
desired wavelength components by using a prism assembly,
and each of these images is captured in a separate detector
array. Although this method provides the highest resolution,
the sensing devices have significant size and weight
disadvantages [6]. Most of the spectral images acquisition
methods are related to scanning operations where multiple
exposures are used causing motion artifacts [7].

On the contrary, some sensing techniques use multispectral
filters and collect multiple wavelength spectra from a single
detector array [8]. Nowadays, optical coatings technologies
have been miniaturized and optimized such as the creation
of multispectral filter arrays (MSFA), with traditional design
and manufacturing methods, is allowed [6]. The optical
coatings production methodology combines modern optical
thin film deposition techniques with microlithography
procedures. This process enables micron-scale precision
patterning of optical thin film dichroic coatings on a single
substrate. A dichroic filter is an accurate color filter used to
selectively pass light of a small range of wavelengths while
reflecting other wavelengths.

Figure 1 shows a schematic representation of an
MSFA-based sensor, that is a monochrome image sensor
covered with a MSFA; each pixel in the sensor measures
only some spectral components in a specific spatial
location.

Since there are only some wavelength elements available
in each pixel, the missing wavelength elements must
be estimated from the adjacent pixels. This process is
called multispectral demosaicing, and in most cases, it is
carried out depending on the specific acquisition process.
For example, [9] generate a MSFA following a binary tree-
based method, which starts from a checkerboard pattern.
Then, they design a demosaicing algorithm based on the
same binary tree. In [10] propose a MSFA that consists
of color filter blocks of size 3x2 pixels, this configuration
allows a fast bilinear interpolation to be used with a
reconstruction up to 6 spectral bands. In [11] propose a
five-band MSFA. For demosaicing, an adaptive kernel can
be estimated directly from the raw data. Consequently, a

common feature of these systems is that the MSFA design
depends on application and the number of spectral bands.
The maximum number of spectral bands achieved in the
literature is at most 6.

A filter in the
multispectral
filter array

Image sensor
(monochrome)

Figure 1 Representation of a multispectral filter
array-based sensor

Furthermore, Compressive Sensing (CS) has emerged
as a rising research area that allows the acquisition of
signals at sampling rates below the Nyquist-criterion. In
CS traditional sampling is substituted by measurements
of random projections of the signal. The signals are then
reconstructed by solving an (,-[, minimization problem.
CS exploits the fact that spectral images can be sparse in
some basis representation.

Mathematically, a multispectral image F € RY*¥*L op
its vector representation f€RM, withM =N?L, can be
expressed as f= W80, where 0 is the coefficients sequence
with only S non-zero elements that represents f, and W is a
representation basis. Therefore, fis a linear combination
of just S base vectors, with S « M. Here, NxN represent the
spatial dimensions, and L the number of spectral bands in
the data cube. Compressive sensing allows f to be recovered
from m random projections when m > S log(M)<M.

Assuming that the MSFA-based sensor performs a
linear measurement process that calculates m<«M
internal products between f and a set of vectors
{hj}j=1". asy; =< f,h; >, theny = Hf, where the
Y, projections form the vector y of m elements, that is for

i=0,..,m—1:H is the measurement matrix formed by
the columns h],, with dimensions mxM; and f'is the original
signal of size M. For recovering ffrom y, there exist infinite
solutions due to the size of y is much less than the size of f.

Following the sparse representation of the signal, and the
MSFA-based sensor, measurements can be expressed as
y = Hf = HP8 = A8, where A = H¥Y € R™*Mis the sensing
matrix. This underdetermined system of linear equations
can be solved if the measurement matrix H is incoherent
with the representation basis W. The data cube is then
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reconstructed as f= "'(argglin lly — A8l +T||ﬂ||1), where 0 is
an S-sparse representation of fon the basis W, and fis a
regularization constant.

Recently, two works propose demosaicing process by CS
theory. In [12] use a MSFA of 4 spectral bands (Red-Green-
Blue-NIR), similar to the traditional RGB. The difference
is that the two green filters have different transmittances.
Also, a mixture of one color channel and NIR is captured
at each spatial position on the sensor. For demosaicing
task, they use a CS approach to separate the NIR of the
color bands, after that, a traditional RGB demosaicing is
performed. In [13] explore the problem of CS reconstruction
of multispectral images acquired with a single sensor
architecture. They propose random and uniform filter
array designs. For reconstruction they use group-sparse
optimization and Kronecker product between Fourier and
Wavelet basis as CS formulation.

Traditional methods implement multispectral demosaicing
for reconstructing images with specific spatio-spectral
resolution depending on the number of pixelsin the detector
and the filter mosaic. The selection of neighborhoods pixels
in the MSFA-based sensor (measurements) to calculate the
spectral response of a single pixel in the reconstructed
spectral images could improve the reconstruction, based
on exploiting the sparse representation of the spectral
images. The size of neighborhoods leads to an adjustable
spatialresolutionin the reconstruction preserving the filters
spectral resolution, reconstructing a spatial decimated
data cube. This information can be used in applications
demanding higher spectral than spatial image quality, also
for a quick view of the scene, for instance, in transmission
and communication applications.

This paper proposes two models for adjustable spatial
resolution reconstruction of multispectral images from
the selection of MSFA-based sensor measurements
neighborhoods using the principle of compressive sensing.
These methods are based on measurements taken in an
architecture that includes an MSFA-based sensor. Each
spectral filter modulates the data before it impinges onto
the sensor using a random dichroic or random band pass
filter. CS theory is then exploited to recover the underlying
3D spectral data cube from the compressed data captured
in a single shot. The quality of the reconstructions is
analyzed based on the number of spectral bands, and the
size of the neighborhoods. For that, the paper is organized
as follows: in the section 2 the acquisition model is
detailed, section 3 describes the traditional demosaicing
reconstruction approach, section 4 shows two approaches
for reconstruction with adjustable spatial resolution using
compressive sensing theory, section 5 describes the
multispectral filter design, section 6 presents the results.

2. Spectral image acquisition

Figure 2 shows the physical sensing phenomenon in the
multispectral filter array-sensor system for L = 6 spectral
bands and focusing in the j*-slice, that is, in a (x,A) plane
for y = j. For purposes of illustration the Figure 2 shows
two optical elements separately, but the device is a MSFA

placed over the pixels of an image sensor. First, the MSFA,
represented as T(xy,A), modulates the spatio-spectral data
cube f; (xyA), resulting in the coded field f, (xyA) where
(xy) are the spatial coordinates, and A is the wavelength.
Then the coded density impacts on the sensor. The coded
density integrated into the detector can be expressed as (1)

fz(X,y,/l) = ffT(x/‘)"‘)l)fo(x")";ﬂ)
h(x" —x,y" —y)dx'dy’,
(1)

where T (x; y,A) is the transmission function representing
the MSFA, and h(x™- x, y’y) is the optical response of the
system.

The source f, (xy,A) can be written in discrete form as
F,, where i and j index the spatial coordinates, and k
determines the k spectral plane. Let Ti,j,k €{0,1} be the
MSFA discretization. Then the discretized MSFA-based
sensor measurements can be expressed as (2]

Tijk Fijre + @iy
k=0 (2)

where Y, is the intensity at the (i,/)*" position of the detector,

i,j=01,..,N—1,Fis an NxNx] Spectral data cube,
and W, is the white noise of the sensing system.

The measurements Y, in (2) can be written in matrix
notation as (3)

where ¥y is an N?-long vector representation of

Y., F= [fFE, ...fF_,I7 is the vector representation of

the data cube F where fx is the vectorization of the K™
spectral band.

The output ¥ in (3) can be extended as (4]

fo
y= diag(ty) ... diag(tLl)‘ I f:1 Ty
-1

H (4)

where ¢, is the vectorization of the k™ MSFA plane, more
specifically (tk)i = TLUNJ‘ i—|ifNIN, ko fori = 0, ..‘,Nz -1;
diag(t,) is an N?x N? diagonal matrix whose entries are the
elements of . Figure 3 depicts a random MSFA based

matrix H for N=6, and L=4.
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Figure 2 Sensing phenomena representation

of the MSFA-based sensor. The j* slice of the
data cube is coded by a row of the multispectral
filter array. The detector captures the intensity
by integrating the coded field. For purposes of
illustration two devices are shown separately,
but the device is a MSFA placed over the pixels of
an image sensor

mBlock EPass A, MPass A, WPass ), mPass \,
N? (ls} band) AN? (2nd band) N? (3£d band) N? (4/t\h band)
Y Y \

diag(t,) diag(t,) diag(t,)

Figure 3 The matrix H in (3) is shown for N = 6,
and L = 4. Colored squares represent unblocking
light elements related to a specific wavelength

3. Traditional demosaicing

Given the set of measurements, a traditional demosaicing
algorithm estimates for each reconstructed pixel
the intensities for all wavelength components. In
traditional cases, measurements are taken for a mosaic
of multispectral filters, where a mosaic comprises a
particular arrangement of filters designed subject to the
number of spectral bands to sense. The most commonly
used configuration is the Bayer filter for RGB images [10].
For reconstruction, common approach minimizes the linear
mean square error between the measurements and the
vector estimation multiplied by the sensing matrix. More
specifically, the estimated signal is given by (5]

f= arg]{nin lly — Hf |,

(5)
A closed-form solution to (5] is given by (6]

f=®H)HTy = H'y, (o)

where H' is known as the pseudoinverse of H, and H” is
its transpose. For comparison purpose this approach is
implemented in this paper.
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4. Approaches for
reconstruction with adjustable
spatial resolution

Notice that the methods explained in this section are
carried out after the sensing process. Thus, the resolution
of the sensor remains fix; however, these methods allow
reconstructing spectral data cubes with different
resolutions. For exploiting CS theory and the measurements
of the MSFA-based sensor two approaches are proposed
for reconstructing a data cube with an adjustable spatial
resolution. Both are related to selecting a neighborhood of
qxq pixels for reconstructing a single pixel. The g parameter
is selected at the time to reconstruct the data cube, q refers
to the neighborhood side size. In the first model all the NxN
pixels of the sensor [(measurements] are taken for
reconstructing a NxNxL data cube following of a spatial
average decimation for the given size of the neighborhood.
The second model selects neighborhoods of measurements
and reformulates the CS reconstruction problem for
reconstructing a a%x%xl, data cube.

4.1. Complete data cube
reconstruction followed by a
decimation operation

The trivial approach to adjust the images resolution
consists of reconstructing a data cube with the highest
resolution using the measurementsy, after that performing
a decimation operation over the reconstructed data cube.
This process demands a very high computational cost since
it is required to reconstruct a data cube with the highest
resolutionin the first step. More specifically, first a complete
data cube is reconstructed solving the I, - I, minimization
problem given by f= ‘P(ﬂrgmm lly — B8l +T]|ﬂlll) where y
is the vectorized measurements given by Eq. (3], H is the
measurement matrix defined in the Eq. (4], 8 is an S-sparse
representation of fon the basis W, and 7 is a regularization
constant [14]. Then, for using the neighborhood approach
the data cube spatial resolution is adjusted following an
average decimation matrix operation. This operation is
applied to the reconstructed data cube as Fq =BF, where
B represents a block averaging of size gxq in each spectral
band redtécmq the size of the vectorized reconstructed data
cube to —><1 and g, is the side size of the neighborhood.
Figure 4 |llustrates a schematic block diagram of the
process.

The spatial decimation matrix element-by-element can be
expressed as (7]

s =[Sl
—, ifi==-=5+=|==|
Bij =1q* ql qlINl qlgN

0, otherwise,
(7)

where { =0,1,.. ——land)—ﬂl G NEL—1;
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Figure 4 Schematlc hlock diagram for the
complete data cube reconstruction followed by a
decimation operation. First a CS reconstruction
algorithm is applied to the measurements y then
a spatial decimation of factor g is applied to the
reconstructed data cube

4.2. Reconstruction based on
neighborhood measurements
selection

This model uses the assumption that gxq neighboring
pixels, in a NxNxL spectral image, have the same spectral
response. Unlike the previous method, this approach
reconstructs the decimated data cube directly, exploiting
the sparsity of the spectral image. Then gxg neighborhood
measurement pixels in the sensor are regrouped for the
reconstruction of a single pixel spectral response in a
decimated reconstruction. For instance, Figure 5 shows
the set of measurements taken for g=2, in total g* subsets
of measurements are grouped in a single shot of the
MSFA-based sensor.

In the reconstruction model each subset of measurements
is formed by the matrix product between a regrouping
matrix and the total measurements, more specifically, each
subset is given by (8]

y’ = DHf,

(8)

W A macropixel mE EEn .- Yy,

15t subset of 2nd subset of y3 d subset of 4t subset of
measurements  measurements  measurements measurements
NN | o I |
EEEn EaEnm
n "m HEN
LR Bl EEEEN
un jul EEEm EEEENRN EEE -
- .. EEEER n mnEn un |
| | jut EEEEN

Figure 5 Example of g=2 that forms 4 subsets
of measurements in a single shot of the
multispectral filter array-based
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where D’ does a selection in each qxq neighborhood
of pixels for taken g¢? different subsets of the total
measurements, and y? is the £¢* subset of measurements
where ¢ g {0,..,q% — 1}. Notice that g is a parameter that
can be selected by the user. Precisely, the function of the
regrouping matrix D? is selecting in each gxq neighborhood
of measurements the ¢th_element for forming the
£th-subset of measurements. The regrouping matrix
element-by-element can be expressed as (9)

1, ifj=iq+(q—1)Nl%J+{’+EJ(N—q),

Dfj = .
0, otherwise.
(9)
where i =0,1,.. ——1;—01 SN*—1 and £=0,1,..,¢° - 1.
Figure 6 deplcts the regrouping matrix Df forq =2,

N=6,andf=0,1,23.

£=0 N2 £=2 N
N 1 EN

!.\F‘; N.’I!

7| 7
£=1 N? - £=3 N

N N2
g e

Figure 6 The regrouping matrix D’ is shown for
g=2,N=6,and =0, 1, 2, 3. White DZsquares
represent ones and the black elements zero

In this case, the complete set of measurements is
rearranged as (10)

yO DO
1 1
y= y = D Hf = H,f,
ya*-1 pa-1 (10)

where  the subjacent data cube projection is also
reconstructed solving an (-, minimization problem.
However, in this case the regrouping process is taken into
account. More specifically, the optimization problem is
given by f= W(afgmi" |y —H,we|, +T|i3||1) where ¥ is given
by Eq. (10), Hq is the measurement matrix defined as H,=
1{pn)r (D)7 - (DY) ] H, @ isan S-sparse representation of
a q—><1 version of f on the basis W, and T is a regularization
constant [14].

In summary, Figure 7 shows a block diagram of the three
approaches that are compared in this paper.

5. Multispectral filter design

The quality of the reconstructed data cubes depends on the
selection of the multispectral filter design used for sensing
the spectral images. For developing this work, two MSFA
were selected. First, a spectral response for pixel that can
be selected randomly from a set of band-pass filters; and
second, dichroic filters, that is a special case of random
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measurements |

Reconstruction
algorithm

Figure 7 Schematic block diagram of the three reconstruction approaches thatare compared in this paper

band-pass where its spectral response lets pass only one
spectral band for each sensor pixel.

The spectral response of a (Af: 3?{) band-pass filter can be
defined as (11)

(1, ifAf <k<Af,
(te); —{ . '

0, otherwise, (1)
fork=0,..,L—1,i=0,..,N*=1, and Af <a¥ €{(0,..,L - 1}.
Forinstance, L = 4, Af =2, and 4} = 3 define the spectral
response of the spatial position i =1as (t;); =[0011].
Figure 8(a) depicts an example of a coded field column
filtered by band-pass filters, with representations of the
spectral response of three band-pass filter pixels.

Dichroic filters are a special case of band-pass filters that
let pass only one spectral band. Then the spectral response

of a (AP) dichroic filter pixel can be defined as (12)

1, if AP =k,
(te): :{ B A

0, otherwise,
(12)

for 22 €{0,..,L—1}, andi=0,.,N?>—1. For example, if

L =4, and AL = 3, then the spectral reponse of the spatial

position i=5 in the vectorized MSFA is (te)s =[0001].
Figure 8(b) depicts an example of a coded field column
filtered by dichroic filter pixels, with representations of the
spectral response of three dichroic filter pixels.

100% 100%
—

100%
i —>

100%

100%

100%

—

| B

W (a) " (b)

Figure 8 Band-pass and dichroic filters
representations. (a) Example of a coded field
column filtered by band-pass filter pixels, with

the spectral response representations of three
band-pass filter pixels. (b) Example of a coded
field column filtered by dichroic filter pixels, with
the spectral response of three dichroic filters

6. Simulations and results

To verify the MSFA-based sensor reconstructions, a set of
compressive measurements is simulated using the model
of Eq. (2). These measurements are constructed employing
two spectral images captured with a CCD camera Apogee
Alta U260 and a VariSpec liquid crystal tunable filter, in
the range of wavelength 400nm-560nm, with steps of
10nm [15]. The resulting test data cubes have 512x512
pixels of spatial resolution and L =16 spectral bands. The
RGB images mapped versions of the selected data cubes
are shown in Figure 9. The experiments were carried out
using the images Balloons and Beads with a decimation
processing for creating synthetic ones and in their real
form. Compressive sensing reconstruction is implemented
using the GPSR algorithm [16]. Simulations results are
analyzed in terms of PSNR (Peak-Signal-to-Noise-Ratio)
of the reconstructed images. The representation basis
W is a Kronecker product ¥ =%; @ ¥z, where ¥, is the
two-dimensional-wavelet Symmlet-8 basis and W, is the
cosine basis. The simulations are performed in a desktop
architecture with an Intel Core i7 3.6GHz processor, 32GB
RAM, and using Matlab R2014a. Each experiment is
repeated ten times and the respective results are averaged.

6.1. Synthetic multispectral data
cubes

When the input data cube fits the neighborhood
measurements selection model the reconstructions

outperform the traditional demosaicing approach. To
illustrate this phenomenon, synthetic multispectral data
cubes based on Balloons and Beads images are constructed.
For that, an average decimation of factor g followed of a
duplication of g pixels is applied in each spectral band.
Then the synthetic data cubes satisfy the assumption that
some neighboring pixels attain the same spectral response.

(a) (b)

Figure 9 The RGB images mapped versions of the
selected data cubes (a) Balloons and (b) Beads
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Ensembles of dichroic and band pass filters based on a
random selection of spectral bands are used for obtaining
measurements. For comparison, a demosaicing traditional
process using dichroic filters mosaics is implemented,
after performing the reconstruction an average decimation
matrix is applied to the reconstructed data cube. Figure 10
shows a comparison of the average PSNR reconstruction,
for the synthetic Balloons data cubes, as a function of the
number of sensed and reconstructed spectral bands. The
first row is related to the reconstructions of measurements
sensed with an ensemble of band pass filters. The frequency
response of the bandpass filter is selected at random.

78, pp. 89-98, 2016

The second row depicts the results from random dichroic
filters measurements. The columns are associated to the
reconstruction varying the neighborhood size to g = 2, 4, 8.
For example, Figure 10(a) shows the results for band pass
filters with a neighborhood of g = 2, and Figure 10(f] the
results for dichroic filters with a neighborhood of g = 8. The
PSNR evaluation is calculated between the reconstructed
image and a spatial decimated version (of size N/qx N /q x
L) of the test data cube. Figure 11 shows similar results for
synthetic Beads. Inallthe cases, with increasing the number
of spectral bands decreases the PSNR. Furthermore, it is
possible to observe the improvement of the reconstruction

L

5

+ Neighborhood €S R e B0 .
il i M “omplete C5 . —e-Complete 'S
50 +Lmup]ellc_{_5 60 + _ —*Demosaicing o . |~ Demosaicing
(= T~ _ 7 Demosaicing o e s
45 = %50, . - Ze0
r:‘-'11{‘ ) - \\’_LS__. ol
— 40 H\\_/*_ : 40%4\;.\___\\‘_"\:;:-

——Neighborhood C8 —+Neighborhood CS

5 lh 15
L (spectral band)

5 10 15
L (spectral band)

[a) (b) c)
. -_-ﬁelgh_lr”h;d_c_s 70 B Netghborhood CS v i ;
50 —=-Complete CS —=Complete C$ 80
o "~ |==Demosaicing e 60 " Demosaicing o B
45 . Zosgl Z60 “Neighborhood CS
o, _— [-5 = ==—Complete CS
40 | ~*—Demosaicing
I 4) — 40 y

5 10 15 5
L (spectral band) L

(d]

(spectral band)

5 10
L (spectral band)

(fl

10 15 15

(e]

Figure 10 For the synthetic Balloons data cube, (first row) reconstruction results for band pass
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Figure 11 For the synthetic Beads data cube, (first row) reconstruction results for band pass filters
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based on neighborhood measurements selection method
(neighborhood CS] compared to the decimation of a
complete data cube reconstruction method (complete CS)
and the traditional demosaicing method, when the data
cube has the property of having similar spectral signature
in a neighborhood g xgq.
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6.2. Experiment with real
multispectral data cubes

In this case, the measurements are simulated using L
spectral bands of real data cubes. Ensembles of dichroic
and band pass filters based on a random selection of
spectral bands are used to obtain measurements. Figure 12
shows a comparison of the average PSNR reconstruction
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Figure 12 For the Balloons data cube, (first row) reconstruction results for band pass filters for (a)
g=2,(b)g=4, and (c) g =8, (second row) reconstruction results for dichroic filters for (d) q[=]2, (e)
g=4,and (f)g=8
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Figure 13 For the Beads data cube, (first row) reconstruction results for band pass filters for (a)
g=2,(b) g=4, and (c) g =8, (second row) reconstruction results for dichroic filters for (d) g = 2, (e)
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for the Balloons data cube. Figure 13 shows similar
results for PSNR reconstructions in the Beads data cube.
It can be observed in Figure 12 and Figure 13 that the
performance of the CS proposed methods improves when
the size of the neighborhood g is increased. Additionally,
the reconstruction based on neighborhood measurements

Uriginal Uemosaicing

39.55dB

selection method [neighborhood CS) approach has a better
performance than the traditional demosaicing approach
with the measurements captured with dichroic filters.
On the contrary, the decimation of a complete data cube
reconstruction (complete CS) takes advantage of band pass
filters.

Uriginal

Uemosalcing

[a] [+
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Figure 14 Grayscale versions of reconstructions for L=2, and g=2 neighborhood side size. For

the Balloons database: (a) original, and (b) demosaicing reconstruction. For the CS approach
reconstructions using (e) band pass filters, and (top) neighborhood CS, (bottom) complete CS; (f)
dichroic filters, and (top) neighborhood CS, (bottom) complete CS. Similar results (c-d) and (g-h) for

Beads data base.
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Figure 14 illustrates the whole reconstructed data cubes
mapped in grayscale, for L = 6, and g = 2 neighborhood
side size. For the Balloons database, it can be observed
that the reconstruction of measurements taken for the
random dichroic filter ensemble using the neighborhood
CS approach provides an improvement of up 1.72dB in
PSNR over the demosaicing approach. Furthermore, the
PSNR reached by the complete CS reconstruction using
band pass filters is 2.81dB higher than the demosaicing
reconstructions. For the Beads database, the reconstruction
of neighborhood CS using dichroic filters improves up
2.4dB over the demosaicing, and the complete CS using
band pass filter up 4.58dB.

7. Conclusions

Two models for CS reconstruction of spectralimages sensed
by MSFA-based sensors using a neighborhood approach are
presented. The first model reconstructs a complete data
cube and applies neighborhood decimation. The second
model performs a selection of measurements subsets
to form neighborhoods that have spectral information of
a single reconstructed pixel. The two CS reconstruction
approaches are compared with a traditional demosaicing
reconstruction method. For the CS reconstruction, the
PSNR increases with the neighborhood side size. The
improvements range from 0.5 dB to 7 dB with respect to
the traditional approach in real data cubes. Results show
that increasing the number of spectral bands decreases the
PSNR for all reconstruction methods.
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