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Accelerating the computation of the volume of 
tissue activated during deep brain stimulation 
using Gaussian processes

ABSTRACT: The volume of tissue activated (VTA) is a well-established approach to model the 
direct effect of deep brain stimulation (DBS) on neural tissue. Previous studies have pointed 
to its potential clinical applications. However, the elevated computational runtime required 
to estimate the VTA with standard techniques used in biological neural modeling limits its 
suitability for practical use. The goal of this study was to develop a novel methodology to 
reduce the computation time of VTA estimation. To that end, we built a Gaussian process 
emulator. It combines multicompartment axon models coupled to the stimulating electric 
field with a Gaussian process classifier (GPC), following the premise that computing the VTA 
from a field of axons is in essence a binary classification problem. We achieved a considerable 
reduction in the average time required to estimate the VTA, under both ideal isotropic and 
realistic anisotropic brain tissue conductive conditions, limiting the loss of accuracy and 
overcoming other drawbacks entailed by alternative methods.

RESUMEN: El volumen de tejido activo (VTA) es un enfoque bien establecido para modelar los 
efectos directos de la estimulación cerebral profunda en el tejido neuronal. Estudios previos 
han señalado sus posibles aplicaciones clínicas. Sin embargo, el elevado costo computacional 
requerido para estimar el VTA con las técnicas estándar utilizadas en el modelado neuronal 
biológico limita su usabilidad a nivel práctico. El objetivo de este estudio fue desarrollar 
una metodología novedosa para reducir el tiempo de cálculo en la estimación del VTA. Con 
ese fin, se construyó un emulador basado en procesos gaussianos. Este combina modelos 
axonales de múltiples compartimientos acoplados al campo de estimulación eléctrica con 
un sistema de clasificación basado en procesos gaussianos, siguiendo la premisa de que 
calcular el VTA a partir de un campo axonal es en esencia un problema de clasificación 
binaria. Se logró una reducción considerable en el tiempo promedio requerido para estimar 
el VTA, tanto bajo condiciones de conductividad isotrópica idealizada como bajo condiciones 
realistas de conductividad anisotrópica, limitando la perdida de precisión y superando otros 
inconvenientes presentes en métodos alternativos.
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involves the application of high frequency electric pulses to 
a target region in the basal ganglia, the thalamus, or other 
subcortical structures, via an implanted electrode; this 
stimulation leads to symptom improvement. Although DBS 
is widely practiced, its mechanisms of action are still not 
completely clear, and most of the insight gained in recent 
years has come from computer simulations [1-5]. In this 
context, the volume of tissue activated (VTA), defined as 
the spatial spread of direct neural activation in response 
to electrical stimulation, is a measure that allows for a 
computational assessment of the impact of DBS [6-9].

1. Introduction
Deep brain stimulation (DBS) is a surgical technique used 
mainly to treat movement disorders, such as Parkinson’s 
disease, essential tremor, and dystonia, in patients whose 
symptoms cannot be appropriately controlled with drugs. It 
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The gold standard for VTA estimation is to couple the 
electric potential generated by the DBS electrode with 
a model of multicompartment axons arranged in a field 
around the electrode shaft [6]. Axons that, as a result of 
the stimulation, fire action potentials in a one-to-one ratio 
with the DBS pulses are considered active, and their spatial 
distribution defines the VTA. The downside of this approach 
is its elevated computational cost, when considered in the 
context of its potential clinical applications [10-12].  This 
obstacle has led to simplified methods that minimize the 
use of such models by exploiting the relationship between 
the spatial location of the axons and the electrical 
stimulation. Such relationship is captured in the form 
of activation threshold curves, fitted from data obtained 
from multicompartment axon models, that are then used 
to estimate the VTA [10, 13]. However, these curves do 
not reproduce the results of multicompartment models 
accurately and cannot be applied successfully when 
multiple contacts of the DBS electrode are active [12]. 
A possible solution to these problems is proposed by 
Chaturvedi et al. [12]. It consists in training an artificial 
neuronal network, with the DBS stimulation parameters 
as inputs and the elliptic profiles defined by the active 
axons as outputs. Once trained, the neural network can 
estimate the VTA for any combination of stimulation 
parameters. However, this methodology only works under 
the assumption of isotropic tissue conductivity, which 
affects the size and shape of the VTA [7]. 

In this paper, we propose an alternative approach to 
reduce the computational runtime of VTA estimation and 
overcome the limitations of the methods described above. 
Active axons fire an action potential for each stimulation 
pulse delivered by the stimulator. Inactive axons fail to 
respond in such a way. It follows that active and inactive 
axons can be thought of as part of two different classes. 
Furthermore, all axons are independent from one another. 
Under these premises, determining the volume of tissue 
activated from a field of axons is equivalent to a binary 
classification problem. The output of the standard VTA 
model can be then represented statistically and emulated. 
The emulation of computer simulations circumvents the 
problems posed by complex and computationally intensive 
models by building statistical representations of them 
used to address the issue under study without additional 
runs of the original simulation. The main approach to 
developing emulators uses Gaussian processes [14, 15]. 
Our aim was then to train a Gaussian process classifier 
(GPC) to determine whether an axon at a given position 
in space was active due to DBS, and by doing so, to 
estimate the VTA. This work is an extended version of a 
study presented in the 7th Iberian Conference on Pattern 
Recognition and Image Analysis [16]. The present version 
contains a more detailed theoretical framework, and a 
larger experimental setup that includes the estimation of 
the VTA when realistic anisotropic brain tissue conductivity 
conditions are considered.

2. Materials and methods

2.1. Electric propagation in the 
brain tissue

The calculation of the electric potential generated by the 
DBS electrode was carried out in the finite element method 
(FEM) software COMSOL Multiphysics 4.2. A simplified 3D 
model of a clinical electrode (Medtronic DBS 3389 electrode) 
positioned in the middle of a conductive extracellular 
medium was built. The simplified electrode model consisted 
of four conductive contacts (4x106 Sm-1) 1.27 mm in width 
and 1.5 mm in height separated by insulating bands (1x10-10 
Sm-1) 0.5 mm in height, and of an insulating semicircular tip 
with radius 0.635 mm (Figure 1(a)) [17]. The brain tissue was 
modeled as a sphere of diameter 10 cm.  First, a bulk tissue 
conductivity of 0.3 Sm-1 was used to account for the isotropic 
assumption. Then, diffusion tensor based conductivities 
were used to represent the tissue anisotropy of the basal 
ganglia region. The diffusion tensors were estimated from 
the DTI30 dataset, with the RESTORE (Robust Estimation 
of Tensors by Outlier Rejection) algorithm [18], and then 
linearly transformed to conductivity tensors [19]. In both 
cases, a representation of a 0.5 mm encapsulation layer 
around the electrode was included, and its conductivity was 
set to three different values (0.680 Sm-1, 0.128 Sm-1, 0.066 
Sm-1) to represent low (~500 Ω), medium (~900 Ω), and high 
(~1,500 Ω) impedance conditions [12, 20]. 

The model also integrated the voltage drop at the electrode-
tissue interface. The boundary conditions were the same 
used by Yousif et al. [8]. The stimulation was modeled by 
imposing Dirichlet boundary conditions on the active 
contacts of the electrode. Dirichlet boundary conditions 
were also used to ground the boundaries of the extracellular 
medium. Zero current flow conditions were imposed on the 
surfaces of the inactive contacts and insulating components 
of the electrode. Finally, Poisson’s equation (Eq. (1)) was 
solved to obtain the voltage propagation in the brain tissue.

Figure 1 (a) DBS electrode model. The electrode 
contacts were numbered from 0 to 3. (b) 

Representation of the orientation of the axons 
around the electrode shaft
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    (1)

where σ is the conductivity of tissue medium, and V0 is the 
extracellular potential.

2.2.  Axonal distribution and VTA 
estimation

Multicompartment neuron models allow for the 
computation of temporal and spatial changes in a neuron’s 
transmembrane potential. They can capture the effects 
of an external electrical stimulus, by solving the cable 
equation, Eq. (2), for each compartment in each neuron of 
the model: 

   (2)

where  is the transmembrane potential at the nth 
compartment, cm is the specific membrane capacitance, ra 
is the axial resistance per unit length, d is the compartment 
diameter, φm is the second spatial differences of the 
transmembrane potential , φ0 is the 
second spatial differences of the extracellular potential 

, and iion is the total ionic current 
flowing through the membrane at a given moment in time. 
The term Δx in φm and φ0 is the compartment length [21-23]. 

In the VTA modeling literature, multicompartment neuron 
models are often restricted to axonal models, since axons 
have been shown to drive the basic neural response to 
external electrical stimulation. In addition to this behavior, 
the fundamental biophysics of how axonal response to 
external electrical stimulation works is independent of 
neuron type [24-26]. The axonal model used in this work 
corresponds to the multicompartment myelinated axon 
model detailed in [27]. Briefly, each axon includes 21 nodes 
of Ranvier, 2 myelin attachment segments, 2 paranode 
main segments, and 3 internode segments between each 
node. The nodes are modeled by a parallel combination of 
the membrane capacitance with nonlinear conductances 
(fast Na+, persistent Na+, and slow K+) and a linear leakage 
conductance. The paranodal and internodal compartments 
include two concentric layers, each including a linear 
conductance in parallel with the membrane capacitance, to 
represent the myelin sheath and the axolemma.

To estimate the volume of tissue activated, a population of 
8,112 straight axons of diameter 5.7 m was built around 
the electrode shaft. The axonal fibers were oriented in 
four different directions, perpendicular to the axis of the 
electrode (Figure 1(b)), and with a distance between axons 
of 0.5 mm in both the vertical and horizontal directions. This 
axonal distribution aimed to capture the spatial spread of 
activation in response to the stimulus in several directions 
around the electrode, considering that under anisotropic 
conductivity conditions the electric potential would change 
as a function of the direction of propagation [28].

To simulate the electrical stimulation of the neuronal 
tissue, the values of the electric potential were linearly 
interpolated from the nodes of the FEM solution onto each 
of the axonal model compartments. An axon was considered 
active if it fired in a one-to-one ratio with a DBS stimulation 
pulse. The VTA was defined as the volume enclosed by the 
locations of the central nodes of Ranvier of the activated 
axons [28]. The simulations of the axonal response to the 
electric stimulation were implemented in NEURON 7.3 
configured as a Python module [29, 30]. 

The methodology described here and in section 2.1 
corresponds to the gold standard for VTA estimation. A 
full implementation of it was used to compute volumes of 
tissue activated, for several combinations of stimulation 
parameter settings (see Table 1), that would serve as 
reference data sets to evaluate the performance of the 
proposed emulator. The base parameters were varied, 
one at a time, in a range of possible values for the three 
active contact configurations considered: one cathode 
(monopolar), cathode-cathode (bipolar {-}), and anode-
cathode (bipolar {±}). Every set of stimulation parameters 
and encapsulation tissue impedances was used under both 
isotropic and anisotropic conductivity conditions.

Table 1  Realistic stimulation parameter settings 
used in this study (Medtronic ACTIVA-RC 

stimulator) 
Monopolar

Base parameters Variation range
Active contacts 3 3

Amplitude -3 V -1, -2, -3, -4, -5 V
Pulse-width 90 μs 60, 90, 210, 450 μs
Impedance 900 Ω 500, 900, 1,500 Ω

Bipolar {-}
Base parameters Variation range

Active contacts 2, 3 2, 3
Amplitude -3 V -1, -2, -3, -4, -5 V

Pulse-width 90 μs 60, 90, 210, 450 μs
Impedance 900 Ω 500, 900, 1,500 Ω

Bipolar {±}
Base parameters Variation range

Active contacts 2, 3 2, 3
Amplitude ±3 V ±1,± 2, ±3, ±4, ±5 V

Pulse-width 90 μs 60, 90, 210, 450 μs
Impedance 900 Ω 500, 900, 1,500 Ω

2.3. Gaussian process emulation of 
the VTA

Gaussian process classification

A Gaussian process (GP) is defined as a probability distribution 
over functions f(x), x ∈ χ, such that the values of said functions 
evaluated at an arbitrary set of points X ⊂ χ jointly have a 
Gaussian distribution, that is, p(f|X, θ) = N(f|m, K). The mean 
vector m and covariance matrix K completely specify the 
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GP, and are obtained from associated mean and covariance 
(kernel) functions, m(x) and k(x,x') respectively, that may 
additionally depend on a set of hyperparameters θ [31-34].

In general, the idea behind binary GP classification works 
as follows: given a set of inputs X=[x1, ..., xn]T and their 
associated labels y=[y1, ..., yn]T, with yi ∊ {-1,1} the probability  
p(y|x) is represented by the latent function that describes 
the data f(x) mapped to the unit interval through a sigmoid 
function σ. If σ is symmetric then p(y|x) = σ (yf (x)), and the 
joint likelihood p(y|f), where f=[f1, ..., fn]T with fi = f(xi), can 
be expressed as Eq. (3)

    (3)

Imposing a Gaussian prior over f, and assuming a zero 
mean function p(f|X,Ѳ)=N(f|0,K), the posterior probability 
(Eq. (4)) becomes:

  (4)

  

where D={(xi, yi)|i=1, ..., n} is the observed data. Then, the 
class probabilities for a new data pair (x*, y*) (Eq. (5)) can be 
obtained marginalizing f

 p(f*|D, θ, x) = ∫ p(f* | f, X, θ, x)p(f | D, θ)df  (5)

and computing the expectation as shown in Eq. (6)

 p(y*|D, θ, x) = ∫ p(y* | f*)p(f* | D, θ, x)df 
       = ∫ σ(y* f*(x*))p(f* | D, θ, x)df (6)

In a Bayesian framework, GPs offer the advantage of 
analytical tractability: a Gaussian prior (the assumption 
made before observing the data) and a Gaussian likelihood 
(how probable the data set is given the assumption) will 
result in a Gaussian posterior (the uncertainty in the 
assumption after the data is observed), and even though the 
discrete nature of the classification problem gives rise to 
a non-Gaussian likelihood (Eq. (4)), a posterior distribution 
can still be approximated by methods such as Laplace 
approximation or Expectation Propagation. In this study, 
we use the Laplace approximation because of its lower 
computational cost [32]. 

Laplace’s method approximates the posterior doing a 
second order Taylor expansion of log p(f|D, θ) around the 
maximum of the unnormalized posterior p(y|f)p(f|X, θ) as 
shown in Eq. (7)

   (7)

Where  and . The 
hyperparameters θ of the covariance function are selected 
so that they maximize the evidence or marginal likelihood 
p(f|D,θ,). From the results of Laplace’s method the 
logarithm of this quantity can be approximated as Eq. (8)

   (8)

Procedure

A random sample of n=500 axons was taken from the total 
axonal population. The axons were sampled from a uniform 
distribution with respect to the Euclidean distance between 
their central nodes of Ranvier and the center of the active 
contact. When more than one contact was active, the above 
procedure was repeated, sampling, for each of them, 
a number of axons equal to n divided by the number of 
active contacts. Next, a multicompartment simulation was 
executed to determine which of the sampled neural fibers 
were active during the stimulation. The information provided 
by the multicompartment simulation was converted to a 
set of labeled data {(xi, yi)|i=1, ..., n}, where  xi = [xi1, xi2, xi3] is 
a vector of characteristics for each axon or data point (xi1: 
distance between the central nodes of Ranvier and the axis 
of the DBS electrode. xi2: distance between the central nodes 
of Ranvier and the plane containing the electrode tip and that 
is perpendicular to the electrode axis. xi3: value of the electric 
potential (V) at each central node of Ranvier), and yi is its 
corresponding label (active axon:1, inactive axon:-1). These 
data were used to train a Gaussian process-based classifier. 
All inputs to the classification algorithm (pyGPs library for 
Python 2.7) are depicted in Figure 2; they were selected so 
that the relationship between activation, the position of each 
axon with respect to the electrode shaft, and the electric 
potential was represented in the classification outcome. 

xi1

xi2

V ⇒ xi3

yi = 1

yj = −1

Figure 2 Inputs to the classification algorithm 
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The classifier was trained with 70% of the data obtained 
from the multicompartment axon model, assuming a logistic 
likelihood function (σ), prescribing a general purpose kernel 
(squared exponential covariance function with automatic 
relevance determination), and using Laplace’s approximation 
to the posterior. The hyperparameters of the kernel were 
selected minimizing the Laplace’s approximation of the 
negative log marginal likelihood. The inference method was 
chosen due to computational cost considerations [34].

Since a GP classifier assigns class probabilities instead of 
labels, a cut off probability was determined with a receiver-
operating characteristic (ROC) analysis performed on all 
available data from the multicompartment model. Then, 
the VTA was estimated by predicting which of the 8,112 
central nodes of Ranvier of the entire axonal population, 
and therefore the axonal fibers they belong to, would be 
activated by the applied stimulus.  Finally, the spreads of 
activation predicted by the classifier, in 30 independent 
simulation runs, for each of the stimulation parameters 
shown in Table 1 were compared against those obtained 
with activation threshold curves customized to our data [10, 
13], in terms of the prediction error (Eq. (9)).

    (9)

where FP and FN are the false positives and false negatives 
with respect to the reference data set, and AA is the 
reference number of active axons.

3. Results and discussion 
In this work, we explored a variation to the standard approach 
to VTA estimation: the VTA is defined by the axons activated 
for a given set of stimulation parameters (see Figure 3). 
These axons constitute a subset of the axonal field that 
satisfies certain conditions that differentiate its elements 
from the rest of the axonal population; active and inactive 
axons can be viewed as belonging to two different classes.

(a) (b)

Figure 3 (a) Locations of the central nodes of 
Ranvier (dots) of the axons activated by a bipolar 

stimulation pulse. (b) The VTA is the volume defined 
by the spatial distribution of the active axons

Based on this premise, we aimed to develop a classification 
system that could reduce the computation time required 
for VTA estimation, without the shortcomings of alternative 
methods like activation threshold curves. Figure 4 
summarizes our approach. Instead of a large model 
with enough axons to describe accurately the region 
of interest around the electrode shaft, we sampled a 
comparatively small number of axons from the total axonal 
population, and with this reduced model we executed a full 
multicompartment model simulation in order to obtain 
labeled data to train a GP classifier (Figure 4 (a)). Then, we 
used the classifier to predict which elements of the entire 
axonal population would be active (Figure 4 (b)), obtaining 
an estimation of the VTA (Figure 4 (c)).

GP classifier

(a) (b) (c)

Figure 4 Scheme of the proposed Gaussian 
process emulation of the V TA

 
The reduction in the computational runtime comes from 
the use of fewer axons in the multicompartment axon 
model. Figure 5 shows how the simulation runtime grows 
linearly with the number of sampled axons (n). These 
average values were obtained for VTAs estimated for 20 
randomly selected combinations of stimulation parameters 
from Table 1, assuming either isotropic or anisotropic 
conductivity conditions, and holding the pulse width at 90 
μs. Besides, for the same data set, the prediction errors 
(Eq. (9)) stabilize after the number of axons reaches 250. 
n=500 was chosen to evaluate the performance of the 
proposed method because it is past that point (n=250) and 
falls in the range between 5% and 10% of the total axonal 
population. The average time to estimate the VTA for all 
trials and stimulation parameter settings, sampling 500 
axons, was 267.7 s. This figure represents a reduction of 
92.3% compared with an average time of 3,467.9 s required 
to solve the model described in section 2.2 [6] (models 
running in a Dell OptiPlex 990 with an Intel Core i7-2,600 
processor, and 8 GB  RAM).
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Figure 5  Box-whisker plots of the prediction 
errors and average simulation runtimes 

(mean±SD) as functions of the number of axons 
used in the classification procedure 

Activation threshold curves can achieve simulation runtimes 
of under 1 s, that is, if they are not fitted every time the 
stimulation parameters vary. Otherwise, it is necessary to 
run full multicompartment axon models to obtain new data 
to fit them. Whatever the case, they are prone to error [12]. 
Figure 6 shows the total errors generated by the classifier 
and by threshold curves with respect to reference data sets 
for the monopolar configuration and several combinations 
of stimulation parameters. The Gaussian process emulator 
easily outperformed the threshold curves, independently 
of whether isotropic or anisotropic conductivities were 
assumed, although with larger uncertainties in the latter 
case. Also, unlike the curves, the proposed emulator allows 
for the estimation of the VTA when more than one of the 
electrode contacts are active.
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impedance variations 
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Figure 7 shows four different volumes of tissue activated for 
two different bipolar stimulation parameter settings, but 
under different conductivity conditions: (a) anode-cathode 
configuration (bipolar{±}) under isotropic tissue conductivity, 
(b) anode-cathode configuration under anisotropic tissue 
conductivity, (c) cathode-cathode configuration (bipolar{-}) 
under isotropic tissue conductivity, (d) cathode-cathode 
configuration under anisotropic tissue conductivity. This 
shows the ability of the emulator not only to work with multi-
contact stimulation, but also to represent the effects that 
tissue conductivity has on the VTA. The tissue conductivity 
affects the VTA via changes in the propagation of the 
stimulus waveform and consequently on axonal activation. 
The volumes of tissue activated when isotropic conductivity 
is assumed exhibit radial symmetry with respect to the 
electrode axis, as expected. Such symmetry disappears 
for the anisotropic case. In terms of the prediction error, 
the two bipolar configurations studied, follow distinct 
trends (see Figure 8). While the error for the cathode-
cathode configuration remains low, stable, and with similar 
differences between the isotropic and anisotropic scenarios 
across the range of stimulation parameter settings 
simulated, the error for the anode-cathode configuration 
is higher and presents large variations between tissue 
conductivity conditions. Figure 9 shows these tendencies 
more clearly. More than the effect of anisotropy, it is having 
two spatially separate regions of activation what affects the 

most the performance of our method. Median errors for the 
anode-cathode configuration, which produces independent 
volumes of tissue activated for each active contact, double 
those of the other two configurations. However, even in 
this worst case scenario, the GP emulator matches the 
performance of activation threshold curves for the simpler 
monopolar case.

(a) (b) (c) (d)

Figure 7 Volumes of tissue activated 
estimated by the classifier for the two bipolar 

configurations used, under different tissue 
conductivity conditions 
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Figure 8 Box-whisker plots of the prediction errors for the two bipolar configurations used: (a) 
amplitude, (b) pulse width, and (c) impedance variations 
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Figure 9 Box-whisker plots of the GP classifier 
prediction errors across all stimulation 
parameter settings, under isotropic and 

anisotropic tissue conductivity conditions

At this point, we must note that the error metric used to 
assess the performance of the emulator is geared towards 
classification problems, and it is in that sense appropriate 
for our case. However, it is only partially bounded and, more 
importantly, it does not account for the morphology of the 
VTA. The problem of directly accounting for morphological 
errors in the estimated VTA, which we think could have 
more practical meaning, is a pending task and constitutes 
a future line of work.

A second important point is that our results were 
obtained applying a single DBS stimulation pulse to the 
multicompartment axon models. The VTA criterion is clear 
in that an axon is considered active if it fires an action 
potential for each DBS pulse, but there is less clarity 
about the number of pulses that should be applied to 
verify that condition.  Miocinovic et al. [2] report that they 
did not observe any changes in their results after applying 
a train of 25 DBS pulses to their experimental setting. 
Yousif et al. [8] used up to 12 pulses in their experiments. 
In our case, increasing the number of pulses applied to the 
reference model, described in section 2.2, did not produce 
any observable changes in our results. We then set up a 
smaller axonal field of 738 fibers arranged as in [6] but with 
a higher axonal density (0.25 mm separation between axons 
in the horizontal and vertical directions). This new set up 
revealed small changes in the periphery of the VTA as the 
number of applied pulses increased (Figure 10). However, 
the combined effect of increasing the time of simulation, to 
represent the delivery of a train of pulses, and the number 
of axons, to obtain the same axonal density in the entire 
region of interest around the DBS electrode, would result 
in a disproportional increase in the computational burden 
compared to the benefits of a more detailed model. Our 
initial set-up was detailed enough to reproduce successfully 
experimental results presented elsewhere [6, 8].
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Figure 10 Two-dimensional representation of 
the changes in the extension of the V TA due to 
the number of applied DBS pulses used for its 

estimation 

We must also highlight the fact that the number of 
parameter settings used in this study is only a small 
fraction of the thousands of possible combinations of 
stimulation parameters offered by DBS devices. The 
proposed methodology is intended to work for any of such 
combinations, but we chose to focus on the parameter 
ranges advised in clinical guidelines [35], especially in 
regard to the stimulation amplitude and to the number 
of active contacts. Our approach also assumes highly 
idealized axonal orientations and trajectories. Nonetheless, 
models based on these simplifications have yielded positive 
results in studies that compared their predictions of the 
VTA with experimental data from Parkinson’s disease 
patients implanted with DBS systems [11]. A last important 
point is that although the computational runtime of our 
method is much shorter than that of full multicompartment 
axon models, it is still high for real-time applications. 
Further reductions in the computation time required for 
VTA estimation can be achieved by optimizing the use of 
computational resources, e.g., running a version of the 
code that parallelized the execution of NEURON [36], once 
per each of the stimulation parameters shown in Table 1, 
reduced the average simulation runtime by an additional 
22.6%.

5. Conclusions
In this study, we developed a new methodology to reduce 
the computation time required to estimate the volume of 
tissue activated (VTA) during deep brain stimulation (DBS). 
We built a Gaussian process emulator that combined 
multicompartment axon models coupled to the stimulating 
electric field with a Gaussian process classifier. Our 
approach cut down to a tenth the average computational 
runtime of VTA estimation compared with the gold standard. 
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In addition, it allowed for the estimation of the VTA for 
non-monopolar stimulation, overcoming a limitation of 
commonly used alternatives, such as activation threshold 
curves. It also outperformed these, in terms of their 
prediction errors, for all the combinations of parameter 
settings studied where direct comparison was possible. 
Finally, the emulator also succeeded in estimating the VTA 
when realistic anisotropic brain tissue conductivities were 
included in the simulation model.
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