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ABSTRACT:Wepresent a system for dense tracking, 3D reconstruction, and object detection of
desktop-like environments, using a depth camera; the Kinect sensor. The camera is moved
by handmeanwhile its pose is estimated, and a densemodel, with evolving color information
of the scene, is constructed. Alternatively, the user can couple the object detection module
(YOLO: you only look once [1]) for detecting and propagating to the model information of
categories of objects commonly found over desktops, likemonitors, keyboards, books, cups,
and laptops, getting a model with color associated to object categories. The camera pose
is estimated using a model-to-frame technique with a coarse-to-fine iterative closest point
algorithm (ICP), achieving a drift-free trajectory, robustness to fast camera motion and to
variable lighting conditions. Simultaneously, the depth maps are fused into the volumetric
structure from the estimated camera poses. For visualizing an explicit representation of the
scene, the marching cubes algorithm is employed. The tracking, fusion, marching cubes,
and object detection processes were implemented using commodity graphics hardware for
improving the performance of the system. We achieve outstanding results in camera pose,
high quality of the model’s color and geometry, and stability in color from the detection
module (robustness to wrong detections) and successful management of multiple instances
of the same category.

RESUMEN: Presentamos un sistema de localización con información densa, reconstrucción
3D, y detección de objetos en ambientes tipo escritorio, usando una cámara de profundidad;
el sensor Kinect. La cámara se mueve manualmente mientras se estima su posición, y
se construye un modelo denso con información de color de la escena que se actualiza
permanentemente. El usuario puede, alternativamente, acoplar el módulo de detección
de objetos (YOLO: you only look once [1]) para detectar y propagar al modelo información
de categorías de objetos comúnmente encontrados sobre escritorios, como monitores,
teclados, libros, vasos y laptops, obteniendo un modelo con color asociado a la categoría
del objeto. La posición de la cámara es estimada usando una técnica modelo-frame con
el algoritmo iterativo de punto más cercano (ICP, iterative closest point) con resolución
en niveles, logrando una trayectoria libre de deriva, robustez a movimientos rápidos de la
cámara y a condiciones variables de luz. Simultáneamente, los mapas de profundidad son
fusionados en una estructura volumétrica desde las posiciones estimadas de la cámara.
Para visualizar una representación explícita de la escena se emplea el algoritmo marching
cubes. Los algoritmos de localización, fusión, marching cubes y detección de objetos
fueron implementados usando hardware para procesamiento gráfico con el fin demejorar el
desempeño del sistema. Se lograron resultados sobresalientes en la posición de la cámara,
alta calidad en la geometría y color del modelo, estabilidad del color usando el módulo
de detección de objetos (robustez a detecciones erróneas) y manejo exitoso de múltiples
instancias de la misma categoría.
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1. Introduction

SLAM (Simultaneous Localization and Mapping) builds
a map of an unknown environment in an incremental
way and uses it for simultaneously estimating the pose
of a mobile platform. Along time many variants in the
sensor have been presented: sonar rings, laser scanners,
perspective cameras, omnidirectional cameras, stereo
cameras, inertial sensors, and combination of them. In
these systems sparse features such as corners [2], edges
[3], or planes [4] have been efficiently used when the
camera pose is the primary estimation.

Since the development of cheap and accurate depth
sensors, that deliver both depth and RGB images at
high frame rates, new systems for dense tracking and
mapping in real time have emerged, for example [5–7],
showing more accurate estimates in camera pose, high
quality reconstructions and enabling scene understanding
in mobile robotics and more robust augmented reality
applications, where an accurate 3D model of a rigid body,
updated and expanded in real time, is needed. With this
work, we want to extend the possible applications of
a dense tracking and mapping system by giving it the
ability to detect and localize objects commonly found
over desktops, like monitors, laptops, books, cups,
and keyboards. An object detection module mounted
over a system that tracks and maps the environment
using the whole data of the RGB and depth images, can
be useful for scene understanding in mobile robotics
tasks such as grasping and moving specific objects,
dense reconstruction of specific objects using unmanned
vehicles that wander in the scene, for object tracking and
3D segmentation, for creating a database with geometric
information of instances of an object, for augmented
reality using the reconstructed and categorized objects,
among others.

Our main contributions are

− A modular system for dense tracking and mapping
that couples an object detection module for labeling
the scene and that can easily be expanded by
integrating new modules for manipulating objects,
for navigation of unmanned aerial vehicles or for
augmented reality.

− An algorithm for propagating to themodel information
of detected objects and for managing multiple
instances of an object class, computing its location,
a 3D bounding box, and its probability.

− A color management algorithm, similar to the
truncated signed distance function (TSDF) [8]
management, that allows the system to store color

information around the whole trajectory and get a
model with full color data.

In section 2 we analyze the most important dense SLAM
systems that work with depth cameras and outstanding
systems for 3D scene labeling. In section 3 we introduce
the main modules and describe the general structure of
the proposed system. In section 3.1 we focus on the
volumetric fusion of partial depth scans. We provide details
about the volumetric structure, updates of the TSDFs, the
weights, object class data and color data, and about our
implementation of marching cubes. Next, in section 3.2
the rasterization process and the model-to-frame ICP is
analyzed. In section 3.3 we present some details about the
module used for detecting objects (YOLO). In section 3.4 the
strategy for differentiating between multiples instances of
an object class is described. Our experiments and the
results of the performance of the algorithms implemented
on a graphic processor are explained in section 4. Finally,
we draw our conclusions and future work in section 5.

2. Related work

KinectFusion [5] is the first system that builds a dense
reconstruction of room-sized scenes and simultaneously
localize the camera at 30Hz, using the Kinect version one,
and one GPU. The model-to-frame tracking is based on
coarse-to-fine ICP. It minimizes the point-to-plain distance
of points matched using projective association rather than
feature extraction and matching. The three-level pyramid
is built with vertex and normal maps from depth maps
coming from the sensor and from the reconstructed
model. Once the camera pose is estimated, the depth
maps captured with the sensor are fused and the model
is updated. The TSDF, is used for storing the depth data
through the time, and ray casting for explicitly visualizing
the model. Kintinuous [6] based on their previous work
[9], is an extension of KinectFusion [5] for working in both
room-sized environments and large-scale paths. The cost
function integrates the cost of the RGB-D frame-to-frame
tracking of [10] (implemented on GPU), and the cost of
the original model-to-frame ICP tracking of [5], in order
to tackle poor performance when the camera points to
a flat wall or corridors with no significant 3D features.
They use another visual odometry system called FOVIS
[11], that relies on FAST feature correspondences in
the RGB images, and that automatically switches when
a planar environment appears. Unlike [5], Kintinuous
integrates color information, getting full colored models.
The color volume is updated based on KinFu [7], but with
real time surface coloring and rejection of unreliable
color measurements. The next version of Kintinuous [12]
includes loop closure with pose-graph optimization and
non-rigid space deformation.
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ElasticFusion [13] is a map-centric approach that builds a
surfel-based map of room-sized environments and tracks
the camera with a dense frame-to-model method that
combines point-to-plane error and dense photometric
error. It performs dense model-to-model local surface
loop closures applying a non-rigid space deformation of
the map, instead of a standard pose-graph optimization.
Global loop closure is achieved with an appearance-based
place recognition method. The reconstructed surface
is superior to similar systems. ORB-SLAM2 [14] builds
globally consistent sparse reconstructions for long-term
trajectories with either monocular, stereo or RGB-D
inputs, performing in real time on standard CPUs and
including loop closure, map reuse and relocalization. This
system has three main parallel threads: the tracking with
motion only bundle adjustment (BA), the local mapping
with local BA, and the loop closing with pose graph
optimization and full BA. It does not fuse depth maps
but uses ORB features for tracking, mapping and place
recognition tasks. With BA and keyframes, it achieves
more accuracy in localization than state-of-the-art
methods based on ICP or photometric and depth error
minimization. Place recognition, based on bag of words,
is used for relocalization in case of tracking failure.
RGBDTAM [15] combines a semi-dense photometric
error (only for pixels belonging to edges) and a dense
geometric error (point cloud alignment in a coarse-to-fine
scheme with a pyramid of four levels) for camera tracking,
achieving CPU real time performance. The tracking thread
minimizes the geometric and photometric reprojection
error with respect to a previous keyframe. The mapping
thread estimates a semi-dense map for every keyframe.
The inverse depth is estimated using the raw depth maps
from the sensor and multi-view geometry. Bag of words
is employed for loop closure and pose-graph optimization
over the keyframes for global consistency.

The work [16] labels objects of interest in 3D scenes
reconstructed from RGB-D videos. An object detector on
the RGB-D frames runs to score individual pixels and then
these pixels are projected into the reconstructed 3D scene.
The point cloud is voxelized so that each voxel contains a
set of 3D points. HOG features are extracted over both the
RGB and depth image to capture appearance and shape
information of each view of an object. A linear SVM sliding
window detector is trained using views of objects from
the RGB-D object dataset. These linear score maps are
converted into probability maps that define the probability
of a point belonging to a certain class. A data term and
a pairwise term together define a multi-class pairwise
Markov Random Field, whose energy is quickly minimized
using graph cuts. The data term measures how well the
assigned label fits the observed data and the pairwise
term models interactions between adjacent voxels. In
this way, local evidence, such as appearance and shape,

is combined with dependencies across regions like label
smoothness. Lai et al. [17] is a system for scene labeling
based on [16] that combines features learned from raw
RGB-D images and 3D point clouds directly, without any
hand-designed features, to assign an object label to every
3D point in the scene. The data term was computed
integrating responses from sliding window detectors on
RGB-D frames and responses from the classifier over
the 3D voxel data. This approach only requires images
containing views of each object in isolation and synthetic
3D models downloaded from an online database on the
Web. In [18], a multi-class labeling on a Markov Random
Field (MRF) over the voxels of the 3D scene is performed.
It does not employ any prior knowledge about the objects
to be detected; the set of object classes is previously
unknown and needs to be generated online by multi-object
hypotheses, unlike [16] that uses pre-learned 2D object
models. The results from MRF are further refined by
merging the labeled objects, which are spatially connected
and have high correlation between color histograms.

Our system tracks a RGB-D camera and builds
a dense representation of rom-sized scenes using
state-of-the-art algorithms: a model-to-frame tracking
with coarse-to-fine ICP and an implicit representation with
a volumetric structure that stores TSDF values. Compared
with KinectFusion [5], our system does not perform ray
casting for getting a depth map from the model but
marching cubes and rasterization, taking advantage of the
depth buffer available in OpenGL. Other difference with [5]
is the color management; we integrate color information
sequentially during the reconstruction process similar
to Kintinuous [6], but unlike it, our system updates
color information of the observed voxels by averaging
the accumulated color data with the current one, in a
similar way to the update of the TSDF value. Moreover,
our system does not use RGB data for tracking (only for
coloring the model) and does not perform loop closures
with techniques such as space deformation, pose-graph
optimization or bundle adjustment, like in [12–15], that
makes themmore robust to long and complex trajectories.
We do not track and reconstruct moving objects like [19],
[20], but we detect and reconstruct a static desktop-like
scene. For labeling the 3d scene, we couple an object
detection module YOLO [1] that works in 2D, with the
RGB images, instead of working with Random Markov
Field that uses features from RGB-D frames as [16] or
with RGB-D frames and point clouds as [18]. We can
claim that the modular structure of our system enables
the easy integration of new modules such as a grasping
module with a robotic arm, a path planning module with
an unmanned aerial vehicle (UAV) or an augmented reality
module.
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Figure 1 Main diagram of the proposed system

Figure 2 Notation for applying marching cubes.
(a) Numeration of edges and vertexes for an individual voxel.

(b) Neighboring voxel (in black) used for assigning a TSDF and a
color value to each of the eight vertexes of the main voxel (in red)

3. Methodology

We have implemented a system that constructs a 3D
model with either color of the scene or color associated to
detected objects, using YOLO detector [1]. The volumetric
structure stores in each voxel this color data, information
about the surface enclosed by the volume as TSDF values,
a weight and object detection data (when YOLO is coupled
to the system). The volumetric structure is located (Trcube)
with respect to the initial frame. The depth maps are
fused from the estimated poses Twc (using ICP), updating
each voxel independently and in parallel, in a graphics
processing unit (GPU). After updating the volumetric
structure, an explicit representation is computed using
an implementation in GPU of marching cubes. We use

OpenGL for visualizing the model and for reading the
depth and color buffer achieving a predictive depth map
and a predictive object detection image from the next
camera pose. These images are employed in ICP and
multiple instance management. Figure 1 presents the
main processes and the structure of the proposed system.
In the next sections, the main modules of the system are
explained.

3.1 Volumetric fusion

Depth data coming from either a depth camera, a dataset,
or built from images obtained with a monocular or stereo
camera, must be represented in a global reference
frame. A simple representation could be overlapping
scans, for example, drawing local point clouds in a global
coordinate system. A better representation is obtained
with volumetric fusion of depth maps which generates a
surface by computing the zero crossing of the function.
The surface is represented as a set of triangles in 3D,
obtained from the volumetric structure by applying the
marching cubes algorithm. This 3D scene is rasterized in
a 2D representation in order to visualize it on a screen.
This representation is computationally more efficient,
more realistic and allows a richer interaction with real or
virtual objects, in robotics or augmented reality.

The constituent element of the volumetric structure
is a voxel. We will denote a voxel as ϕ(X), whereX ∈ R3

is the centroid of the voxel. It stores a TSDF value, a
structure with RGB color data C, a weight W , and two
structures with object class data O1, O2, as is shown in
Eq. (1).

Φ(X) 7→ [TSDF,C,W,O1, O2] (1)

The TSDF, is a truncated version of the signed distance
function (SDF), used in computer graphics for representing
surface interfaces as zero, free space as positive values
that increases with the distance to the closest surface
and (possible) occupied space as a negative value. The
structure for color data stores the RGB components of the
image coming from the scene, in the range [0, 1]. However,
if the object detector module is coupled, an image coming
from the detector is used instead. The weight reflects the
confidence of the TSDF value. Each structure for object
class data stores the class identifier and a counter for this
class. We use two object class structures: in the first one
we store the data of the principal detected object, it means,
the object with the greater class counter; in the other one
we store the data of the object with the second greater
class counter.
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Volumetric structure

The user can define the resolution of the reconstructed
model through the size of the volumetric structure and the
number of voxels in each dimension. The numeration of
vertexes and edges of an individual voxel is shown in Figure
2(a). For carrying out marching cubes each vertex must
have a TSDF value and a color C. Since each voxel stores
just one TSDF and C, we create an extended structure
based on the neighboring voxels, as is shown in Figure 2(b).

The TSDF of voxel Φi (X) is assigned to Vertex i, for
i =0:1:7. The same assignment is done for the RGB color
C of the voxel Φi (X).

Voxel update

The depth measurement D (u) , where u = (u, v) is
a coordinate in the image plane, has an uncertainty of µ
around the true value, so the measure is likely to be in the
range [D (u) − µ, D (u) + µ] over the ray that passes
through the voxel Φi(X) (see Figure 3). The free space is
in the range [0, D (u) − µ] and no information about the
surface is obtained farther than D(u) + µ (occupied or
free space). With TSDF, points that are in free space within
a distance greater than µ from the closest surface will be
truncated to a maximum value. Points that are far from
the visible surface are not measured.

The TSDF value for a voxel Φ with center X , given
the camera pose Twck and a depth map from this pose
Dck, is computed using Eq. (??).

TSDF (X) = Ψ(Dk(u)−Xz) (2)

where the subindex z corresponds to the z coordinate of the
centerX of a voxelΦ (referenced to the camera frame) and
Dk(u) is the depth of the 3D point that lies in the surface
and is intersected by the ray. The relation between X and
u is defined in Eq. (3).

u = Kπ(X) (3)

where π represents perspective projection of the 3D point
X = (x, y, z) and dehomogenization byXn(x/z, y/z) and
K is the intrinsic camera matrix. Ψ(η) performs the SDF
truncation to an argument η ∈ R (see Eq. (2) where η
represents the difference of two depths) as is shown in Eq.
(4).

Ψ(η) =


min(1, η

µ )sgn(η) iff η ≥ 0

null otherwise

(4)

The fusion of depth maps in the volumetric structure was
formulated according to [8] and [5]. It corresponds to the
weighted average of all the TSDF computed with Eq. (5) for

each depth map.

TSDFk(X) =
Wk−1(X)TSDFk−1(X)+Wk(X)TSDF (X)

Wk−1(X)+Wk(X)

(5)

where W is the weight of a voxel with centroid X . We
propose for color management (see Eq. (6)), motivated by
the methodology carried out for updating the TSDF values
(see Eq. (5)), the weighted average for each channel of the
RGB data through time.

Ck(X) =
Wk−1(X)Ck−1(X) +Wk(X)C(X)

Wk−1(X) +Wk(X)
(6)

where C(X) = Ik(u) (RGB image of the scene), and
u was defined in (3). If the object detection module is
coupled to the system, the color is not obtained directly
from the RGB image of the scene, but from a synthetic
RGB image Ikcod(u), where the color is assigned to each
pixel according to the category of detected objects. For
example, [1, 0, 0] (red color) is associated to monitors. If
no object is detected, this pixel will have black color. Next,
the weight is updated with Eq. (7).

Wk(X) = Wk−1(X) +Wk(X) (7)

The weight provides information about the uncertainty of
a TSDF value, so it can be set according to the depth
(directly proportional), and angle between the associated
pixel ray direction and the surface normal in the local
frame (inversely proportional). However, we used simply
Wk(X) = 1, that averages the TSDF values, getting good
results.

Marching cubes

Marching cubes [21] builds an explicit representation given
a TSDF volume (polygonal representation of an isosurface
of a 3D scalar field). If one vertex is above the isosurface
and an adjacent vertex is below, the isosurface cuts the
edge between these two vertexes. The position where
it cuts the edge will be computed using Eq. (8) by
interpolating the TSDF of the adjacent vertexes.

Xvert = X1 +m(X2 −X1) (8)

where Xvert is the vertex position of a triangle that
represents the isosurface, X1 and X2 are the position of
adjacent vertexes of the cube, with local coordinate system,
andm is defined in Eq. (9).

m =
isovalue− TSDF1

TSDF2 − TSDF1
(9)

with isovalue = 0. The color is interpolated for each
channel using the same ratiom (see Eq. (10)).
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Figure 3 Ray that passes through the voxel i (dark blue), range of uncertainty of the measured depth (yellow), surface been scanned
(light blue) and difference between the measured depth and the z-coordinate for a voxel i (in camera frame). The last value is used

for computing the TSDF

Cvert = C1 +m(C2 − C1) (10)

We selected marching cubes instead of ray casting [22] for
convenience: we already had an efficient implementation
of marching cubes in GPU (modified version of the
algorithm coming with CUDA). For the additional step
of rasterization [23], we simply read the depth buffer
from OpenGL (see next section for more details about
rasterization).

3.2 Tracking

There are three main frameworks in the literature for
dense tracking: frame-to-frame [24] (when a reference
depth map is used for aligning locally a synthetic and
an observed image), frame-to-model-vertices [5] (the
technique that we use and that is explained in the next
paragraphs), and frame-to-model-TSDF [25] (a variant
of the previous technique that compares values of TSDF
instead of vertexes and normals). The goal is to estimate
the global camera pose Twck for each new frame where a
depth map is available. For using ICP we need to compute
at time k a predictive depthmap coming from the 3Dmodel
updated in time k − 1. Next, the computation of the
predictive depth map and the ICP algorithm are explained.

Rasterization

This technique [23] is used for displaying 3D models on a
screen. A 3D model is represented as a set of triangles.
The vertexes of the triangles are projected on a 2D plane
(viewer’s monitor), knowing the relative transformation
between the model and the camera Tcam,model. When

a scene is rendered, the information of depth for each
pixel is stored in a buffer (see Figure 4). OpenGL uses it
for comparing depth and overriding the depth of the pixel
with the depth of the closest object. To take advantage
of this buffer, we place the virtual camera on the pose
(position and orientation) of the real camera, getting
depth information of the scene. No information exists
outside the volumetric structure defined by the user for
reconstructing it.

The frustrum is defined by Znear, Zfar and vertical
field of view V FOV . The range of depths Z ′ stored on
the z-buffer is [0, 1]. Objects outside the frustrum will not
be rendered. After a perspective projection, we obtain Eq.
(11).

Z ′ =
Zfar + Znear

2(Zfar − Znear)
+

1

Z

(
−ZfarZnear

Zfar − Znear

)
+

1

Z
(11)

where Z is the real depth. Solving for the real depth, we
get Eq. 12.

Z =
2ZfarZnear

(Zfar + Znear)− 2(Z ′ − 1/2)(Zfar − Znear)
(12)

We defined Znear as the focal length (in metric units),
Zfar = 100m and the vertical field of view is computed
using Eq. (13).

V FOV = 2a tan

(
0.5H

fy

)
(13)

whereH is the number of rows of the image.
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Figure 4 (a) Reconstructed 3D model. (b) Depth map read from the depth buffer of OpenGL. The dark regions correspond to space
outside the grid of voxels (no information). The depth buffer is used for frame-model ICP in the tracking process

Dense ICP

Dense ICP is appropriate due to two reasons. First, the
camera motion at frame rate is small, so we can use fast
projective data association to obtain correspondence and
point plane metric [5] for pose optimization. Second, these
algorithms are highly parallelizable so an important speed
up is obtained when implemented on GPU. The general
diagram of the frame-model tracking is shown in Figure
5.

For each depth map, whether estimated from the model,
D̂k−1(u), or acquired from the sensor,Dk(u), we compute
a vertex map and a normal map, V̂k1(u), N̂k−1(u) and
Vk(u), Nk(u), respectively. The vertex map is computed
with Eq. (14).

Vk(u) = Dk(u)K
−1u̇ (14)

and the normal map is computed with Eq. (15) as the cross
product between two vectors obtained from the neighbors
of the current vertex u.

Nk(u) = τ [(Vk(u+ 1, v)
−Vk(u, v))× (Vk(u, v + 1)− Vk(u, v))]

(15)
where the dot over a vector denotes homogeneous vector
and τ [x] = x/∥x∥2, it means, a unit normal vector. The
transformation from a local coordinate system to a global
one is defined in Eq. (16).

Vk
w(u) = TwckV̇k(u) (16)

Energy Function

Eq. (17) is a global point-to-plane energy, that uses global
coordinates for vertexes and normals, and a L2 norm of the

error, having as argument to minimize the transformation
Twck.

E(Twck) =
∑
u∈Ω

∥∥∥(TwckV̇k(u)− V̂ w
k−1(û))

T
N̂w

k−1(û)
∥∥∥
2

(17)
This energy aligns, using Levenberg-Marquardt, a live
surface (Vk, Nk) with a predicted surface from the model
in the previous step (V ˆ

k−1, N
ˆ
k−1) by penalizing long

distances between the vertex Vk and the tangent plane to
vertex V ˆ

k−1 (see Figure 6).

The correspondences are computed by projecting the
vertexes obtained from the range sensor in time k to the
image plane of camera in time k1, using an estimate for the
frame-frame transformation T iter

k−1,k = T −1
wck−1T

iter
wck,

defined in Eq. ((18)).

û = Kπ(Tk−1,kV̇k) (18)

Transformation update

We initialize the iterative optimization with T 0
wck =

Twck−1. The global camera transformation is updated,
assuming a small change in position and orientation,
by pre-multiplying an incremental transformation to the
current estimate, as is shown in Eq. (19).

Twck
iter(u) = Tinc

iterTwck
iter−1 (19)

where Tinciter is defined in Eq. (20).
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Figure 5 Diagram of the frame-model based tracking. The vertex map in k1, obtained from z-buffer of OpenGL, is aligned (ICP)
with the vertex map, computed from the measured depth map in k

Figure 6 Graphical interpretation of the point-to-plane
optimization. The vertex Vk (in red), obtained from the

measurement, is moved in order to reduce the distance to the
tangent plane of vertex V ˆ

k−1 obtained from the model

Tinc
iter =

[
Riter|titer

]
=

 1
−α
γ

α
1
−β

−γ
β
1

tx
ty
tz

 (20)

This rigid body transformation can be written as a
6-elements vector, as is expressed in Eq. (21).

x = [α, β, γ, tx, ty,tz] (21)

With this new transformation, a new vertex map, that
reduces the alignment error, is computed through Eq.
(22).

vk
w = Twck

iterV̇k(u) = RiterVk
w + titer (22)

Expressing it using the motion vector x (see Eq. (21)) we
get Eq. (23).

Vk
w(u) = G(u)x+ Vk

w(u) (23)

whereG(u) consist of the skew-symmetric representation
of V w

k and a 33 identity matrix, as is defined in Eq. (24).

G(u) =
[
[Vk

w]×|I
]

(24)

The energy of a linearized version of Eq. (17) can be
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Figure 7 Object detector module. a) shows the edging boxes and labels for detected objects with YOLO. b) shows Image Icod(u)
with objects of interest with probability higher than 50%

Figure 8 Images used for managing multiple instances of object classes. (a) shows the predicted object detection image, Îcod(u),
coming from the model by reading the color buffer of OpenGL. (b) shows the object detection image Icod(u) coming from YOLO

expressed in terms of the motion vector x, resulting the
minimization problem of Eq. (25).

min
Twck

E(Twck) =∑
u∈Ω

∥∥∥(G(u)x+ Vk
w − V̂ w

k−1(û))
T
N̂w

k−1(û)
∥∥∥
2

2 (25)

Deriving the objective function with respect to the motion
vector x and setting to 0, a symmetric linear system of 66,
for each correspondence, is obtained (see Eq. (26),(27),
and(28), and the paper [5] for more details).∑

Ω(u)̸=null

(ATA)x = AT b (26)

AT = G(u)TNk−1
w(û) (27)

b = Nk−1
w(V̂ w

k−1(û)− Vk
w(u)) (28)

We need a coarse-to-fine scheme since the point-plane
error function is linearized, otherwise just small motions

can be estimated. In this sense, we built a 3-level
pyramid, with a scale of 0.5 between levels (coarsest
image of 160x120 pixels). The data association based
on perspective projection and the optimization based on
the point-to-plane metric is performed in each level, and
the result in the coarsest level is used as initial value
in the iterative optimization on the following finest level,
using Levenberg-Marquardt. With this scheme, we achieve
better estimations when fast camera motion occurs and a
faster convergence in the finest level (image of 640x480
pixels) since an approximated camera pose has already
been estimated in coarser levels (see experiments in [26]
for more details about convergence with a coarse-to-fine
scheme).

3.3 Object detection

We couple YOLO (you only look once) [1] to our system for
object detection in real time. YOLO can detect over 9000
object categories, achieving 78.6mAP at 40FPS (running
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Figure 9 Algorithm for multiple instance management of detected objects

on a Geforce GTX Titan X). It applies a single neural network
to the full image. This network divides the image into
regions and predicts bounding boxes and probabilities for
each region. This makes it extremely fast, more than
1000x faster than R-CNN and 100x faster than Fast R-CNN.
The model, called Darknet-19 [27], has 19 convolutional
layers and 5 maxpooling layers. Moreover, YOLO uses
WordTree to combine multiple datasets together in a
sensible fashion. YOLO9000 learns to find objects in
images using the detection data in COCO and it learns
to classify a wide variety of these objects using data
from ImageNet [28]. The model only uses convolutional
and pooling layers which makes it robust to running on
images of different sizes. Figure 7(a) shows the output
from the object detector YOLO. A color is associated to
the detections that have a probability higher than 50%
and belong to any of these five categories: computer,
laptop, keyboard, book and cup. Figure 7(b) shows the
resulting image, Icod(u), which is used in the color update
process, carried out in parallel for each voxel. A pixel with
depth greater than the mean depth of the pixels inside the
associated edging box is set to black.

3.4 Multiple instance management

The system can differentiate between multiple instances
of the same class that are in the reconstructed model.
For achieving that, we read the color buffer of OpenGL
that represents the 3D-2D projection of the 3D model,
updated until time step k1, in the image plane located in
the estimated camera pose in time step k, it means, we
predict where the objects will be found in the next step.
Then, we compare the predicted image Îcod(u) (Figure
8(a)) with the image obtained from the object detection
module Îcod(u) (Figure 8(b)).

We save information of the objects found in the scene
in a vector: coordinates of the 3D edging box, centroid,
and identifier. According to whether an object has been
detected previously or is a new detection, on an empty or
busy region, the object is included in the vector of found
objects or the information of an existing object is updated.
Figure 9 describes the multiple instance management
process.

4. Results and discussion

Our system for dense tracking and mapping, with color
from the scene or from the object detection module, runs
on a laptop ASUS G551VW with a processor Intel Core
i7-2.6GHz, 8GB of RAM memory, a graphics processor
NVIDIA GEFORCE 960M and Ubuntu 14.04 as operating
system. We carried out experiments with three sequences
from the TUM RGB-D dataset [29] that provides color
and depth images of a Kinect sensor, with camera pose
estimated with a high-accuracy motion-capture system.
We also use both a synthetic dataset of Handa et al.
[30] which provides the ground truth in camera pose
(perfect ray-traced images taken at 100fps) and our own
data coming from a Kinect sensor moved by hand in a
room-sized scene. OpenCV is employed for processing
images, Eigen3 for some matrix operations, OpenGL for
drawing the 3D model, and for getting depth and color
information from the model, Cuda 7.5 and Thrust library
for improving the performance using commodity graphics
hardware, YOLO for detecting objects in a desktop-like
environment, and OpenNI for working with the Kinect.

Experiments are made for computing the accuracy of
the tracking algorithm, the accuracy of the reconstructed
3D model and the performance of the object detection
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Figure 10 Resulting 3D reconstruction with color (a) from the scene and (b) from the object detector. Synthetic depth maps are
fused from the estimated camera poses

Figure 11 Error in camera position for synthetic data. The error remains small without drift after completing the whole trajectory

module. We will also evaluate the performance of the
main components of the system with respect to time.

4.1 Accuracy in camera pose

For these experiments, we use the synthetic and the
TUM RGB-D dataset. For the synthetic one, the voxel
grid has 128×128×128 voxels in each dimension, covering
a volume of 1.8 × 1.5 × 1m. The volumetric structure
is placed using as reference the first coordinate frame
of the camera (initialized by the user). Its location is
(−1.2m, − 0.8m, 0.7m). The final reconstruction has
788,373 vertexes. Figure 10(a) shows the resulting 3D
reconstruction with data coming from the scene. 10(b)
shows the same reconstruction but using color coming
from the object detection module. Neither the geometry
of the 3D model nor the estimation of the camera pose is

affected by the type of color used.

The maximum number of iterations for camera tracking
in each level is 4,8,10, from fine to coarse level. We define
the error in camera position as the Euclidean distance
between the ground truth and the estimations. The
behavior of the error in camera position around the whole
trajectory is shown in Figure 11.

The analysis in orientation is made in each axis, as
the difference between the ground truth and the estimated
values. These errors are shown in Figure 12.

Table 1 summarizes the quantization of the errors in
camera position and orientation. Note that the root
mean square error RMSE in camera position (less than
1cm) and in camera orientation (less than one tenth of a
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Figure 12 Error in camera rotation for synthetic data. The error remains small without drift after completing the whole trajectory

Figure 13 Dense reconstruction for the sequence fr1/desk of TUM, with color from the scene

degree) shows the high accuracy of the tracking algorithm.
Moreover, the error in camera position remains stable
after 500 iterations which indicates that no large drift
occurs in camera tracking. The RMSE in camera position
is 0.59% of the distance navigated by the camera that
corresponds to 7.27m.

Table 1 Accuracy in camera pose

Estimation
Loc. Rot. X Rot. Y Rot. Z
[cm] [deg] [deg] [deg]

RMSE 0.4314 0.0802 0.0820 0.0402
Max. error 0.5701 -0.0080 0.1587 0.0785
Min. error 0.0559 -0.1352 -0.1238 -0.0561
Mean error 0.4256 -0.0754 0.0476 0.0181
Median error 0.4325 -0.0745 0.0593 0.0229
Standard dev. 0.0701 0.0274 0.0668 0.0359

For the TUM RGB-D dataset, se chose three sequences
that were taken in room-sized environments, the fr1/desk,

fr1/desk2 and fr1/xyz. For the first sequence (similar
configuration for the remaining two sequences), the
voxel grid has 128×128×128 voxels, covering a volume
o 3 × 2 × 3m. The volumetric structure is placed
in (−2.5m, − 1.1m, 0.3m) with respect to the first
coordinate frame of the camera. The final reconstruction
has 763,086 vertexes. The maximum number of iterations
for camera tracking in each level is 4, 8, 10, from fine
to coarse level. Figure 13 shows the resulting 3D
reconstruction with data coming from the scene.

In table 2 we can see that KinectFusion [5] and our
system has similar accuracy (except for fr1/desk2
where [5] has a high error). It is due to similarities
in the design: dense ICP for tracking and volumetric
structure with TSDF values for the model. More recent
systems [12–15], use both photometric and geometric
error for estimating the camera pose. Moreover, they
include modules for achieving loop closure detection and
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Table 2 TUM RGB-D dataset. Comparison of translation RMSE (m)

Sequence Ours
KinectFusion Kintinuous ElasticFusion ORB-SLAM2 RGBDTAM

[5] [12] [13] [14] [15]
fr1/desk 0.052 0.057 0.037 0.020 0.016 0.027
fr1/desk2 0.083 0.420 0.071 0.048 0.022 0.042
Fr1/xyz 0.036 0.026 0.017 0.011 — 0.010

global consistency with techniques such as non-rigid
deformation, pose-graph optimization and bundle
adjustment. These systems are more accurate and robust
than [5] and our system, especially when performing in
complex trajectories (see table 2). Note that ORB-SLAM2
[14] is the most accurate system for tracking.

Table 3 Accuracy in geometric data (using CloudCompare
software)

Estimation Loc. [cm]
Max. error 6.213
Min. error 0
Mean error 1.4482
Standard dev. 1.1938

4.2 Accuracy in 3D geometry

The error in 3D geometry is computed by comparing
a triangular mesh from a loaded model and the point
cloud made up of vertexes of the reconstructed model.
We use a 3D model that represents a desktop-like
environment, downloaded from TurboSquid, and the
software CloudCompare for performing the comparison.
The 3D model is loaded in OpenGL, using just geometric
data (Figure 14(a)). The virtual camera is located in
such a way that circular and vertical scanning at different
longitudes (changes in azimuth and elevation of 10o) are
performed. The optical axis of the virtual camera is always
pointing to the origin that coincides with the centroid of
the loaded model. Depth images, obtained by reading the
depth buffer from OpenGL, are fused into a volumetric
structure. The vertexes of the triangular mesh, computed
with marching cubes, are used for the comparison (Figure
14(b)).

Figure 15 shows the resulting comparison as a point cloud
with color representing the error. Note that the greater
errors are in the farther edges of the desk. Table 3
summarizes this comparison.

Figure 14 Data used for quantifying the accuracy in geometry.
a) 3D Model of a desktop-like environment. Downloaded from

TurboSquid. b) Point cloud from the reconstruction

4.3 Assessment of the object detection
module

We work with five categories of objects commonly found
in desktop-like environments, detected with a probability
higher than 50%. Table 4 summarizes the performance of
the object detection module using the dataset of Handa et
al. [30] (see Figure 10). Pt is the percentage of detections
with respect to the total amount of imageswhere the object
is visible. Pc is the percentage of correct detections with
respect to the total amount of detections. The pose of each
object with respect to the closest upper left corner of the
volumetric structure are presented in the fifth column. The
computer and cup (down) are detected in all and almost all
the images where the objects are visible, respectively. The
keyboards are the objects less detected. Wrong detections
only occur for the laptop, which sometimes is labeled as
book (although this object is really a shelf for leaves and
not a laptop). In the last case, where the same object has
labeled with two different categories (laptop and book), the
system propagates the color to the volumetric structure
if the identifier corresponds to the object with greater
counter. Otherwise, the counter of the auxiliary object
(Object2) is increased but the color is not propagated,
reducing instability in the color of the structure. Note that
the algorithm in Figure 9 allows the system to manage two
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instances of cup and keyboard, saving the centroid (pose in
Table 4 and 3D edging boxes.

Figure 15 Point Cloud (front and back views) with color
representing the distance between the point cloud and the

reference model (scale in centimeters)

4.4 Time

All the main processes that make up the proposed system
were implemented on commodity graphics hardware.
Table 5 shows the average on processing time for
marching cubes, fusion of depth maps, rasterization, and
tracking of the depth camera.

With this performance, the system can reconstruct
the scene and estimate the camera pose at 10 fps. Note
that tracking is the process with more time consumption.
It works with three pyramid levels and {10, 8, 4} iterations,
from coarse to fine levels. The improvement with respect
to time of the tracking algorithm is left for future work.
The object detection module runs offline, taking 140 ms
for processing an image. We saved the information of
detected objects in a text file. This file is used in the
reconstruction process for creating the image Icod(u)
which is propagated to the volumetric structure. Figure
16 shows a real desktop-like environment, taken with the
Kinect, while Figure 17(a) presents the 3D model. Figure
17(b) shows the same model but with color representing
the detected objects (books, laptop, keyboard and cups).

5. Conclusions

We have developed a system that creates a dense
reconstruction of a desktop-like environment and
simultaneously estimates the pose of a depth camera
moved by hand. All the data of the images is used, depth
data for tracking and intensity data for coloring the model,
so the implementation was done in commodity graphics
hardware, achieving to fuse depth maps and track the
camera at 10 fps, with color information. We also couple

Figure 16 RGB image of a desktop-like environment took with
the Kinect

an object detector and propagate the detections to the
volumetric structure in a straight way, saving data of
detected objects around the time, managing multiple
instances and achieving stability in the color of the model.
The results have been satisfactory. First, the ICP algorithm
with a coarse to fine scheme, fusion and marching cubes
algorithms, produce high accuracy estimates in both
camera tracking (especially with the synthetic dataset)
and 3D reconstruction. For the experiment with synthetic
dataset, the RMSE is 0.431cm in translation (just 0.59%
of the distance navigated by the camera) and 0.080o,
0.082o, and 0.040o, in rotation around the X, Y, and Z axis,
respectively. For the experiment with the TUM RGB-D
dataset, we got 5.2cm, 8.3cm and 3.6cm for translation
RMSE. The accuracy of our system is on par with [5]
but lower than systems such as [12–15] that integrate
techniques for achieving global consistency such as
appearance-based place recognition for loop closure
detection, non-rigid space deformation, pose-graph
optimization and bundle adjustment. Second, the system
updates the color of the model every frame, getting a 3D
model with color coming from the scene or with color
coming from the object detectionmodule. The assessment
in geometry of the reconstruction got for the loaded model
of Figure 14.a, shows that the mean error is 1.4482cm,
less than 1%, considering that the model has 2m long.
Third, the system can manage multiple instances of an
object class and wrong detections, getting a stable color
model. For future work we will integrate the RGB data in
the error function for tracking the sensor and implement
techniques for loop closure and global consistency that
makes the system more robust to complex trajectories.
Moreover, we will work on the segmentation of the
detected object inside the edging box in order to propagate
a more accurate information to the volumetric structure,
and on the improvement of the tracking algorithm with
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Table 4 Performance of the object detection module

Category b Pc[%] Prob. [%] Pose(x,y,z) [cm]
Computer 100.00 100.00 78.20 123.74;70.05;77.35

Book 40.90 100.00 56.22 63.17;101.76;23.72
Cup (up) 21.00 100.00 57.47 79.15;87.23;63.01

Cup (down) 96.15 100.00 77.10 72.70;95.87;37.07
Keyboard (left) 11.00 100.00 54.54 108.80;102.54;46.07
Keyboard (right) 7.00 100.00 52.95 142.49;106.54;59.06

Laptop 20.00 80.00 56.03 95.15;82.06;74.82

Figure 17 3D reconstruction with (a) color coming from the scene and (b) color coming from the object detection module

Table 5 Processing time of the main modules

Process Time [ms]
Marching cubes 8.322

Fusion 17.891
Rasterization 8.657
Tracking 68.417
TOTAL 103.297

respect to time.
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