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ABSTRACT: This paper presents the development of theoretical and experimental models
for the study of rotodynamic behavior of a multistage rotor. The transfer matrix method,
which includes the characteristics of stiffness and damping for the supports and the
stages respectively as well as the characteristics of unbalance in the stages, is used
for the theoretical model. The data from a physical model was employed as a way of
validating the theoretical results. The first two critical speeds were determined with the
theoreticalmodel and they differ in a low percentagewith respect to the valuesmeasured
experimentally. Moreover, the vibration level recorded in the physical model rises 2.5
times when the multistage rotor approaches the first two critical speeds. In addition
to this, significant displacements of the lateral critical speeds are noticeable when an
increase in mass imbalance is induced in several of the rotor impellers.

RESUMEN: Este artículo presenta el desarrollo de modelos, teórico y experimental, para
el estudio del comportamiento rotodinámico de un rotor multietapas. El modelo teórico
se obtiene a partir de las ecuaciones de Lagrange y se resuelve empleando el método
de la matriz de transferencia. En el análisis se incluyen las características de rigidez
y amortiguamiento de los apoyos y de las diferentes etapas del rotor, así como el
desbalance másico de estas últimas. Como vía de validación de los resultados teóricos
se emplearon los datos provenientes de un modelo físico rotodinámico, especialmente
desarrollado para la investigación. Las dos primeras velocidades críticas fueron
determinadas con el modelo teórico y difieren en un bajo porcentaje con respecto a los
valores medidos experimentalmente. Por otro lado, el nivel de vibración registrado en
el modelo físico se eleva 2,5 veces cuando el rotor multietapas se aproxima a cualquiera
de las primeras dos velocidades críticas. Adicionalmente, se describe un corrimiento
apreciable en la magnitud de las velocidades críticas laterales cuando se aumenta el
desbalance másico en varios de los impulsores del rotor.

1. Introduction

Multi-stage rotating machinery is employed today in a
wide variety of industrial applications. These systems
should be carefully designed to be carried out with
the operational requirements that include mechanical
resistance, stiffness, vibration levels, and operation speed
range. A couple of essentials factors to study the vibration
phenomena are first the vibration severity, mainly caused
by mass unbalance, and second the proximity of the
operation speed to the critical speeds, in which the

resonance of the rotodynamic system is generated. A
good strategy consists in controlling the negative dynamic
factors from the design process to get reliable multistage
rotated systems. Normally, a critical condition happens
when the rotor operates near to one of its critical speeds,
because in this condition the amplitude of the vibration
increases.

Several investigations about rotodynamic have been
focused on the prediction of rotor behavior, security,
and reliability. In [1] the steady state response of an
asymmetric rotor of one stage is modeled. The results let
the authors conclude that the dynamic response of the
rotor in a steady state to a specific speed can be precisely
predicted.
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Other researchers studied the critical speeds in
Turbomachinery by computer simulation and contrasted
the results with experimental measurements [2]. The
work concludes that the accuracy of computationalmodels
in predicting critical speeds depends fundamentally on
two aspects: firstly on the accuracy of the free vibration
model of the rotor, which is a function of the elastic model
of the latter; secondly, it depends on the accuracy in
estimating the stiffness and damping coefficients of the
bearings, which are a function of the turning speed in the
case of fluid film sliding bearings. They also determine
that the first two or three critical speeds on any rotary
machine can be determined with errors not greater than
7%, as long as the linear estimation methods are correct,
also, to properly contemplating the effects of rigidity and
damping of the bearings.

On the other hand, the transfer matrix method has
been used for study the lateral and torsional vibration
of an asymmetric rotor [3]. The researchers used the
Euler’s angles to describe the rotor orientations. In this
research, it was established that when the torque and
unbalance rotor force excite simultaneously the system,
the frequencies (n− 1)·X and (n + 1)·X predominate
as similar as the fundamental speed in the frequency
domain. In [4] the same methodology to analyze the
transient lateral response and the instabilities of a rotor
under torsional load excitation is employed. The author
concludes that the lateral effect generated by the torsional
load was a minimum, even when the rotor was operating
near to its critical speeds. Using this methodology [5]
studied the rotodynamic behavior in the torsional direction
of a typical wing (elastic) installed in a flexible shaft.
The modeling results and the simulation done in this
work exhibited a strong dependency and an energetic
interaction between the shaft torsional distortions and the
wing’s flexible distortions.

Recent investigations have showed specific results
for each application. The way as the equipment with
electrical power supply stimulate the torsional and
lateral vibration in a turbo compressor is analyzed in [6].
While a rotodynamic analysis method that considered
the coupled lateral and torsional vibration in a tandem
compressor with a speed increaser is approached in
[7]. In their analyses, the authors conclude that lateral
vibration can be stimulated by the vibration modes of the
coupled system, but this is not usually detected when an
independent lateral vibration analysis is developed.

The dynamic behavior of the centrifugal fan’s rotor is
analyzed in [8]. For a long time, this fan operated at
1,900 rpm, but for operational conditions, it was moved to
operate at 2,080 rpm; when the change was made, then
high vibration levels, more sensitivity to unbalance and

finally catastrophic failures in rotor bearings appeared.
One of the main conclusions was that the gyroscopic effect
and the forces acting in the overhung centrifugal fan can
modify in a 37% the frequency of the first modal shape.

Finally, [9] studied the behavior of compressors operating
close to the critical second speed according to API
specifications; however, it was not possible to accurately
determine the second critical speed without considering
appropriately the effect of the flexibility of the supports.

In the current work, a theoretical and experimental
study of the multistage rotor behavior under lateral
load excitation is done. The rotor dynamic analysis
includes mathematical and experimental determination
of the first and second critical speeds of the rotor and
the assessment of the effects induced by the different
unbalance combinations. The mathematical model
considers stiffness and damping in the supports. The
establishment of the lateral critical speeds begins with
the mathematical approach that describes the multistage
system, where the set of equations is solved using the
transfer matrix method. The main contribution of this
work is an integrated mathematical formulation that leads
to a better prediction of the multistage rotor response
under multiple imbalance conditions, both for stable and
transient conditions.

Simultaneously with the synthesis of the theoretical
model, an experimental installation was designed and
built that allows registering lateral vibration data in the
rotor, in order to obtain the spectrum and orbit diagrams
in the two bearings. The experimental installation allows
identifying the critical speeds of the system and analyzing
the dynamic effects caused when different imbalance
conditions are induced in the rotor stages. The data
obtained from the experimental installation are used in
the validation of the theoretical model.

2. Experimentation

2.1 Generation of the analytical model

The lateral vibration model analyses start from the
movement equations for a flexible system extracted from
Lagrange equations. The equations describe a system
composed of rigid impellers connected to a flexible shaft
and supported by flexible journal bearings. The Figure 1
shows the general diagram of the multistage rotor model
defined in this study.
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Figure 1 Analysis diagram for the multistage rotor

The kinetic energy for one stage of the rotor is defined
according to (1).

L =
m
(
ẋ2 + ẏ2

)
2

+
IT(α̇2+β̇2)

2
+

IP
(
ω2 − 2ωα̇β

)
2

(1)

Where L is the kinetic energy of one stage of the rotor
(J); ω is the rotation speed of the rotor (rad s-1); m is the
impeller mass (kg); IT is the impeller’s transverse inertia
moment for x or y axis (kg m2); IP is the polar moment
of inertia of the impeller for the z axis (kg m2); α is the
rotation angle of the rotor relative to the y′ axis (rad); β is
the rotation angle of the rotor relative to the x′ axis (rad);
and φ is the rotation angle of the rotor relative to the z′

axis (rad), respectively.

From Lagrange formulation, Equation 2 is established.

d

dt

(
∂L

∂θ̇n

)
− ∂L

∂θn
= Qn (2)

Where L is the Lagrangian, θn is a point in the
configuration space of the multistage rotor and Qn is
the non-conservative torque. In addition, the work is
expressed by Equation 3.

dW =

N∑
n=1

Qnδθn =
∑

Fxδx +
∑

Fyδy

+
∑

Myδα +
∑

Mxδβ

(3)

Where δi is the deformation according to the direction i
(mm), Fi and Mi are forces (N) and bending moments
(Nm) respectively according to the direction i.

Substituting (1) and (3) in (2), the movement of an
impeller is described by Equations 4.

mẍ =
∑

Fx

mÿ =
∑

Fy

IT β̈ + IPωα̇ =
∑

Mx

IT α̈+ IPωβ̇ =
∑

My

(4)

In Equations 4, the terms IPωα̇ and IPωβ̇ describe
the gyroscopic effects in the rotodynamic system. The
terminology on the right side in each equation describe
the friction and internal elastic forces caused for the shaft
in each impeller, the unbalance forces, the flow forces and

the loads in the bearings.

The forces (Fx and Fy) and moments (Mx and My)
for one stage are defined by (5).
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ẋ
ẏ
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(5)

The stiffness (Kij ) and damping coefficients (Cij ) in
(5) define the forces and moments in each stage in the
directions x, y, α and β, respectively.

As is shown in (5), there are 16 coefficients of stiffness
and 16 coefficients of damping respectively which define
the forces and moments in each stage of the rotor. The
elements in the diagonal of the stiffness matrix are
called cross coupled effect stiffness coefficients, and they
associate the unstabilize mechanism of a rotodynamic
system.

The solution of these matrices are complex numbers,
which define the eigenvectors (real part) and eigenvalues
(imaginary part) of the system. Using computational
tools, the solutions to the system of equations that
describes the rotor under consideration can be obtained.
The formulation is developed using the approach of a
system of polynomial equations for each step according.
The differential equations of the polynomial system that
define the lateral vibration phenomenon are written for
each mass in the transfer matrix. Since the equations
are linear and homogeneous, these enable to find the
eigenvalues of the system through a solution of the type
Xest, as considered in [10, 11]. Thus, under this criterion,
matrices of differential equations can be transformed into
matrices of linear algebraic equations. The mathematical
expression for each step, considering the transfermatrices
referred and polynomial solution summarized by (6) and
(7).
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Where, [Tln] is the transfer matrix (8x8) for each impeller
or stage, and [Tsn] is the transfer matrix associated with
each rotor section.

The solution of the system of polynomial equations is
obtained by multiplying together all transfer matrices (one
for each stage), and thus the overall transfer matrix that
represents the entire multistage system is obtained, which
process solution consists in first applying the boundary
conditions of the rotodynamic system.

2.2 Design of the experimental model

The development of the experimental design is executed
in three steps: first, the mechanical design of the physical
system is accomplished, then the system configuration
signal acquisition and associated instrumentation is
implemented, which is necessary for recording the data
inherent to the vibration phenomenon, and finally the
different tests for the determination of the first two lateral
critical speeds and the study of the vibrations due to the
mass imbalance are planned.

To measure the lateral vibration, it was opted for using
two accelerometers (CTC Ref.: AC140-3D/010/010-F,
resolution: 100mV/g and connection BNC) installed
orthogonally in the journal bearings. These signals are
processed and analyzed by an interface developed in
LabVIEW (Sound & Vibration Toolkit used V4.0 and the
Toolkit Control Design & Simulation Module) for obtaining
the spectrum, time waveform and orbits graphs. The
multistage rotor is designed as a shaft supported by two
simple supports, and up to seven stages can be installed,
with the possibility of independently controlling the mass
imbalance.

The experimental installation was composed of a
three-phase electric motor (1.8 hp) as a driving source,
two hydrodynamic journal bearings, a variable speed
controller (Altivar 71) for control of the motor frequency
rotation, two flexible couplings for shaft ends and two
lateral accelerometers to measure the vibration signal.
In Figure 2a, the experimental model developed for
the present work is shown. In Figure 2b a detail of the
assembly of counterweights intended to induce mass
unbalance in the different stages are shown.

(a)

(b)

Figure 2 a) Overview of the experimental setup; b) Design detail
for inducing mass imbalance in steps

The geometries and physical and mechanical properties
described below are used in the theoretical model. Figure
3 shows the geometry of the seven-stage rotor on which
the present research is conducted.

Figure 3 Geometry of the seven-stage rotor

The rotor dynamic system studied comprises a rotor
with seven rigid disks supported by two bearings. Disks
and shaft are made with stainless steel with Young’s
modulus of 193 GPa, Poisson’s ratio is 0.3 and density
of 8,080 kg/m3. Table 1 shows the main parameters and
geometrical features of the multistage rotor.

Further, the stiffness and damping coefficients are
calculated according to the type of bearing, diameter,
viscosity, load, speed, radial clearance and Sommerfeld
number. Table 2 presents the stiffness and damping
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Table 1Main parameters and geometry of the seven-stage rotor

Subject Specification
Length L1 38.0 mm
Length L2 38.0 mm
Length L3 55.0 mm
Length L4 410.0 mm
Length L5 52.8 mm

Diameter D1 25.4 mm
Diameter D2 31.75 mm
Diameter D3 38.1 mm
Diameter D4 57.15 mm

Impeller external diameter 93.0 mm
Impeller Internal diameter 57.15 mm

Impeller Thickness 19.0 mm
Shaft and impellers material Stainless steel 304
Dynamic viscosity of the oil 2.87 e-5 Pa s
Minimum oil film thickness 0.0091 mm

properties of the journal bearings.

Table 2 Bearings stiffness and damping properties

Stiffness (N/m) Damping (Ns/m)
kyy = 3.19× 105 Cyy = 181.5
kxx = 1.78× 106 Cxx = 1,493.4
kyx = 1.38× 105 Cyx = 346.3
kxy = 9.76× 105 Cxy = 1,493.4

Three main types of tests were planned: test to find
the first critical speed; test to find the second critical
speed; and finally, the vibration analysis for three different
configurations of rotor mass unbalance. The test to
determine the first critical speed begins with the rotor
running at 30 Hz and then the frequency is increased
progressively and in a controlled manner up to 80 Hz.
For the determination of the second critical speed, the
test begins with the rotor running at 80 Hz and then the
frequency is increased in a controlled manner up to 120
Hz. On each step of rotation frequency, the wave time,
spectrum and orbital position for the journal bearing
locations are obtained.

The third kind of test consists of checking the vibration
severity levels for different rotor imbalance condition.
These tests are based on the recording and analysis
of the vibration with the rotor unbalanced. The mass
imbalance is accomplished by changing the orientation
of the counterweights, all of mass equivalent to 6 g,
in one or more of the seven stages in the rotor. The
experimental conditions are: unbalance condition “A”
(imbalance for the 0° position in the first stage); unbalance
condition “B” (imbalance for the 0° position in the first
stage, 90° position in the fourth stage, and 270° position
in the seventh stage), and finally, unbalance condition “C”

(imbalance for the 0° position in the third, fourth and fifth
stage).

3. Results and discussion

3.1 Results for the first lateral critical speed
of the rotor

According to results from the experimental model, a high
instability was observed in the frequency range between 42
and 50 Hz, setting the presence of the first lateral critical
speed at 46 Hz. Figure 4 shows the vibration spectrums at
46 Hz for both measurement planes, left and right journal
bearings (motor side) (a) and (free side) (b), respectively.

At spectral point of view, an increase in 2.5 times in
the vibration severity levels was appreciated reflecting
the rotor was passing through its first critical speed.
The frequency 1x was the highest for drive end bearing
position, whereas in the coupling bearing side the 2x
frequency has higher vibration levels. In Figure 5, the
orbits described by the rotor at 46 Hz for the locations of
the bearings are shown, (a) left side (motor side) and (b)
right side (coupling side). The orbits of the rotor show
much higher vibration amplitude for the first critical speed
than for low frequencies. It can be seen an inner loop in
the direction of rotation of the rotor, which is usually found
in a critical speed region. Subsequently, when the rotor
frequency is raised to 48 Hz, the orbits begin to experience
a semielliptical behavior (more stable dynamic condition),
while there is still an inner loop that reflects a slight
restriction to rotation (precession).

In Table 3, the values for the first critical speed obtained
according to the theoretical model and recorded in the
experimental installation designed are shown. The
mathematical model predicts the first critical speed
with an error of -6.74% relative to the experimental
measurement.

Table 3 Comparative results for the first lateral critical speed
for the multistage rotor

Method
First lateral
critical peed
(Hz)

% Error (regarding
the experimental
measurement)

Theoretical model 42.9 -6.76%
Experimental
measurement

46.0 -

When the rotor reaches its first critical speed, it is strapped
within its modal shape, this behavior is defined by mass
distribution, stiffness, rotor damping and supports. A
multistage rotor supported by equal rigidity bearings
features cylindrical and conical modal shapes.
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(a) (b)

Figure 4 Vibration spectrum at 46 Hz in the journal bearings for the driven side (a) and coupling side (b)

(a) (b)

Figure 5 Orbits of the rotor at 46 Hz for the driven journal bearing (a) and for the coupling journal bearing (b) in the planes x and y,
respectively

3.2 Results for the second lateral critical
speed of the rotor

According to results from the experimental test, the
greater instability in the rotor is present at a frequency of
98 Hz, corroborating experimentally the appearance of the
second lateral critical speed near to this value. In Figure
6, the spectra of vibration at 98 Hz for both planes, and
the locations of the left and right bearings (motor side and

coupling side) respectively are shown.

In Figure 7, the orbits described by the rotor at 98 Hz
for the locations of the bearings are shown, (a) left side
(motor side) and (b) right side (coupling side) respectively.
The orbit of the rotor in the second critical speed
experiences a higher vibration amplitude behavior than
intermediate frequencies (greater than the first critical
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(a) (b)

Figure 6 Vibration spectrum at 98 Hz for the driven journal bearing (a) and for the coupling journal bearing (b) in the planes x and
y, respectively

(a) (b)

Figure 7 Orbits of the rotor at 98 Hz for the driven journal bearing (a) and for the coupling journal bearing (b)

speed). The orbits for the journal bearing in the driven
sideshow an inner loop with eight shapes.

In Table 4, the values for the second critical speed
obtained according to the analytical model and the
experimental facility are shown. The mathematical model
developed predicts the second critical speed with an error
of -12.65% concerning the experimental measurement.

The results of the mathematical model confirm that
the lateral critical speeds of the rotor are fundamentally
sensitive to variations in the system stiffness and damping
parameters, a decrease of 50% in the damping parameters
of bearings imply that the new frequencies in which the
first and second lateral critical speed appear increased
by 20.7% and 10.5% respectively, compared to the
frequencies initially calculated.
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Table 4 Comparative results for the second lateral critical
speed for the multistage rotor

Method
Second lateral
critical speed
(Hz)

% Error (regarding
the experimental
measurement)

Theoretical
model

85.6 -12.65%

Experimental
measurement

98.0 -

3.3 Results for mass imbalance in the rotor
stages

Unbalance condition ”A”

When the rotor rotational speed is brought up to a
frequency of 76 Hz, then a severe vibration condition is
observed in the motor side journal bearing. The dominant
frequency is 1x for the two journal bearings positions. This
condition of operation of the rotor shows the damaging
effect of imbalance in the machine dynamics, typical of the
appearance of the phenomenon of critical speed. In Figure
8, the orbits for the two journal bearings of the rotor, (a)
drive side and (b) coupling side respectively, are shown.
The orbits described by the rotor, in the journal nearest to
the first stage, reflect internal loops associated with high
vibration levels.

The maximum error found for the multistage rotor model
using the transfer matrix method that contemplates
the mass imbalance effect is -10.6% relative to the
experimental value. This is attributed to the considerations
taken when setting the frequencies for data collection in
the experimental measurement.

Unbalance condition ”B”

When the rotor rotational speed reaches the frequency of
80 Hz, an effect of structural resonance not associated with
the onset of the critical speed is experienced, since the
orbit graph presents vibration amplitudes somewhat lower
than those found in the first test of imbalance (condition
A). This indicates the effect of dynamic instability resulting
from imbalance induced in the rotor. In Figure 9, the orbits
for both journal bearings positions at 80 Hz, (a) drive side
and (b) coupling side respectively, are shown.

Unbalance condition ”C”

When the rotor rotational speed is brought up to a
frequency of 65 Hz, an increase of 2.5 times in the rotor
vibration level was experienced for both journal bearings
positions, regarding their vibration parameters concerning
the balanced rotor. These results are consistent with [12].

The graphs of orbits allowed recording a loop; while
in the time graphs a modulation of the vibration signals,
for both velocity and displacement units, were registered.
In Figure 10, the orbits for both journal bearings locations
of the rotor, (a) drive side and (b) coupling side respectively,
are shown.

According to the experimental results, it is concluded
that the mass imbalance leads to move to higher values
the magnitudes of the critical frequencies when these
are compared with the critical speeds for the case of a
balanced rotor.

This phenomenon is one of the main situations faced
by the turbomachinery designer; then a good match
between the predicted results from the model and the
experimental measurement from facility unit is of great
importance.

On the other hand, the modeling of the phenomena
of unbalanced rotor by mean of transfer matrix method,
registers that the eigenvalues of the system (lateral critical
speeds) are very sensitive to the specific imbalances
induced in the rotor. In Table 5, the results obtained by the
mathematical model are summarized. If the imbalance
in the rotor increases, then the frequencies at which the
critical speeds appeared also rise, which is consistent
with what was found by [13]. Note that due to limitations in
the experimental installation, it was only possible to check
the first critical speed for the condition of imbalance “A”.

Table 5 Lateral critical speeds of multistage rotor according to
with the mathematical model results considering the mass

imbalance

Critical speed
(Hz)

Unbalance condition
A B C

First eigenvalue 68.7* 170.0 238.7
Second eigenvalue 227.0 320.5 454.7
* Critical speed experimentally validated.

4. Conclusions

The theoretical model obtained by the transfer matrix
method allowed predicting the rotodynamic behavior of
a multistage rotor. The theoretical model is simple and
enables to include mass imbalance in the impellers,
also to define stiffness and damping properties for the
different components of the rotor. The theoretical results
for the first two critical speeds (without mass imbalance
for the rotor) shown a difference of -6.76% and -12.65%
respectively compared to the results obtained by the
experimental model. This model has good accuracy for
practical purposes.
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(a) (b)

Figure 8 Orbits of the rotor for the driven journal bearing (a) and for the coupling journal bearing (b), with mass imbalance in the
first stage at 76 Hz of rotation frequency

(a) (b)

Figure 9 Orbits of the rotor for the driven journal bearing (a) and for the coupling journal bearing (b), with mass imbalance in the
first stage (0° position), in the fourth stage (90° position) and in the seventh stage (270° position) at 80 Hz of rotation frequency

(a) (b)

Figure 10 Orbits of the rotor for the driven journal bearing (a) and for the coupling journal bearing (b), with mass imbalance in the
third, fourth and fifth stages in phase at 65 Hz of rotation frequency
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An increase in the mass imbalance for the rotor leads
to a rise of the two first lateral critical speeds. For
example, the first two lateral critical speeds obtained with
the theoretical model for the unbalance condition “A”,
increased from 42.9 Hz and 85.6 Hz to 68.7 Hz and 227.0
Hz respectively. This was confirmed experimentally for
the first experimental test of imbalance (condition “A”),
proving that the first critical speed is like that determined
by the mathematical theoretical model. It was not
possible to record this behavior experimentally for higher
critical frequency values due to technical limitations of
the physical model. Furthermore, the vibration level
recorded in the physical model rises 2.5 times when the
multistage rotor approaches to the first two critical speeds.

The novel experimental facility developed allows a
wide range of operating conditions for tests. In future
work, other cases of imbalanced rotor conditions should
be developed, to find a correlation between the quantity
of mass imbalance and the critical speeds experienced by
the multistage rotor.
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