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ABSTRACT: Enhancing efficiency in Municipal Solid Waste (MSW) management is crucial for
local governments, which are generally in charge of collection, since this activity explains
a large proportion of their budgetary expenses. The incorporation of decision support tools
can contribute to improve the MSW system, specially by reducing the required investment of
funds. This article proposes a mathematical formulation, based on integer programming,
to determine the location of garbage accumulation points while minimizing the expenses of
the system, i.e., the installment cost of bins and the required number of visits the collection
vehicle which is related with the routing cost of the collection. Themodel was tested in some
scenarios of an important Argentinian city that stills has a door-to-door system, including
instances with unsorted waste, which is the current situation of the city, and also instances
with source classified waste. Although the scenarios with classified waste evidenced to be
more challenging for the proposed resolution approach, a set of solutions was provided in
all scenarios. These solutions can be used as a starting point for migrating from the current
door-to-door system to a community bins system.

RESUMEN: Aumentar la eficiencia en la gestión de los Residuos Sólidos Urbanos (RSU) es
crucial para los gobiernos municipales, que son los que generalmente se encargan de
la recolección, ya que esta actividad consume un porcentaje importante de sus recursos
presupuestarios. La incorporación de herramientas de apoyo a la toma de decisiones
puede contribuir a mejorar el sistema de gestión de RSU, especialmente reduciendo los
costos de inversión requeridos. Este artículo propone una formulación metemática, basada
en programación entera, para determinar la localización de puntos de acumulación de
residuos minimizando los costos del sistema, incluyendo tanto el costo de instalación de los
contenedores como la cantidad de visitas necesarias del vehículo de recolección, lo cual está
relacionado con los costos de la logística de recolección. El modelo se aplicó en un conjunto
de escenarios reales de una importante ciudad argentina que todavía utiliza un sistema de
puerta a puerta, incluyendo tanto intancias que donde los residuos son recolectados sin
clasficar, como actualmente se realiza en esta ciudad, como instancias que incorporan la
clasificación en origen de los mismos. A pesar de que los escenarios con clasificación en
origen resultaronmás desafiantes para el algoritmo de resolución propuesto, se obtuvieron
un conjunto de soluciones factibles para todos los escenarios planteados. Estas soluciones
pueden ser utilizadas comoun punto inicial paramigrar desde un sistema de puerta a puerta
a uno de contenedores comunitarios.

1. Introduction

In recent years, the paradigm of smart cities has arisen
as a strategy from governments and decision-makers to
improve the quality of the public services provided to the
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citizens. Despite being a fuzzy concept, Chourabi et al.
states that “one way to conceptualize a smart city is as an
icon of a sustainable and livable city” [1]. Moreover, these
authors identify a comprehensive set of factors that are
essential to understand smart city initiatives and projects.

These are: management and organization, technology,
governance, policy, people and communities, the economy,
built infrastructure, and the natural environment. While
the related literature about some of these factors, such as
technology applications, is relatively extensive, some other
factors, such as the one in which is focused this article, i.e.,
management and organization, have not been thoroughly
studied yet [1]. Thus, smart city initiatives have reported a
varied set of urban services in public transportation [2, 3],
health services [4], and energymanagement [5]. Municipal
Solid Waste (MSW) management is another field in which
smart cities initiatives have been effectively applied to
mitigate the environmental and economic problems [6–8].

This article is an extension of our previous conference
article [7] presented at the Ibero-American Congress of
Smart Cities ICSC-CITIES 2018 and provides an optimization
model to support the decision-making process in the MSW
system. This model addresses the problem of selecting
the proper location of garbage community bins for a city
with the aim of migrating from a door-to-door collection
to a community bins system that is expected to be more
efficient in terms of logistic costs [8]. Particularly, a case
of study of the city of Bahía Blanca, which is an important
medium size city in the South of Argentina, is addressed
in this work. The objective of migrating from the current
door-to-door collection system to a community bins based
one, where the citizens have to carry their waste to certain
bins, is usually among the plans of the local authorities
for reducing the collection complexity. Solutions that
contribute to reduce logistic costs are of particular interest
for Argentinian cities since these costs are extremely high
in this country [9]. Although nowadays citizens of Bahía
Blanca do not perform source classification of waste,
considering that an efficient collection network of waste
bins can encourage recycling [10], the model is applied
on both scenarios with unsorted waste and a set of more
complex scenarios where specific bins for different types
of waste are installed.

As stated, using a community bins system has certain
advantages over the door-to-door system. However,
the location of bins in an urban area is not a trivial
problem if it is supposed to be efficient [11]. This is mainly
due to the characteristic of the underlying optimization
problem, which is a variation of the Capacitated Facility
Location Problem (CFLP). CFLP has been proven to be
NP-hard through a reduction to a 3-dimensional matching
problem (3DM) [12]. Besides, finding the ubity of garbage

accumulation points have an extra difficulty associated
with the conflicting relationships between the several
criteria that are expected to be taken into account during
the process. For example, waste bins should not be
very far from the generators since this would provoke
its misuse. On the other hand, a proper scheduling of
collection vehicles should be established to avoid bins
overflowing. Moreover, the frequency of garbage collection
has an impact on the necessary bin capacity.

The article is structured as follows. In Section 2, the
mathematical formulation of the target problem and the
main related work is presented. Section 3 describes the
solution approach used for solving the proposed model.
Then, in Section 4 the scenarios in which the model was
applied and the analysis of the main results are presented.
Finally, Section 5 outlines the main conclusions and
formulates the lines for future work.

2. Problem description

This Section describes the the problem addressed in this
article. In Section 2.1 the conceptual model is described.
In Section 2.2 the proposed mathematical formulation is
presented. Finally, in Section 2.3 a review of relevant works
from the related literature is performed.

2.1 Problem model

The problem considered in this article consists in locating
Garbage Accumulation Points (GAP) while optimizing two
different criteria, both related to the expenses of the
system. The first criteria is to minimize the total
investment cost, i.e., the purchase cost of each individual
bin. The second criteria is to enhance the ‘autonomy’ of
the GAPs. Autonomy is related to the number of days
that a GAP can wait between two consecutive visits of the
collection vehicle (to empty the bins). Naturally, the larger
number of bins a GAP has, the larger the storage capacity
and the larger the period of autonomy. However, having
many bins implies a large investment to purchase the bins.
The distribution and capacity of GAPs has a clear impact on
posterior collection costs [13]. Since logistic costs are of
particularly high in Argentina [9], reducing the frequency a
GAP has to be visited is a valuable feature for Argentinians
decision makers. Moreover, the possibility to reduce the
installed capacity of the GAPs (and, therefore, the initial
investment cost of the network of bins) by increasing the
collection frequency is a feature of the target problem that
differentiates it from the classical single-objective CFLP
problem [12]. Another important characteristic of GAP
location is facilitating the accessibility for users. Therefore,
a restriction to forbid that a generator has to transport their
garbage more than a given threshold distance is included.
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2.2 Mathematical formulation

The problem can be modeled as an Integer Programming
(IP) model by considering the following sets:

• A set I = {i1, . . . , i|I|} of potential GAPs for bins.

• A set P = {p1, . . . , p|P |} of generators.

• A setH = {h1, . . . , h|H|} of waste fractions.

• A set J = {j1, . . . , j|J|} of bin types.

• A set Y = {y1, . . . , y|Y |} of collection frequencies
profiles.

The relevant parameters for the model associated with
these sets are:

• Esi is the available space for installing bins in GAP i.

• dpi is the distance from generator p to GAP i.

• D is the maximum allowable distance between any
generator in P and its assigned GAP.

• bhp is the amount of waste produced by generator p (in
volumetric units) of waste fraction h on a daily basis.

• cinj is the purchase price of bin type j.

• Cj is the capacity of type of bin type j.

• ej is the required space for its installation of type of
bin type j.

• ay is the number of days among two consecutive visits
of the collection vehicle for collection frequency y.

The model is described in Equations 1–11, using the
following variables:

• tjhi is the number of bins of type j for the waste
fraction h installed in GAP i.

• xpi is 1 if generator p is assigned to GAP i and 0
otherwise

• fhiy is 1 if frequency profile y (defined by parameter
ay) is used for waste fraction h for GAP i and 0
otherwise.

min
∑
j∈J
h∈H
i∈I

(tjhi cinj) (1)

min

∑
h∈H
i∈I
y∈Y

(
fhiy

ay

)
|I| |H|

(2)

Subject to

∑
i∈I

(xpi) =1, ∀ p ∈ P (3)∑
j∈J
h∈H

(tjhiej) ≤ Esi, ∀ i ∈ I (4)

∑
p∈P
y∈Y

(bhpxpifhiyay) ≤
∑
j∈J

(
capjtjhi

)
,

∀ i ∈ I, h ∈ H (5)∑
y∈Y

fhiy ≤ 1, ∀ i ∈ I, h ∈ H (6)

|P |
∑
y∈Y

fhiy ≥
∑
p∈P

xpi, ∀ i ∈ I, h ∈ H (7)

dpixpi ≤ D, ∀ p ∈ P, i ∈ I (8)

xpi ∈ {0, 1},∀ p ∈ P, i ∈ I (9)

fhiy ∈ {0, 1},∀ h ∈ H, i ∈ I, y ∈ Y (10)

tjhi ∈ Z+
0 ,∀ j ∈ J, h ∈ H, i ∈ I (11)

There are two objective functions. Equation (1) is the cost
of the installed community bins and Equation (2) is the
average collection frequency of the set of GAPs (hereafter
Objc and Objf , respectively). Regarding constraints,
Equation (3) establishes that each generator should be
assigned to a GAP. Equation (4) ensures that the occupied
space by the bins is not larger than the available space in a
GAP. Equation (5) limits the amount of each type of waste
assigned to a GAP to the capacity of the installed bins for
that type of waste in that GAP. Equation (6) forces that
at most one frequency profile is chosen for each type of
waste in a GAP. Equation (7) establishes that if a generator
is assigned to a GAP, that GAP has a collection frequency
profile for each type of waste. Equation (8) restricts the
maximum distance between a generator and the assigned
GAP to a certain threshold distance. Equations (9) and
(10) define the binary nature of the variables xpi and fhiy .
Equation (11) defines that tjhi is a non-negative integer
variable.

The proposed model formulation is not linear due to
the product present in Equation (5). Although linearization
is a common practice to handle nonlinear problems [14],
the benefits of using linear equivalent forms can be
offset if the transformation increases the number of
integer variables since this is generally an indicator of the
difficulty of the problem [15]. This is why the linearization
technique that was firstly proposed in [15] was later
improved in [16] in order to avoid increasing the number
of integer variables. According to [16], the continuous
variable uphiy has to be added to the model and, in terms
of the problem addressed in this article, its definition is
uphiy = xpi fhiy − fhiy + Uxpi

(1 − xpi), where Uxpi

is the upper bound of the binary variable xpi (i.e., 1).
Then, Equation (5) can be replaced by Equations (12)–(16)
to build a linear model and, thus, the linear equivalent
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formulation of the model is composed by Equations (1)–(4)
and (6)–(16).∑
p∈P
y∈Y

[bphay(uphiy + fhiy − 1+xpi) ≤
∑
j∈J

(capjtjhi)

∀ i ∈ I, h ∈ H (12)

uphiy ≥ 1−xpi − fhiy,

∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (13)

uphiy ≤ 1− fhiy, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (14)

uphiy ≤ 1− xpi, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (15)

uphiy ≥ 0, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (16)

Equation (8) can be deleted if only relevant variables
xpi are considered, i.e., those for which the distance
between the generator p and the GAP i is smaller than D
and, therefore, an assignment generator-GAP is possible.
This preprocessing strategy was used for enhancing the
capacity of the model in the experimentation part of this
work (Section 4).

2.3 Related work

Few articles have addressed the GAPs location problem
using exact methods.

In [17], the problem of locating bins in the city of Coimbra,
Portugal, was solved considering four different objectives
to minimize: the total cost of the system, the average
distance between a generator and its assigned bin, and
the number of generators within the “push” and “pull”
thresholds distances of an open candidate site. These
lasts two objectives are related to the semi-obnoxiousness
of the GAPs since citizens do not want waste bins very near
to reduce inconvenient environmental costs but neither
very far to reduce the transportation costs. The authors
used the goal programming and the weighted sum to
obtain a set of multiobjective solutions.

A similar problem was solved in [18], in which the
ε-constraint method was applied while optimizing
two objectives: the total investment cost and a novel
“dissatisfaction function” that takes into account the
semi-obnoxiousness of the waste bins.

In [19], three different monobjective models to solve
the GAPs location problem in Hsinchu, Taiwan, were
presented. These models are compared according to the
average distance between generators and assigned bins.
In [20], the problem of sizing the capacity of the GAPs
with the aim of minimizing the installment costs inside
a more generic model that also considers the routing

scheduling of collection vehicle was solved using CPLEX.
Similarly, in [21], the problem of locating GAPs was solved
with CPLEX in a general framework that also defines the
routing plan.

In [22], an integer model that minimizes the total
number of opened GAPs in different scenarios of the
city of Nardò, Italy, was presented. A modified version
of this model, that prevents an opened GAP from having
incompatible bins (i.e., bins that require a different vehicle
to be emptied) was applied in [23]. This modification
simplifies the posterior collection logistics since no GAP
has to be visited by more than one type of vehicle.

Since the facility location problems are known to be
NP-hard, several authors have addressed the GAPs
location problem them heuristically [24]. For example, our
previous work [11] proposed a set of PageRank heuristics
and metaheuristics to solve the GAP location problem
in some scenarios of the city of Montevideo considering
the objectives of minimizing the investment cost and
maximizing the collected garbage. In [25], a two-phase
heuristic that firstly locates the GAP in the urban network
and, then, determines the size of the bins that are going
to be assigned to those GAPs is presented. In [26],
a fuzzy multi-objective genetic algorithm to solve the
recycling drop-off sites allocation and routing collection in
Kaohsiung, Taiwan, is proposed.

In Argentina, as is common in developing countries [27],
the application of smart cities initiatives in MSW
management is quite scarce. Moreover, although
there are a few proposals for improving routing collection
plans in MSW management [8, 28–30], there are little
applications that deal with waste bins location.

In [31] weighted sum is compared with the augmented
epsilon-constraint method (AUGMECON) to solve similar
scenarios. There are still opportunities to contribute
to improve collection network in Argentina through
the application of decision support systems, which
can help to alleviate the pressure over local governments
which are the ones responsible for MSWmanagement [32].

The research reported in this article contributes with
a mathematical formulation for solving the problem
of locating GAPs while considering the objective of
maximizing the autonomy of the GAPs, through the
frequency objective as a way of bounding the posterior
collection costs. This objective is valuable since it
considers the routing cost of the posterior stage of
the MSW system, the collection of the waste. As far
as we are concerned, the visit frequency of the GAPs
has been considered only in the previous integral
approach performed in [20] for a sizing-routing problem.
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However, in the mathematical formulation presented
in [20], the assignment of generators to GAPs is not
performed. Through this feature, in the model presented
in Section 2.2, a potential GAP can remain unopened (i.e.,
no bin is installed) if the nearby generators are assigned to
another opened GAP that is within the maximum allowable
walking distance. Furthermore, in this article a real case
of the Argentinian city of Bahía Blanca is solved.

3. Solution approach: an adaptation
of the augmented ε-constraint
method

The proposed solution approach is based on the
augmented ϵ-constraint method (AUGMECON).
AUGMECON was first presented in 2009 [33] and
later improved in [34], in order to address some of
the drawbacks of the traditional ϵ-constraint approach,
originally developed in [35]. One of the main highlights of
AUGMECON is that it successfully reduces the required
computing time to solve complex problems, through the
avoidance of weakly efficient or repeated solutions.

AUGMECON requires as input the efficient range of
the objective functions, i.e., the nadir and ideal values
that each objective assumes within the Pareto front. For
the problem studied in this article, since there are only
two objectives involved, a single objective optimization
approach can be used to find the nadir and ideal value of
each objective, as proposed in [36].
However, in bicriteria optimization problems, the ranges
obtained using single objective optimization are the
efficient ranges of each objective only if there are no
alternative solutions [37]. Mavrotas proposed computing
the nadir and ideal values of the objectives over the
efficient set using lexicographic optimization [33].
Nonetheless, lexicographic optimization evidenced highly
time consuming for the problem addressed in this paper.
This approach roughly consists in optimizing the set of
criteria sequentially providing that the already optimized
criteria in the previous runs do not get a worse value in
the subsequent runs. In a bicriteria problem, as is the
case of this paper, basically this implies an optimization
process composed of two stages. The first stage consists
of solving a plain single objective optimization for one of
the objectives and the second stage consists of solving a
second problem to optimize the second criteria subjected
to not deteriorating the first criteria, which is added
as a constraint in this second model. Therefore, this
second stage is a more constrained problem than directly
optimizing the second criteria in a single objective fashion
and, thus, can only be equally (if not more) difficult to solve
than the single objective model.

To overcome this efficiency problem, this article proposes
to use a less computational expensive procedure to
approximate the efficient range of the objectives, using
weighted sum to ‘filter’ the single objective optimization
as was developed in [38]. In the first stage, single objective
optimization is applied to obtain an initial extreme
solutions for each criteria. However, since these solutions
are probable to be inefficient [37], in a second stage, a
largely unbalanced vector of weights is used to improve
the estimation; the objective function is strongly biased
towards the criteria that is optimized but the second
criteria still has a small positive weight in order to avoid
inefficient solutions. IfK is the set of optimization criteria
and t ∈ K is the criteria to be optimized, then the objective
function when optimizing t is:

wt
Objt −Objtb

Objtw −Objtb
+

∑
k∈K,k ̸=t

wk
Objk −Objkb

Objkw −Objkb

(17)

where wt >> wk > 0,∀ k ∈ K, k ̸= t. Therefore,
conversely to lexicographic optimization, this approach
does not increase the original set of constraints of the
problem. Moreover, this strategy has a relevant difference
with the previous similar approach used in [17]. In [38], the
values of the criteria in the weighted sum are normalized
with the results of the single objective optimization in
order to make this bias significant since criteria have
different measure units and, thus, their ranges may have
different absolute values.

The next section evaluates the three studied approaches
to estimate the efficient ranges of the criteria: single
objective optimization, biased weighted sum, and
lexicographic optimization.

4. Experimental analysis

This section describes the experimental analysis of the
proposed approach for GAP location problems. Section 4.1
presents the development and execution platform.
The real scenarios considered in the experiments are
described in Section 4.2. In Section 4.3 the numerical
results are reported. Finally, in Section 4.4 the analysis of
the results in the terms of the problem is outlined.

4.1 Development and execution platform

The experimental analysis was performed on a Core i7
processor, with 16 GB of RAM memory, in a Windows 10
environment. The problem was modeled in C++ and the
resolution was performed with the parallel mode of CPLEX
12.7.1. as the IP solver through the use of Concert
Technology to link Visual Studio C++ and CPLEX.
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4.2 Scenarios: the city of Bahía Blanca

Bahía Blanca is a city of about 300,000 inhabitants located
in the South of Argentina, being an important port and
industrial center of the country. Its MSW system is based
on a door-to-door system where the collection vehicle has
to visit every dwelling to collect the waste. In general,
the collection is performed every day except on Sundays.
The majority of this waste is deposed in a landfill that it
is near to the city. The scenarios considered in this paper
are based on an important neighborhood called “Barrio
Universitario”, which is a densely populated area of about
730m2 and 7,900 inhabitants. This neighborhood is shown
in Figure 1. As regard to the input data for the model
presented in Section 2.2, the garbage generation rate (bph)
is retrieved from a report that considered the particular
characteristics of this city [39]. The density of garbage,
which is required to estimate the capacity of the bins in
kilograms of waste, was taken from a recent study carried
out in Argentina [40].

Figure 1 Studied area (“Barrio Universitario”) in Bahía Blanca.
Base image: Google Earth Pro 7.3.1

The population density (per square block) was obtained
by analyzing the information of the Argentinian national
census [41]. The set of frequency profiles is composed of
three alternatives (i.e., |Y | = 3). If a GAP is opened, it
can be emptied either every day (ay = 1), every two days
(ay = 2) or every three days (ay = 3). Regarding to the
bin types, three different classes of bins are considered
(i.e., |J | = 3). These are j1, j2, and j3. The associated
parameters of these three classes are: capacity (capj )
of 1, 2, and 3 m3; required space (ej ) of 1, 2, and 3 m2;
and installation cost (cinj ) of 100, 180, and 250 monetary
units, respectively. The available space in a GAP to install
bins (Esi) is equal to 5 m2. Parameter D was set to 250
m as in [17]. Following a usual approach in the related
literature, nearby generators are grouped in clusters,

assuming a similar behavior between elements in each
cluster [17]. The generators in the area of study were
clustered in eighty-eight groups (i.e., |P | = 88). In
general, each group contains the generators that live in
the same block. However, when a block was larger than
150 m, two groups were formed, each one containing half
of the generators of the block (see Figure 2). The location
of each group it is also a potential place for locating a GAP
(i.e., |I| = 88).

The spatial information was organized using QGIS 2.18.6
and the urban walking distances (dpi) were calculated
through an adapted version of the osmar package
of R developed in [42] that is able to calculate walking
distances. This package retrieves information directly from
OpenStreetMap (https://www.openstreetmap.org/).

Three different generations rates were considered in
the experiments. The normal scenario, that considers
the waste generation rate (bhp) estimated by the
authorities [39], the demanding scenario, and the
undemanding scenario, with generation rates 20%
larger and 20% smaller than the one defined in the
normal scenario, respectively. These 20% of increment
and reduction in the normal waste generation rate are
in line with the variations along the year presented in
the surveys provided by the practitioners. Then, as
mentioned, two variants for each scenario are considered:
without source classification of waste (i.e., |H| = 1) and
with a classification in two different fractions: dry and
humid waste (i.e., |H| = 2), as it is common practice
in other Argentinian cities [43]. Therefore, six different
instances were solved: three considering waste source
classification with normal, low and high generation rates,
and three without considering waste source classification
considering, again, normal, low and high generation rates.

Figure 2 Location of potential GAPs in the studied area (“Barrio
Universitario” in Bahía Blanca)
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4.3 Numerical results

In this Section the results of the application of themethods
to approximate the extreme values of the objectives and
the AUGMECON to the proposed scenarios are presented.

In regard to the approximation of the extreme values,
Tables 1 and 2 report the results of calculating the
objectives ranges with single objective optimization,
biased weighted sum, and lexicographic optimization for
the three studied scenarios with unclassified waste and
the three scenarios with classified waste respectively. The
tables present the method that was used, the optimized
objective, the obtained values of both objectives, and the
execution time. The optimized objective in the biased
weighted sum refers to the objective with the largest
weight, while in lexicographic optimization refers to
the criteria taken into account in the first stage of the
optimization process. Single objective optimization is
the previous step for applying the weighted sum and
constitutes the first stage of lexicographic optimization.
The execution times reported in Tables 1 and 2 for weighted
sum and lexicographic optimization do not include the
execution time of the single objective optimization.

Table 1 Extreme values of the objectives of unclassified
scenarios

Method
Optimized
objective Objc Objf (*)

Execution
time (s)

Normal scenario

Single objective
optimization

Objc 3880 0.6875 (0.3915) 4205.94
Objf 44000 0.1042 (0.2578) 4267.95

Weighted sum
Objc 3880 0.1819 (0.3857) 4204.16
Objf 5710 0.1042 (0.3857) 4202.16

Lexicographic
optimization

Objc 3880 0.1819 (0.3857) 4209.72
Objf No feasible solution found

Demanding scenario

Single objective
optimization

Objc 4710 0.5190 (0.4567) 4260.51
Objf 44000 0.1269 (0.2512) 4204.70

Weighted sum
Objc 4710 0.2045 (0.4033) 4206.09
Objf 8040 0.1269 (0.2694) 4208.31

Lexicographic
optimization

Objc 4710 0.1932 (0.3948) 4207.41
Objf No feasible solution found

Undemanding scenario

Single objective
optimization

Objc 3140 0.3182 (0.5326) 4267.95
Objf 44000 0.0833 (0.1846) 4205.94

Weighted sum
Objc 3140 0.1591 (0.3658) 4200.72
Objf 7230 0.0833 (0.1846) 4230.24

Lexicographic
optimization

Objc 3140 0.1061 (0.3038) 4209.7
Objf No feasible solution found

(*) in the case of Objf the standard deviation within the different
GAPs is reported inside the parenthesis

According to the results in Tables 1 and 2, lexicographic
optimization was not able to find a feasible solution for the
scenarios when the order of the optimized objectives was
first Objc and then Objf within the time limit. The main
reason for this might be the aforementioned characteristic
of the lexicographic approach, i.e., the second stage is a
more constrained model. In this case, the single objective
problem of minimizing Objf plus an additional constraint
prevents the deterioration of Objc. Therefore, for the
proposed scenarios, this enlarged problem seems to be
harder to solve than the straightforward single objective
optimization of Objf , which was already a NP-hard
CFLP. Thus, the efficiency of the solver to obtain feasible
solutions is reduced. Furthermore, this ordering of
objectives is more challenging for the solver than when
Objf is in the first stage: when Objf is optimized first
CPLEX generally finds a feasible solution within the time
limit (except for the demanding scenario with classified
waste).

Table 2 Extreme values of the objectives of classified scenarios

Method
Optimized
objective Objc Objf (*)

Execution
time (s)

Normal scenario

Single objective
optimization

Objc 4800 0.4320 (0.2833) 4282.75
Objf 43710 0.1193 (0.2479) 4206.58

Weighted sum
Objc 4800 0.1932 (0.4190) 4209.38
Objf 9080 0.1193 (0.2673) 4208.33

Lexicographic
optimization

Objc 4800 0.1932 (0.4190) 4204.33
Objf No feasible solution found

Demanding scenario

Single objective
optimization

Objc 5640 0.4594 (0.8152) 4202.23
Objf 43610 0.1477 (0.2518) 4204.70

Weighted sum
Objc 5650 0.2159 (0.4114) 4215.83
Objf 11180 0.1477 (0.2578) 4206.39

Lexicographic
optimization

Objc No feasible solution found
Objf No feasible solution found

Undemanding scenario

Single objective
optimization

Objc 3890 0.4422 (0.2500) 4267.95
Objf 43590 0.0900 (0.2819) 4207.72

Weighted sum
Objc 3890 0.1818 (0.4453) 4209.70
Objf 7310 0.0909 (0.2957) 4218.23

Lexicographic
optimization

Objc 3890 0.1818 (0.4453) 4204.30
Objf No feasible solution found

(*) in the case of Objf the standard deviation within the different
GAPs is reported inside the parenthesis

In the scenarios where lexicographic optimization is able
to obtain a feasible solution, this solution proposes a
better bound for the nadir value than the weighted sum or
single objective optimization. Then , in general, the biased
weighted sum was able to improve the lower bounds of
the nadir values of the single objective optimization except
for the Objf in the undemanding scenario with classified
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waste. Table 3 reports the estimated ideal and nadir
values for each objective in each scenario.

Table 3 Estimated ideal and nadir value of each scenario

Scenario Objective Ideal value Nadir value

Scenarios with unclassified waste

Normal
scenario

Objc 3880 5710
Objf 0.1042 0.1819

Demanding
scenario

Objc 4710 8040
Objf 0.1193 0.1932

Undemanding
scenario

Objc 3140 7230
Objf 0.0833 0.1061

Scenarios with classified waste

Normal
scenario

Objc 4800 9080
Objf 0.1240 0.1932

Demanding
scenario

Objc 5640 11180
Objf 0.1477 0.2159

Undemanding
scenario

Objc 3890 7310
Objf 0.0900 0.1818

Tables 4 and 5 summarize the solutions obtained with
AUGMECON for the unclassified and classified scenarios
respectively with the following information: the values of
the objectives, the excecution times and whether these
solutions are dominated by another solution (D) or not
(Non-D). A solution is dominated by another solution
when this last one has a better value in at least one of the
optimization criteria and not a worse value in the rest of
the optimization criteria. To determine the dominance of
each of these multiobjective solutions, they are compared
with the other multiobjective solutions but also with the
solutions for approximating the range of the objectives
from Tables 1 and 2. AUGMECON guarantees obtaining a
non-dominated solution if and only if the problem is solved
to optimality. As it can be seen from the Tables 4 and 5,
none of the solutions were solved to optimality since they
were aborted due to time limit, which is again probably
related with the complexity of the underlying facility
location problem. Clearly, scenarios with classified
waste are more challenging for AUGMECON. In these
scenarios, the method was able to find fewer solutions
than in scenarios with unclassified waste. This may be
related to the fact that source separated scenarios have
a larger number of integer variables (|H| = 2), which is
usually associated with the complexity of the problem [15].

Figures 3-5 graphically shows the computed solutions
for the normal, demanding, and undemanding scenarios
with unclassified waste, respectively. Figures 6 and 7
graphically shows the computed solutions for the normal
and undemanding scenarios with unclassified waste,
respectively.

Table 4 Multiobjective solutions for the unclassified scenarios

Solution
id

Objc Objf (*)
Execution
time (s)

Dominance

Normal scenario

1 4800 0.1288 (0.3135) 4207.63 Non-D
2 4900 0.1117 (0.2938) 4204.45 Non-D
3 5080 0.1079 (0.2832) 4202.89 Non-D
4 5230 0.1061 (0.2811) 4203.36 Non-D
5 5360 0.1061 (0.2811) 4206.07 D
6 5510 0.1042 (0.2790) 4203.56 Non-D

Demanding scenario

1 5700 0.1307 (0.3212) 4208.45 Non-D
2 6020 0.1250 (0.3061) 4204.72 Non-D
3 7120 0.1269 (0.2898) 4207.63 D
4 7400 0.1269 (0.2898) 4205.05 D
5 7830 0.1288 (0.2981) 4210.22 D
6 8190 0.1288 (0.2783) 4207.14 D
7 9320 0.1250 (0.2452) 4208.45 D

Undemanding scenario

1 3500 0.1022 (0.2935) 4200.50 Non-D
2 3630 0.1042 (0.2923) 4204.91 D
3 3690 0.0928 (0.2762) 4210.39 Non-D
4 3790 0.0909 (0.2740) 4203.47 Non-D
5 3850 0.1004 (0.2815) 4208.70 D
6 3890 0.0890 (0.2647) 4229.86 Non-D
7 4190 0.0852 (0.2599) 4206.56 Non-D

(*) in the case of Objf the standard deviation within the
different GAPs is reported inside the parenthesis

Table 5 Multiobjective solutions for the classified scenarios

Solution
id

Objc Objf (*)
Execution
time (s)

Dominance

Normal scenario

1 5290 0.1761 (0.4261) 4229.75 Non-D
2 5410 0.1647 (0.4004) 4297.73 Non-D

Demanding scenario

1 5580 0.1932 (0.3959) 4248.02 Non-D
2 7990 0.1979 (0.3586) 4250.3 D

Undemanding scenario

1 6490 0.1004 (0.3469) 4260.91 Non-D

(*) in the case of Objf the standard deviation within the
different GAPs is reported inside the parenthesis

The plot of the demanding scenario with classified waste is
not presented since the Pareto front was only composed
by two solutions. For the sake of clarity, in general single
objective solutions are not presented since the magnitude
of the objective that is not optimized affects the scale of
the graphic and are not part of the Pareto front, except
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for the undemanding scenario with classified waste in
which one of these single objective solution is part of the
estimated Pareto front.
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Figure 3 Solutions for the normal scenario with unclassified
waste
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Figure 4 Solutions for the demanding scenario with unclassified
waste
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Figure 5 Solutions for the undemanding scenario with
unclassified waste

Although the model was able to solve different scenarios,
the execution times are quite large. For solving larger
instances, heuristics and metaheuristics methods can be
implemented. In these cases, the presented model can be
used for validating the model in small instances.
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Figure 6 Solutions for the normal scenario with classified waste
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Figure 7 Solutions for the undemanding scenario with classified
waste

4.4 Analysis of results in terms of the
problem

The obtained solutions allowed to obtain a distribution of
waste bins in a neighborhood that aims to minimize the
installment cost and enhance the autonomy of the bins,
i.e., the number of days that a bin can remain without been
emptied by the collection vehicle. The autonomy objective
is of special relevance for a country as Argentina that has a
remarkably high logistic costs [9], specially due to the high
salaries that have the Argentinian drivers [44]. Despite
considering the minimization of installment and collection
costs, the proposed distribution also ensures that none
of the generator do not have to travel more than 250 m
which is in line with the suggestions in [45] to enhance
accessibility to the system.

Finally, this model can be used to develop a collection
network in the target city of Bahía Blanca to migrate
from the door-to-door collection to a community bins
based system. In order to perform a smoother transition
between the two collection systems, and considering that
Bahía Blanca does not perform source separation of waste
yet, the City Hall can implement a community bins network
without classification first and then, when the citizens get
used to this system, implement source separation .
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5. Conclusions and future work

Municipal Solid Waste management is a complex issue for
local governments that usually are in charge of collection.
The research reported in this article focused on the
initial stage of the reverse logistic chain of Municipal
Solid Waste. Particularly, a mathematical formulation for
determining the location of garbage accumulation points
in an urban area while considering two objectives related
to the expenses of the system is proposed. The optimized
objectives are the minimization of the investment cost
required for installing the bins and the required frequency
of visits of the collection vehicle to empty the bins which is
related to the routing cost. This last objective is important
for decision makers in countries that have particularly
high routing cost, as is the case of Argentina. Moreover,
this model is applied to real scenarios of the Argentinian
city of Bahía Blanca, where the government is interested
in migrating from the current door-to-door collection to
a community bins based system. The scenarios include
instances with unsorted waste collection, which is the
current situation of the city and thus can be implemented
more easily, and with source classified waste in two
different fractions, dry and humid waste, which can be
implemented in a second phase when the citizens are
already accustomed to community bins.

The solutions for the problem were obtained applying
the augmented ε-constraint method (AUGMECON). For
this purpose, three variations for finding the efficient range
of the objectives (which is an input of the AUGMECON)
are tested: single objective optimization, lexicographic
optimization and a recently proposed approach based on
the weighted sum. While lexicographic optimization was
not able to obtain feasible solutions for all the scenarios,
mainly because of the complexity of the optimization
problem, the approach based on the weighted sum was
able to estimate the efficient range in all the analyzed
scenarios. Although the scenarios with classified waste
were much more challenging than the scenarios with
unsorted waste for the resolution method, the proposed
approach was able to find a set of feasible solutions in all
the scenarios. Another important conclusion is that this
work was mainly performed with free software to obtain
and process geographic information (OpenStreetMap, R
packages and QGIS). This represents an asset for local
authorities of developing countries as Argentina that
generally have a short budget to incorporate smart cities
initiatives in public services. Only the optimizer solver,
CPLEX, requires a paid license.

The main lines for future work are focused on continue
improving the proposed exact approach to be able to find a
larger set of multiobjetive solutions in complex scenarios,
such as the scenarios with source classified waste.

Moreover, these more complex scenarios may also require
the application of heuristic algorithms. Therefore, another
important research line is to design competitive heuristics
approaches that can be validated with the proposed exact
approach for small instances. Another relevant line to
research is to continue experimenting different methods
for improving the estimation of the ranges of the objectives
within the Pareto front in computationally challenging
problems, since the quality of these approximations can
have an impact on the performance of the multiobjective
exact approaches. Finally, similarly to the variations of
the generations rate that were considered is this paper, a
sensitivity analysis over the maximum allowable walking
distance or different spatial distribution of the generators
can be performed.
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