
Revista Facultad de Ingeniería, Universidad de Antioquia, No.99, pp. 9-20, Apr-Jun 2021

Semiautomatic construction of video game
design prototypes with MaruGen
Construcción semi-automática de prototipos de diseños de videojuegos con MaruGen

Italo Felipe Capasso-Ballesteros1Fernando De la Rosa-Rosero1*

1Grupo Imagine: Computación Visual, Departamento de Ingeniería de Sistemas y Computación, Facultad de Ingeniería,
Universidad de los Andes. Carrera 1 # 18A - 12. C. P. 111711. Bogotá, Colombia.

CITE THIS ARTICLE AS:
I. F. Capasso and F. De la Rosa.
”Semi-automatic construction
of video game design
prototypes with MaruGen”,
Revista Facultad de Ingeniería
Universidad de Antioquia, no.
99, pp. 9-20, Apr-Jun 2021.
[Online]. Available: https:
//www.doi.org/10.17533/
udea.redin.20200369

ARTICLE INFO:
Received: October 28, 2019
Accepted: March 27, 2020
Available online: March 27,
2020

KEYWORDS:
Video game design; video
games; automatic game
design; game prototyping;
procedural content generation

Diseño de videojuegos;
videojuegos; diseño
automático de juegos;
prototipado de videojuegos;
generación procedural de
contenido

ABSTRACT: Machinations Ruleset Generator (MaruGen) is a semi-automatic system for the
generation of mechanics, rules, spaces (environments), and missions for video games.
The objective of this system is to offer an expression mechanism for the video game
designer role based on the definition of rules, and the ability to explore the concepts
of progression and emergence in video games by using a formal, usable, and defined
tool to design games with innovative and complex elements, and behaviors defined
from combinations of basic elements. Based on the expressed designs and with the
participation of programmers and video game artists, MaruGen allows the generation of
agile video game prototypes in the Unity game engine. These prototypes can be analyzed
by the entire workgroup to look for games with diverse complexities that make them
attractive to their users. MaruGen is based on the expression of rules on elements of
interest in video games and the rewritingmechanismusing L-Systems for the generation
of procedural content. MaruGen was evaluated in the construction of the Cubic Explorer
video game and tested by gamers and video game developers during the Game Jam
Ludum Dare 38.

RESUMEN: Machinations Ruleset Generator (MaruGen) es un sistema semi-automático
para la generación de mecánicas, reglas, espacios (ambientes) y misiones para
videojuegos. El objetivo de este sistema es ofrecer un mecanismo de expresión al rol de
diseñador de videojuegos, a partir de la definición de reglas y la capacidad de explorar los
conceptos de progresión y sorpresa en los videojuegos usando una herramienta formal,
usable y definida para diseñar juegos con elementos y comportamientos novedosos y
complejos definidos a partir de combinaciones de elementos básicos. Basado en los
diseños expresados y con la participación de los roles de programador y artistas de
videojuegos, MaruGen permite generar prototipos ágiles de videojuegos en el motor de
juegos Unity. Estos prototipos pueden ser analizados por el grupo completo de trabajo
para buscar juegos con complejidades variadas que los hagan atractivos a sus usuarios.
MaruGen se fundamenta en la expresión de reglas sobre elementos de interés en los
videojuegos y el mecanismo de reescritura usando Sistemas-L para la generación de
contenido procedural. MaruGen fue evaluado en la construcción del videojuego Cubic
Explorer y probado por usuarios jugadores y usuarios desarrolladores de videojuegos
durante el Game Jam Ludum Dare 38.

1. Introduction

The design and development of video games is, by its
nature, a multidisciplinary and complex process, whose
creation requires different talents and processes.

Developing a complete video game requires extensive
communication between professionals from different
areas and fields of knowledge, all necessary to achieve a
successful final product.

In general terms, it can be considered that the main
components of a video game are based on the elements
of design, programming, and the generation of art and
content. Each stage has its own specific processes,
standards, and codes for the proper management of its

9

* Corresponding author: Fernando De la Rosa Rosero

E-mail: fde@uniandes.edu.co

ISSN 0120-6230

e-ISSN 2422-2844

DOI: 10.17533/udea.redin.20200369 9

https://orcid.org/0000-0002-2530-0048
https://orcid.org/0000-0002-9066-7225
http://crossmark.crossref.org/dialog/?doi=10.17533/udea.redin.20200369
https://www.doi.org/10.17533/udea.redin.20200369
https://www.doi.org/10.17533/udea.redin.20200369
https://www.doi.org/10.17533/udea.redin.20200369
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://www.doi.org/10.17533/udea.redin.20200369


I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

field. Just as there are defined processes and rules,
automation and the procedural generation of content have
also been applied, which refer to automatic computational
methods that create content either up front or on-the-fly;
for example, the creation of mechanics, spaces, and
characters in video games. This automatic generation
of content is something that can already be considered
ubiquitous in the video game development process,
especially in the programming and content creation roles
for a video game.

Themain stage of the design of a video game is understood
as the creation of mechanics, rules, missions, levels, and
objectives to be fulfilled. This stage is one of the least
developed ones, despite its great importance in the
general conception of the video game. This conception,
as well as its subsequent implementation and execution,
permeates the whole process; thus, it is crucial that this
process be well executed, for the successful completion of
a video game project.

This work, Machinations Ruleset Generator (MaruGen)
presents a semi-automatic tool for generating video game
mechanics, rules and spaces (environments): Mechanics
refers to the modes, possibilities, and restrictions that
the player encounters while s/he is playing and which
s/he can interact with to alter the state of the game.
The rules are the elements and procedures that produce
every possibility and constraint a game has. Spaces
(or ”environments” in [1]) refers to the worlds that the
player should explore while s/he is playing. All of these
concepts are defined in [1]. MaruGen uses the definition of
generative grammar, based on the conceptual proposals
of game designers, in an effort to formalize the field
based on the concepts of mechanics, rules, and space
design. This proposal’s basis is found on systems based
on different computing areas, such as the generation of
grammars and rewriting of terms (in particular the use of
L-Systems), and the procedural generation of mechanics,
rules and spaces of video games.

2. Related work

In broad terms, video game design is understood as
the process of creating the spaces (environments), the
rules, and the content that make video games work.
However, this description does not show how really broad
and complicated the process of designing a video game
can be. There are many classifications of the concept
of game design; this is, mostly, because there are very
precise definitions of what a video game is, with specific
categories and elements. The author in [2], one of the
early pioneers in game design, defines video games
based on making clear distinctions between other types of
activities and media, such as interactive games, puzzles,

and competitions. Another more formal definition is
given in [3], in which the games are separated into formal
elements, dramatic elements, and dynamic systems,
which make up a whole in the game.

However, there are more ”fluid” and much less rigorous
definitions; such as the one presented in [4], where
ultimately defines games as means to create experiences;
or the definition in [5] that defines it as an art form, with a
series of rules and players pursuing a goal.

There are definitions, with both rigorous need and
creative freedom, such as the MDA (Mechanical, Dynamic
and Aesthetic) framework [6]. This framework establishes
the proposal of rules and content, called mechanics that
generate a series of dynamics; i.e., the interaction of these
rules with the players when putting the system in motion,
to finally fulfill an aesthetic about the player; in other
words, the sensations and experiences of the player. Or
the concept of the theory of fun [7], which specifies that all
games are, in essence, learning tools. Thus, a game’s fun
is derived from learning, and boredom arrives when the
game is mastered.

All these definitions seek, in a certain way, even if it
is unintentional, to state a series of principles or tools that
provide people who wish to study or design video games,
a starting point for their operation. Something that, as
an analogy, could be the equivalent of a music notation
system (i.e., the scores) to create video games. However,
all definitions tend to converge on some common
themes. The first one is that each definition contains
both a concrete, systemic, and tangible component (rules,
systems, elements), and an abstract component, generally
attributed to creativity and human genius (aesthetics, art,
experience, theme). This is highlighted in [8], as a
”formal and abstract” duality and its author called for
creating formal and abstract tools in the design of video
games. Additionally, this author managed to articulate
the proposal, which unleashed many of the current video
game creation schools in the 21st century.

The author in [9] is one of the pioneers when it comes to
formalizing the theory of video game design and looking
for a precise and unambiguous grammar, which allows
automating, formalizing and specifying, throughmachines,
a possible language of the game, using concepts that he
called ”practical creativity”, ”game atoms”, and, more
recently, ”ludemes”, which results in creating a topology
of the mechanics (rules and components) of a video game
[10]. Something similar, although somewhat informal, has
been defined in [11]; something the author calls ”atoms,”
”cycles,” and ”arcs,” which are similar to the concepts of
feedback loops of the MDA framework [6].

10



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Another endeavor to replicate the idea of formalizing
video games originates from the concepts of ”verbs” and
”objects”; an equivalent of actions, mechanics, rules,
and procedures within a game system proposed in [12] in
an effort to achieve a grammar in games or alternative
projects. These emerged and then lost momentum, such
as ”The 400 project” [13], a proposal to create 400 unique
rules, related to video game design, or the book ”Patterns
in Game Design” [14], an attempt to reach the same
concept of object-oriented programming patterns, applied
to video games.

An interesting effort comes from the author in [15],
who states that one of the fundamental components of
game creation is the concept of the emergent game, that
is, the interrelation that arises in the interaction between
several individual components that are part of a system,
evoked by the old saying ”the whole is more than the
sum of its parts”. Another interesting concept is that of
progressive game, known as the dynamic ability of a game
to adapt progressively to the ability of the player. Starting
from the concept that the properties of the emergence and
progression, elements considered natural of good games,
arise from a series of creative combinations of simple
elements in games. And that these individual elements
can be formalized and automated in game design.

The latter winds up in a conclusion made in [16], in which
game design can start from a ”recipe” or a ”prescription”
of the basic operation of a game, and from there it is
a matter of ”mixing and varying” the elements, based
on simple and clear rules. The idea of creating a video
game in this way is quite controversial, given the nature
of games, being a product of an iterative effort that is a
mixture of art and science, more alchemy than anything
else [17]. However, this proposal seeks to eliminate this
and solve the problem of iteration and progression with
automation and a strict application of basic rules.

The author in [15] materializes this in a series of
grammars and formal rules to design mechanics, rules,
spaces, and missions for games called Machinations
framework and Mission-Space framework, which have
been formalized as concrete tools: Machinations Tool
for Machinations and Ludoscope for Mission-Space. The
Unexplored game [18], created with these tools as a base,
is a concrete example.

With the combination of the system proposed in [15],
the concept of ”ludemes” proposed in [9], and the
patterns in game design [14], it is possible to generate
a ”mathematics of game development”, as defined in
[10]. Thus, like the author in [9] mentions, if something is
essentially mathematical, it can be formalized.

On the practical side, the procedural generation of
content and rules groups existing techniques that support
the development and design of video games in several
aspects. First, the generation of visual, sound, and artistic
elements within the video game (that is, sounds, music,
animations, models, textures, etc.); and, secondly, the
generation of spaces and levels of a video game. Different
games show that the procedural generation has mostly
focused on generating ”superficial” elements of video
games. The basic rules and components are usually
already determined, and they trust that the combination of
predefined elements and rules in a changing environment,
and with changing content, will generate dynamics
interesting enough for the player to play for a long time.

Additionally, tomanage systemswith emergent properties,
it has been practical to use L-Systems, proposed in [19],
where an L-System is a rewriting system based on a formal
grammar defined by a set of symbols, an initial state of the
system, and a set of rules that automatically generate new
states of the system. In their origin, L-Systems offered a
formal explanation to the behavior of certain multicellular
organisms, such as algae, fungi, and plants. Moreover, its
successful use has been seen when generating elements,
models, and procedural art. For example, the Houdini
Engine tool [20] uses an advanced L-System to generate all
kinds of structures, such as bridges, buildings, and roads.
On the other hand, the SpeedTree program [21] uses
L-Systems to create all trees and plants. Many advances
have also been made in the creation of organic procedural
3D models using L-Systems, something particular in
systems such as LParser [22].

All of this shows the efforts and interest in formalizing
and automating the design stage of video games, mainly in
relation to their mechanics, rules, spaces (environments),
and missions.

3. MaruGen – Semiautomatic
prototyping proposal for video
game designs

The automatic generation of the design of a video game has
many different approaches and techniques. This problem
encompasses many fields of knowledge: Artistic creation,
(conceptual) design, procedural content, mechanics and
rules, grammar, and rewriting. However, not all issues
have been addressed in a general manner, and not all
possible alternatives for generating content for video
games have been explored. In particular, video game
design is one of the fields where these ideas have been
least explored. The call in [8] for the creation of formal and
abstract tools for game design becomes important. Based
on simple rules and patterns defined by the video game

11



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

designer, it is desirable for him/her to be able to create
complex and emergent elements, an idea supported by the
proposal of operation and basic arrangement of elements
exposed in a previously defined grammar [15].

Our idea is to resort to emergent video game theory
proposed in [15], in which the emergent property of games
is caused by simple rules. This philosophy, combined with
re-writing rules and L-Systems, can provide a generation
of random, unexpected, and interesting mechanics, rules
and spaces which, given the definition of an emergent
game, and supported on a formal definition, never results
in errors. The property of an emergent game is important
in order to conceive novel games based on unexpected
combinations of basic components.

Our proposal is MaruGen, a computational tool capable of
assisting in the process of design and creation of rules,
objectives, missions, and spaces of a video game. This
semi-automatic tool, which is designed to be assisted
by a game designer and other professionals, such as
programmers and artists, can contribute to the generation
of new and innovative video game mechanics and rules,
based on the assumptions of the video game designer
and defined as rules within the system. The emergent
and progressive properties in video games are supported
by the L-Systems that use the basic rules defined by the
game designer.

4. MaruGen in the video game
development process

The most common process of video game development
in the industry is the iterative design; this is particularly
common in its prototyping stage. Multiple design
proposals are based on the development of software
and the development of games as systems [6]. This
development process is defined by cycles of the design,
implementation, testing, and evaluation stages.

In this way, MaruGen is a tool that adapts to the iterative
work of video game development and supports the stages
of video game design and implementation Figure (1).
MaruGen is intended for use by the video game designer,
the one who defines the spaces, mechanics, rules,
missions, and objectives of a given game. On the one
hand, MaruGen is a visual and informative tool that allows
the expression of the designer’s abstract ideas in design
elements and diagrams. On the other hand, MaruGen
is a formal tool, capable of transforming its abstract
diagrams into concrete representations, implemented by
a programmer and completed with content by artists.

Figure 1 Representation of the iterative process of a video
game and the role MaruGen plays in each stage

4.1 Videgame development support

More precisely, MaruGen supports the designer and other
users in the process of producing a video game (Figure
2). In the first stage, MaruGen allows the designer to
create the minimum rules and elements necessary to
propose the basic design of a game. In the second
stage, the programmers extend MaruGen’s elements to
generate the spaces and represent the defined mechanics
of the MaruGen system. Since the diagrams generated
by MaruGen are abstract, this implementation must be
adjusted for the game that is being created in coordination
with the game designers. The artists, meanwhile, are
generating the contents of the game, 2D/3Dmodels, audio,
textures, etc. In the last stage, MaruGen generates spaces,
game mechanics and rules in real time and integrates all
the elements defined above. At this stage, the results
of all the work are evaluated and, if necessary, the cycle
is repeated in accordance with the concept of iterative
development.

Figure 2 Video game development stages in MaruGen

4.2 Functioning

In the first stage of the development of a video game,
MaruGen allows for the creation of mechanics and video
game spaces. The Machinations framework was used
as a basis to represent mechanics and behaviors in a
video game, and the Mission-Space framework for the
generation of spaces, game levels, andmissions [15]. Both
frameworks define a representation structure with known
and documented nodes and arcs. These frameworks
were used for their power of expressiveness, their

12



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 3 Graph constructed with machinations expressing the mechanics of a video game

mathematical foundation, their algorithmic development,
and their validation in the development of several video
games.

Nodes and arcs were reused from Machinations. The
nodes define the properties of game elements or items;
they can be of different types: Pool and its variant External
Pool, Source, and Drain. Additionally, the External Event
node was proposed in order to have the functionality of
calling/executing an external method. All nodes have the
property of being interactive, which allows any node to be
activated by an event in the game engine. The arcs allow
the connection of nodes with different semantics: flow,
condition, and trigger.

From Mission-Space, the Place nodes that can contain
mission elements and Lock nodes were reused. The arcs
type Path and Valve were also used.

The designer expresses the mechanics and spaces of
a video game from the creation of nodes and arcs, whose
result is a graph in the respective framework (Figure 3).

In the second stage, this visual representation of the
graph must be transformed into a concrete representation
of a video game. MaruGen offers the programmer a
series of classes that can be extended to implement the
spaces and/or mechanics through code. The programmer

user can specifically extend methods of creating nodes
and/or arcs and methods that are executed before or after
executing the graph reading process. The programmer
can use procedural generation mechanisms to support
the emergent property of the video game. The mechanism
used in MaruGen is a term rewriting system based on
L-Systems. This system requires an initial graph and uses
the rules associated with levels, spaces, and mechanics.
Also, in this system the type of replacements, the number
of iterations, the order of appearance of each rule, and the
different generation stages can be specified. The result
corresponds to different graphs based on the same rules
(Figure 4).

Depending on the game, the implementation is specific to
its needs. With the joint work of a programmer, MaruGen
allows extending a series of classes to generate the
desired spaces and behaviors, based on the information
in the graphs. Users who generate content (artists,
musicians, creatives, etc.) also participate in this stage to
associate these contents according to the elements that
are modified in the different nodes and arcs of the graphs.

In the last stage, the Unity3D engine starts the video game,
and the built graphs are executed. The execution of these
graphs applying a procedural algorithm can generate
variants of the same game, exploiting the emergent
capacity of the video game. For example, for the same

13



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 4 Application of L-Systems in the procedural generation
of spaces and mechanics in MaruGen

Figure 5 MaruGen architecture integrated in the Unity3D game
engine

video game, different spaces can be generated from
different implementations of the same design graph. This
depends on the type of game to be developed, and the
generation algorithm implemented.

4.3 MaruGen architecture

MaruGen’s architecture is defined under the Unity3D
game engine (Figure 5), widely used by industry
nowadays. MaruGen’s interface uses the Unity editor
extension system. On this system, the definition and
manipulation of graphs and elements of the Machinations
and Mission-Space frameworks are established. The
graph system has a common base so that the system
interface windows do not recognize the difference of each
graph, except for the particular elements of each node and
of each arc. Each specific framework, both Machinations
and Mission-Space, extends on that common basis, and
each specific node or arc has an analog in the interface
system so that it is possible to manipulate each element
of the system in a simple way, as well as to create new
elements if necessary.

The graph system is supported under a native Unity
system, called ScriptableObjects. ScriptableObjects are
data containers that can be serialized by Unity. However,
in order to allow working with other different tools and
also to reduce dependency with Unity, these containers
are exported in JSON format. These resources can be
created within a Unity project and can later be edited.

There is a complementary component: a rewriting

system, based on L-Systems. This system takes the
ScriptableObjects that represent the different graphs
created by the game designer and executes the respective
algorithm to generate a new graph of the same type,
such as another ScriptableObject within Unity. These
procedural generation systems are also defined as
ScriptableObjects within Unity.

All the above elements are designed to be executed
in the game editor. The behaviors, however, are designed
as scripts to be executed in real time, in the Unity
game engine. A video game programmer can use these
scripts to extend and implement procedural content
generation, according to the description of the rules and
the graphs presented. This is specific to each game, so
it must necessarily be extended and completed by the
programmer, in conjunction with the content generated by
the artists and in coordination with the entire video game
team.

5. Validation and results

In order to evaluate MaruGen, the game Cubic Explorer
was designed and implemented using the Unity game
engine. This game was featured in the Game Jam
Ludum Dare 38 [23]. Cubic Explorer is a game where
the player explores multiple cubic worlds in which s/he
can find elements of different types (Figure 6): parts
of a spaceship, enemies (soldiers or monsters), items
(mysterious boxes), keys, padlocks, and doors.

The player has different weapons to defend himself
and kill his/her enemies. The doors allow the player to
change the cubic world, where s/he will find different
configurations of elements. The keys allow the player
to open doors that have a lock. The gathering of the
spaceship parts and a kind of good boxes allows the player
to earn points. However, successful enemy attacks or
gathering other types of bad boxes cause the player to
lose points.

The mechanisms for generating spaces, missions,
and mechanics offered by MaruGen allow defining a
combination of different possible objectives of the game
(to obtain aminimumnumber of points, to destroy enemies
and/or to collect all parts of the spaceship), with different
behaviors for the elements of the game, and under
different game conditions (playing time, increase/decrease
of the player’s health, and/or increase/decrease of the
player’s speed). All this favors the emergent feature of the
Cubic Explorer game.

For the definition of the game space (cubic worlds and their
elements), MaruGen allows the game designer to define
some basic rules using the Mission-Space framework.

14



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 6 Noshu cubic world where the player is in the center and in front of the door that takes him/her to the Cuva cubic world.
There are three mysterious boxes (good and/or bad) and a monster enemy. In the lower-left part, the objectives that the player must

achieve are defined

Figure 7 Individual Mission-Space rules (level structure)

Two sets of rules are defined using a grammar: rules
about the connection of cubic worlds, and their access
restriction by the use of keys and locks (Figure 7), and
other rules related to the elements that appear in the
cubic worlds (parts of the spaceship, the enemies, and the
mysterious boxes) (Figure 8).

Each basic rule has associated elements and behaviors
that the programmer user can modify inside the Unity
game engine and, thus, be able to use it when generating
the graph that defines the entire space of the video game
and its elements (Figure 9).

Figure 8 Individual Mission-Space rules (Enemies, parts of the
spaceship and mysterious boxes)

Afterwords, MaruGen allows the designer to define

Figure 9 Skeleton that allows extending the Mission-Space
graphs as a tangible space in Unity in real time

an L-System that integrates the basic rules about the
definition of cubic worlds and their elements in the
game. Additionally, it includes the operating parameters
of the L-System that define how to mix and apply the
different rules (Figure 10). The result of the execution
of this system is the generation of the space structure

15



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 10 L-System that integrates different space-definition
rules for the Cubic Explorer game

for the video game that complies with the basic rules of
the designer (Figure 11). This result is emergent and
novel because it can be generated during the game, it
combines the rules consistently, and it takes advantage of
the random properties of the L-System.

The designer can define the objectives of the game in
MaruGen using rules expressed in the grammar of the
Machinations framework. For Cubic Explorer, the possible
objectives that the player can have are (Figure 12): to
obtain a minimum score (number of points), to collect all
parts of the spaceship, and to destroy the enemies.

Additionally, the designer can define some conditions on
the player’s status as (Figure 13): time limit of the game,
increase/decrease of the player’s health during the game,
health level at the beginning of the game, player speed,
and type of player attack.

MaruGen also allows the designer to integrate a
composition of the rules on the objectives of the game,
and the conditions of the player in an L-System, which
generates the resulting graph defined in each execution
of the game (Figure 14). This makes the game variable
between different executions.

The designer can also define rules about the behavior of
elements type enemy, mystery box, part of spacecraft, and
key. All these elements have a common behavior to either
pursue or evade the player, remain still, or patrol (Figure
15). Therefore, these elements are governed by common
rules. An L-System allows mixing the different elements,
each with its own behavior (Figure 16). This shows the

variability of the elements in the game, even if common
rules are used.

The general mechanics and rules of Cubic Explorer
is defined by the combination of multiple resulting graphs
generated by MaruGen: the graph of objectives and
conditions of the game, and the graph of the elements of
the game.

5.1 Main results

MaruGen was defined and integrated into the Unity3D
game engine. MaruGen allowed to design, implement and
test the Cubic Explorer video game [23] for three days
during the Game Jam Ludum Dare 38. The main results
of this participation were:

• Cubic Explorer was fully functional, which shows that
MaruGen offers the necessary components to support
a team composed of designers, programmers, and
video game artists, and generate video game
prototypes in an agile way.

• Cubic Explorer was evaluated by 36 users.

• Cubic Explorer obtained the 38th general position
among 779 participating games corresponding to the
top 5%. This position considers the following aspects:
fun, innovation, theme, graphics, humor, and mood.

• Cubic Explorer obtained the 28th position in the aspect
of innovation, which we consider is closely related to
itsmechanism for generating spaces, mechanics, and
rules.

• Cubic Explorer obtained the 63rd position in the
aspect of the game’s theme, which we consider is
closely related to the particularity of the spaces, the
defined elements, and themode of exploration offered
by the game.

• Cubic Explorer obtained the 244th position in the
fun aspect, which we consider is very related to
the defined mechanics and rules, and the emergent
feature of the game. This aspect is certainly a
weakness of the final production of the game, but
it is a good opportunity to ask ourselves questions
to identify possible flaws: Were the Mission-Space
rules or were the Machinations framework rules
responsible for the low performance? Are there any
bad patterns in the disposition of the rulesets? What
singular piece of the game design should the designer
change/remove? Instead of trying to look for any
specific complex dynamic occurring in place, there is
a possibility for just adding, removing or modifying
one piece of the system and watch it unfold in a
next iteration. The fundamental difference by using
MaruGen is that the game designer can pinpoint an

16



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 11 A possible result of the space generated by the L-System of the Cubic Explorer game

Figure 12 Collection of Machinations rules for the different objectives defined by the game designer

Figure 13 Collections of machinations rules that affect the player’s status during the game Cubic Explorer

17



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Figure 14 An example of a partial result of Machinations after running the L-System in Cubic Explorer

Figure 15 The elements type enemy, spaceship part, mystery box, and key have the same initial graph and set of rules

Figure 16 Enemies, mystery boxes, spaceship parts, and keys pass through the same rule filter

18



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

exact piece of the puzzle, and s/he can even provide
design recommendations (e.g. ”for this type of game
you should never use a rule like this, instead, you may
use this one”). This is a process similar to that used
by Software Engineers and Architects when designing
applications and using software engineering patterns
(or anti-patterns).

• The evaluating users of Cubic Explorer made positive
comments, and also commented on improvement
possibilities.

6. Conclusions and future work

The creation and production of a video game implies a
development cycle with different stages and with a very
diverse work team (designers, programmers, artists, etc.).
Due to how demanding the process is, in recent years,
different computational tools have been built that allow
and facilitate the development of elements at different
stages of a video game.

MaruGen is a computational tool that proposes
semi-automatic prototyping of video game designs
from sets of basic rules defined by the video game
designer. The basic idea is the generation of complex
graphs from the expression of these basic rules. Thus,
MaruGen uses a rewriting system, based on L-Systems,
that allows generating well-defined complex graphs of
different complexities and that promotes emergent and
progressive properties in video games. This way, game
designers can express designs, and they can also build
and test game prototypes with their workgroup, easier and
faster than applying the usual process. However, MaruGen
does not intend to produce a completely satisfactory
video game by itself, but rather the analysis of the
produced results is made by the designers themselves
to understand and improve the properties of the game
in development. From a visual representation of the
designs, it is required to complete the definition of the
video game with the participation of programmers and
artists. Additionally, MaruGen works on the Unity game
engine, but it is possible to take the base concepts
to other types of engines and frameworks. MaruGen
reuses elements of the Machinations and Mission-Space
frameworks to describe an abstract representation of the
space, mechanics, and rules of a game, without having to
specify or describe its operation in detail. MaruGen also
allows the generation of groupings of rules, collections
of basic concepts in games that, from the point of view of
a game designer, can be reusable in other objects of the
project or even in different projects.

The MaruGen tool was validated in the process of creating
the Cubic Explorer video game, which participated in the

Game Jam Ludum Dare 38, ranked in the top 5%, and
obtaining good scores and comments from gamers and
video game developers.

MaruGen seeks to be a computational tool to support
the role of the video game designer in his/her process
of construction and validation of mechanics and spaces.
In that way, designers can discuss, analyze, share and
potentially test different rulesets that can validate in their
own projects in a concrete, direct way. A great potential
result of this effort would be to generate compendiums
and collections of ”patterns”, ”anti-patterns”, etc., which
describe successful pieces of design that can be applied
in a general design (or patterns just for specific purposes
in certain styles of games).

Nevertheless, MaruGen is not a finished tool; there
are several possibilities for improvement. One option is
the adjustment and refinement of the proposed rewriting
system. Likewise, a complete graph rewriting system
can be considered. Another possibility of improvement is
to make a better integration with the Unity game engine
interface, especially a mode to visualize in real time the
graphs of both Machinations and Mission-Space would
be a help for verification and testing. It would also be
very interesting to consider how to reduce the need for
programmer intervention in some steps of video game
development, and to facilitate the designer’s expression
of his/her design ideas in the Unity game engine. Finally,
from the point of view of game design, it would be of great
interest to be able to extend the concept of rules to rule
patterns to increase the expressiveness of the designs.
In particular, because of the result obtained in the fun
aspect, it would be interesting to discuss patterns and
rules using MaruGen to give some sense of ”pattern”
that can guarantee a certain reaction and dynamic in a
game, that can be shared and ”plugged in” by other game
designers in the rule generation systems to compare and
verify, eventually generating a compendium of patterns (or
anti-patterns) of game design. This is probably something
that does not exist and game designers usually only have
as anecdotal proved/true evidence with no formal backup.

7. Declaration of competing interest

We declare that we have no significant competing interests
including financial or non-financial, professional, or
personal interests interfering with the full and objective
presentation of the work described in this manuscript.

8. Acknowledgments

We would like to thank the IMAGINE research group and
the Systems and Computing Engineering Department at

19



I. F. Capasso-Ballesteros et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 99, pp. 9-20, 2021

Universidad de los Andes (Bogotá, Colombia) for their
support.

References

[1] A. Järvinen, “Games without frontiers: Theories and methods
for game studies and design,” Ph. D. dissertation, University of
Tampere, Tampere, Finland, 2006.

[2] C. Crawford. (1984) The Art of Computer GameDesign. [McGraw-Hill
Osborne Media]. [Online]. Available: https://bit.ly/2T1Y9gW

[3] T. Fullerton, C. Swain, and S. Hoffman. (2008) Game design
workshop – A playcentric approach to creating innovative games.
[Elsevier & Morgan Kaufmann Publishers]. [Online]. Available:
https://bit.ly/2T24hpt

[4] J. Schell. (2008) The art of game design – A book of lenses.
[Elsevier & Morgan Kaufmann Publishers]. [Online]. Available:
https://bit.ly/3c6OInQ

[5] G. Costikyan, “I have no words & i must design: Toward a critical
vocabulary for games,” in Computer Games and Digital Cultures
Conference Proceedings, Tampere, Finland, 2002, pp. 9–33.

[6] R. Hunicke and M. LeBlanc and R. Zubek, “MDA: A formal approach
to game design and game research,” in Proceedings of the Challenges
in Games AI Workshop, Nineteenth National Conference of Artificial
Intelligence, Menlo Park, USA, 2004, pp. 1–5.

[7] R. Koster, A Theory of Fun for Game Design, 1st ed. O’Reilly Media,
2004.

[8] D. Church. (1999, Jul. 16) Formal abstract design tools. [Gamasutra
The Art & Business of Making Games]. Accessed Sep. 28, 2019.
[Online]. Available: https://bit.ly/32vegGM

[9] R. Koster. (2005) Game design atoms: Can game designs be
diagrammed? [GDC Vault]. Accessed Sep. 28, 2019. [Online].
Available: https://bit.ly/2HXjsdg

[10] R. Koster. (2012) A theory of fun 10 years later. [GDC Vault]. Accessed
Sep. 28, 2019. [Online]. Available: https://bit.ly/2wcYqVa

[11] D. Cook. (2012, Apr. 30) Loops and arcs. [Lostgarden]. Accessed
Sep. 28, 2019. [Online]. Available: https://bit.ly/2PvSaii

[12] A. Anthropy and N. Clark, Eds., A Game Design Vocabulary, ser. Game
Design/Usability. Addison Wesley, 2014.

[13] N. Falstein and H. Barwood. (2001) The 400 project. [Finite Arts].
Accessed Sep. 28, 2019. [Online]. Available: https://bit.ly/2VurulM

[14] S. Björk and J. Holopainen, Ed., Patterns in Game Design, ser. Game
Development Series. Charles River Media, 2004.

[15] J. Dormans, “Engineering emergence: Applied theory for game
design,” Ph. D. dissertation, University of Amsterdam, Amsterdam,
Netherlands, 2012.

[16] K. Burgun, Clockwork Game Design, 1st ed. CRC Press Taylor &
Francis Group, 2015.

[17] D. Cook. (2007) The chemistry of game design. [Gamasutra The Art
& Business of Making Games]. Accessed Sep. 28, 2019. [Online].
Available: https://bit.ly/2T84hV7

[18] J. Dormans. (2017) Unexplored. [Ludomotion]. Accessed Feb. 28,
2020. [Online]. Available: https://bit.ly/32I8aDj

[19] P. Prusinkiewicz and A. Lindenmayer. (1990) The algorithmic
beauty of plants. [Springer-Verlag]. [Online]. Available: https:
//bit.ly/2wSRuNu

[20] SideFX. (2013) Houdini engine. [SideFX]. Accessed Oct. 8, 2019.
[Online]. Available: https://bit.ly/2we8SM5

[21] SpeedTree. (2002) SpeedTree – 3D Vegetation modeling and
middleware. [Interactive Data Visualization, Inc.]. Accessed Oct. 8,
2019. [Online]. Available: https://bit.ly/2Tp4XnA

[22] L. Lapré. About Lsystems and Lparser. [laurenslapre]. Accessed
Oct. 8, 2019. [Online]. Available: https://bit.ly/3974SMb

[23] I. F. Capasso. (2017) Ludum Dare 38 Cubic Explorer. [Ldjam].
Accessed Oct. 8, 2019. [Online]. Available: https://bit.ly/2TijJN4

20

https://bit.ly/2T1Y9gW
https://bit.ly/2T24hpt
https://bit.ly/3c6OInQ
https://bit.ly/32vegGM
https://bit.ly/2HXjsdg
https://bit.ly/2wcYqVa
https://bit.ly/2PvSaii
https://bit.ly/2VurulM
https://bit.ly/2T84hV7
https://bit.ly/32I8aDj
https://bit.ly/2wSRuNu
https://bit.ly/2wSRuNu
https://bit.ly/2we8SM5
https://bit.ly/2Tp4XnA
https://bit.ly/3974SMb
https://bit.ly/2TijJN4

	Introduction
	Related work
	MaruGen – Semi-automatic prototyping proposal for video game designs
	MaruGen in the video game development process
	Videgame development support
	Functioning
	MaruGen architecture

	Validation and results
	Main results

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments

