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ABSTRACT: The article proposes a methodology applicable to any photovoltaic (PV) plant
to obtain an approximation of the monthly production of solar array power. The analysis
was carried out in seven systems, of different technologies and capacities, connected
to the microgrid of the Center for the Development of Renewable Energies (CEDER)
belonging to the Center for Energy, Environmental and Technological Research (CIEMAT)
in Soria, Spain. The proposal simulates radiation by combining and crossing two Gamma
probability distributions, representing the days with the best and worst solar resources,
respectively. As a result, a matrix was created with 12 variables that define the monthly
behavior of the radiation. On the other hand, the granularity of the PV generation
was homogenized to know it at any moment through polynomial functions. Once both
characterizations were known, it was possible to predict the monthly power of each PV
array. The methodology has been validated with the measurement approximation index,
developed in the text, and with specialized software. The results presented will help in
the dimensioning of a backup model and will collaborate in the adequate management
of energy.

RESUMEN: El artículo propone una metodología aplicable a cualquier planta fotovoltaica
(FV) para obtener un acercamiento de la producción mensual de potencia de arreglos
solares. El análisis se llevó a cabo en siete sistemas, de tecnologías y capacidades
diferentes, conectados a la microred del Centro de Desarrollo de Energías Renovables
(CEDER) perteneciente al Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT) en Soria, España. La propuesta simula la radiación mediante
la combinación y cruce de dos distribuciones de probabilidad Gamma, representando
los días de mejor y peor recurso solar, respectivamente. Como resultado, se creó una
matriz con 12 variables que definen el comportamientomensual de la radiación. Por otro
lado, se homogenizó la granularidad de la generación FV para conocerla en cualquier
instante a través de funciones polinomiales. Conocidas ambas caracterizaciones se
logró predecir la potencia mensual de cada conjunto FV. Lametodología ha sido validada
con el índice de acercamiento a las mediciones, desarrollado en el texto, y con software
especializado. Los resultados presentados ayudarán en el dimensionamiento de un
modelo de respaldo y colaborarán en la gestión adecuada de la energía.

1. Introduction

In recent years, humanity demands a large amount of
electricity; Latin America, for example, has a growth rate
of 5% [1, 2]. The use of raw materials, the cornerstone of
technical progress in the middle of the twentieth century,
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to satisfy consumption contributes to the erosion of nature
and to promote anthropogenic climate change. In this
scenario, renewable energies are incorporated as a new
actor trying to cover what society requests in a less
polluting way.

There are essentially two schemes where renewable
production is present. The first, distributed energy
resources (DER), includes different aspects such as
generation, storage, and demand response; an interesting
case study of the latter aspect is discussed in [3]. On
the other hand, the new paradigms and the latest
developments in the electricity sector are based on the
introduction of distributed generation (DG), which is a
philosophy where energy is not produced exclusively in
large centralized plants, if not also in smaller locations
taking advantage of local conditions in order to minimize
transmission/distribution losses, as well as optimizing
production and consumption. This represents an
opportunity for renewable energies, where elements
such as photovoltaic panels and wind turbines, scattered
throughout the network, supply installations on-site or
sell energy depending on their generation/consumption
conditions [4]. Consequently, according to data from the
European Commission, DG penetration into the European
network is estimated to be around 20-25% of the total
generation by 2020, and by 2030 this figure will be set at
30-35%.

However, electricity generation based on renewable
resources, mainly wind and solar, has highlighted
additional challenges in the management of the electricity
system, primarily due to the dispersion of this type
of generators, the energy of changing output, and the
inefficient coordination of the conditions of the electrical
grid. These complications have created technical
obstacles such as energy management, architecture
design of electrical systems, voltage, and frequency
support, means of protection and low voltage aspects [5].
They also increase the computation difficulty due to the
more complex and asymmetrical probability distributions
associated with the intermittent plant [6]. In addition, given
the considerable number of plants, there is the challenge
of obtaining energy production data in real-time [7]. Other
relevant issues are the difference, in statistical terms,
between the availability of intermittent source resources
and conventional generation, as well as the contribution
that oscillating production can make to satisfy the peak
demand of the system while maintaining its reliability [8].

Complications caused by photovoltaic generation are
dependent on solar radiation, promoting the interest of
different studies to find a probability model that best
fits the measurements. Thus, [9] performs a radiation
analysis in Taiwan with Weibull distributions, logistics,

Normal, and logNormal without detecting bimodal
behavior. Additionally, in [10], they claim that the variation
in radiation does not follow bimodal behavior. In addition,
the study of the behavior of global radiation in the M’Sila
region (Algeria) is developed in [11], using six individual
frequency distributions finding that theWeibull distribution
best matches the measured data for all months, that is,
they did not find a bimodal fit either. On the other hand,
[12, 13] argue bimodal performance in the distribution of
radiation observations, [14] they analyze solar radiation
records and similarly detect bimodal behavior in the
distribution of data for intervals less than 60 minutes.

Given the importance of photovoltaic generation, this
work attempts to approximate the quantification of the
real power supplied from photovoltaic arrays (PVA) to
the microgrid of the Center for the Development of
Renewable Energies (CEDER) belonging to the Center
for Environmental and Technological Energy Research
(CIEMAT) located in Soria, Spain. The analysis focuses
on modeling, on a monthly basis, the radiation with
the Gamma probability distribution and, at the same
time, finding relationships between it and the individual
production in days with the best solar resource finding the
profile of each PVA.

The text is made up of four sections. It begins with
the description of the components of the case study and
the elements for measuring the information. Section
three shows the methodology for modeling radiation
and determining the association functions between the
solar resource and the PV power. Point four exposes the
results of the characterization of the monthly radiation
and the representative functions of the behavior of the PVA
validated by the JMP version 8.0.2 software as well as by
the measurement approach index (Ipm), in addition, the
simulation of the monthly power of the PVAs is presented
with the help of Matlab R2015a, it is important to note
that some of the results presented in this article are
published in [15]. Finally, the most relevant conclusions
are presented.

2. Case study

Of all the manageable components of CEDER’s microgrid,
this work focuses on a photovoltaic generation whose total
peak power is of 78 kW. As shown in Figure 1, the PVAs
are assembled into five generation groups [16], three of
them are on roofs and the rest are at floor level.

The five solar sets are briefly described.

1. Turbine zone: the installation consists of 16 kW
distributed in 64 panels of monocrystalline silicon
of 250 W each, housed in two structures, forming
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Figure 1 Distribution of RES in CEDER microgrid

four series (two series per structure) of 16 panels
each. The output is connected to a 15 kW inverter and
connected to the three-phase network

2. Roof photovoltaic building E01 Arfrisol: this generator
of 12 kW is made up of 80 monocrystalline silicon
panels of 150 W, distributed in five series of 16
modules each. They arrive at a three-phase inverter
of 10 kW.

3. Building roof E03: the arrangement has a power of
12.5 kW in 54 panels of monocrystalline silicon of two
different brands. Some give 230 W and the other 240
W,with very similar characteristics, there are 36 of the
first type and 18 of the second. They are connected to
a 10 kW three-phase inverter.

4. Building roof E09: plant divided into two groups, one
of 84 and the other of 154 modules, arranged in 17
series of 14 panels each, with a peak capacity of 23.5
kW. The 238 panels are thin film (CdTe) with a power
of 97 W and discharge to a three-phase inverter of 20
kW.

5. PEPA III: consists of three facilities called park 1,
park 2, and park 3. They deliver their generation to
single-phase inverters of 5 kW, connecting each park
to a phase. Structures 2 and 3 are the same. Park
1: consists of 24 modules of polycrystalline silicon
distributed in four series of 6 panels, its peak power
is 5 kW. Parks 2 and 3: generators of 32 modules
of monocrystalline silicon of 140 W, grouped in four
series of 8 panels, providing a maximum power of 4.5
kW.

Due to the need for higher resolution data, the
measurement of the solar resource in situ was performed
with a station belonging to the Response Surface
Radiation Network (BSRN) whose purpose is to detect

relevant changes of this variable on Earth that are related
to climatic changes [17]. The equipment is located in
building E01 and measures various parameters such as
UVA, UVB, infrared, etc.; however, only global radiation is
of interest for this work. The information was acquired
every five minutes in the period from November 1st,
2010 to May 15th, 2015, with a total of 442,905 records.
The monitoring of the power injection produced by the
photovoltaic plants to the CEDER network was done
through intelligent meters; their acquisition is exported
to a database formed at different granularity, 5 minutes,
and hourly, respectively. The correspondence between the
measuring equipment and its respective PVA is presented
in Table 1.

Table 1 Smart Meters with your generation plant

Smart meter PV generator
AE1037 (5) Park 1
AE1038 (5) Park 2
AE1044 (5) Park 3
AE2000 (2) E01 Arfrisol
AE2005 (3) E03
AE2010 (1) Turbine zone
AE4360 (4) E09

3. Materials and methods

Before visualizing the developed methodology, Figure 2,
as an example, presents the evolution, without processing,
of the radiation in January. As can be seen, the complete
history of the measurement records was not available. In
addition, it is easy to observe the oscillation in the values
of the solar resource for different days of the month.

In order to facilitate the understanding of the methodology
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Figure 2 Behavior of radiation data for the month of January

developed and the variables involved in it, Figure 3 shows
the corresponding flow chart. Lines below deepen these
sections.

3.1 Radiation modeling

Gamma distribution

Since the behavior of a random variable is described by
its probability distribution, the closest to the measured
monthly radiation was sought. Among the most useful for
representing atmospheric parameters is Gamma, which
is suitable for modeling when bias, positive asymmetry,
and time is involved. Such environmental measures
include precipitation, wind speed, and relative humidity, all
restricted by a physical limit.

In short, the Gamma distribution is the one where the
random variable occurs α times until there is a certain
event [18]. Its density function is given by Equation 1:

f(x) =

{
1

βαΓ(α)x
α−1e

−x
β , for x > 0;α, β > 0

0
(1)

Where α is the shape parameter and β the scale
parameter. When large values of α occur, distributions
result in less bias and a shift in the probability of density
to the right. For very large values of α (50 < α < 100)
the distribution approximates, in its form, the normal.
The parameter β “extends” or “squeezes” the function to
the right or to the left, when is large, the curve is more
elongated [19]. The main cases of this distribution are as
follows: with α < 1, it is strongly skewed to the right. For
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Figure 3 Methodological flow chart

α = 1, the function cuts the vertical axis in 1/β with x = 0
(in this scenario is called exponential distribution). With
α > 1, the distribution begins at the source, (f (0) = 0).

To model the radiation, the analysis was carried out
with the Normal and Gamma distribution, individually
and in combination, that is, two Normal distributions and
two Gamma, respectively. The JMP software was used,
filtering the information for each month, with a granularity
of 5 minutes and limiting the records to the existence
of radiation. In the first two analyzes, the Kolmogorov -
Smirnov - Lilliefors (KSL) and Cramer-Von Mises (CVM)
goodness of fit tests are applied to determine whether
or not the null hypothesis is rejected. In the case of
gamma behaviors, the curve adjustment goodness test
was developed using Pearson’s statistic by simultaneously
quantifying four parameters, obtaining the observed
frequency directly from the measurements and testing
the parameter values by adjusting them to create a
minimization of the χ2 statistical. The process of obtaining
the parameters, for each month, was carried out in the
Excel program so that this test maximized the probability
of the right tail of the same χ2. The hypothesis test applied
in the adjustment goodness adequacy is:

• Create classes in the histogram. There are as many
classes as 5-minute measurements exist in each
month.

• Locate the original data in each class, i.e., the

observed frequency (fro) is found.

• Create the hypothesis test (HT). H0: Do the original
data follow two Gamma distributions with their
parameters αa, βa, and αb, βb? H1: does not comply
with the above.

• Prepare the expected frequency table (fre).

• Calculate the statistical χ2
v : χ2

0 =∑k
i=1

(froi−frei)
2

frei
. Where: v represents the

degrees of freedom (DF). ν = k − P − 1, with k
the number of classes and P the parameters to be
determined.

• The criterion for rejection of H0 is: χ2
0 > χ2

v,α

• If it is not possible to reject, we can assume, with the
confidence of (1− α)% that the data set does meet
the double Gamma distribution.

Approach index to measurements

In order to demonstrate the reliability of radiation
simulation, an indicator was established to demonstrate
proximity to measured data. The proximity index to
measurements (Ipm) is defined with the help of the
Equations 2 - 4:

ϕ =
drpS
drpT

(2)
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fdif = (ϕ− 1)

[
fdaT
fdaS

]
(f) (3)

Ipm = (1− fdif ) (100) (4)

Where ϕ is the ratio of the simulated reference splines
(drpS ) and the theoretical one obtained with the
information (drpT ) [20], fdif is the fraction of difference
and is a function of the fractions of days of good theoretical
radiation (fdaT ), of that provided by the simulation (fdaS )
and of the random factor f = 1

σ2 where σ2 is the variance
of the combined simulation of the crossed gamma adjusted
to the nearest integer.

A fraction of high radiation days

To determine the percentage of days with better radiation
were found two monthly values, these are: reference
distance (rd) represented by the radiation peak measured
from the spline reference frame and high distance (hd)
estimated from the points observed with the highest
magnitude. In this way, the fraction of high radiation days
was found: Fhr = rd

hd . When there are days of higher
radiation, the spline ”rises”, thus both distances are close,
indicating the presence of a greater number of days where
the radiation is considered high.

Radiation conformation

The structure of the monthly radiation matrix (Rad), which
represents the 12 months of the year, consists of 192
elements consisting of 12 rows and 16 columns. Its
configuration is as follows: the elements located in the
first six positions correspond to the β’s of the polynomials
of each month, obtained from the characterization of
radiation [20]; the number of days (nd) is found in column
seven, the following three parameters are the maximum
reached value, that is, the peak radiation (pr), the
magnitude of the reference spline (rd) and the minimum
value (mv). The start (sr) and end (er) readings of the
radiation measurement form columns eleven and twelve
and the last four are the coefficients of α and β of the
two Gammas distributions; in this way, αa and βa equal
the simulation on sunny days and αb and βb represent the
cloudy days.

3.2 Photovoltaic systems

Standardization of PV power

The analysis of the solar systems was carried out in
two parts, the first, directly relating the radiation, on
the days with the best resource (the PV systems in their
design are independent of environmental variations in their
operation), and the production of themeasured AFVs by the
following equipment: AE1037, AE1038, AE1044, AE2000,

and AE2005. It is important to remember that the systems
measured by AE1038 and AE1044 correspond to exactly the
same facilities in their architecture and type of technology.
However, energy variations were found in four months, and
consequently, the analysis of the park two only covers the
months of July, August, September, and October. The
second section corresponded to the characterization of
the power obtained by the meters AE2010 and AE4360;
different polynomial adjustments without transformation
were tested finding few correlations, so it was decided
to analyze the transformation with logarithm base 2 in
the response (power) to improve the experimental space
of measurements to represent its behavior clearly. The
reason for using transformation with base logarithm 2
instead of the traditional natural logarithm was to observe
improvement in correlation by reducing the base exponent
e to 2, better adjusting both curves to the “m” type
characteristic. The statistical criterion of choosing base 2
is supported on the Box-Cox Y Transformation technique
that minimizes the sum of squares of the error in the
response [21]. Equation 5 shows the arrangement of Box
and Cox.

YT =
yλ − 1

λȳλ−1
(5)

Where y is the geometric mean and λ is an exponent that
varies between -2 to 2.

In this way it is possible to determine the behavior
between the generated energy and the measured
radiation, homogenizing the information every five
minutes.

Association Functions (r’s)

The monthly relationship between the measurements of
energy produced and radiation received is found with
polynomial functions in the form of reasons that allow it
to be segmented to any granularity. Since each PV system
has its nominal power referenced at 1,000 W/m2, the peak
functions (rp) are obtained. Thus, we have Equations 6 and
7:

r =
E

R
(6)

rp =
Ep

Rp
(7)

Where r and rp are the associations between the energy
produced and the radiation at a certain instant and in peak
conditions,E is the energy measured by the smart meters
in Table 1,R represents themeasured radiation,Ep andRp

describe the energy and radiation in maximum conditions.
It is worthmentioning that in the PVAs of higher production,
the functions r and rp were converted again with the help
of the following property of the logarithms: loga N = lnN

lna
.

Where a is the basis of logarithm and N is the number
to be transformed. Of this mode r is a function obtained
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from the best moments of energy measured with their
respective radiation, that is, in each month and in each
PVA the best production was sought because at that time
it is when there is a greater approach with the exposed
by the manufacturers. For its part, rp is a constant
associated with themaximum values of energy delivered to
the network with the moment of the best radiation. From
the above, it is possible to determine the simulated power
(kW) of each of the PVA by means of Equation 8.

Psim =

(
Pn

1000

)
Radsim

(
r

rp

)
(8)

Where Psim is the simulated power (kW), Pn is the rated
power (kW) of each FV system, Radsim is the radiation
(W/m2) that the simulator generates. However, where
radiation exceeds 1 kW/m2 the PV production shall be
higher than the nominal one.

4. Results

4.1 Radiation

Normal and Gamma distributions

First of all, the adjustment with the normal distribution
was developed, the KSL test was applied and the H0 was
rejected, later, the Gamma distribution was tested, and
this, without a doubt, is better approached to reality;
however, the CVM goodness test also rejected H0. For
simplicity, it has been decided to show only the radiation
behavior of January through a histogram with their
respective classes. Figure 4 shows the adjustment of
the Normal distribution and Figure 5 the corresponding
analysis with the Gamma distribution, each with their
respective tests of goodness of fit.

The reason for rejecting the adjustment of the normal
distribution lies in the following fact: under this behavior,
the average and the standard deviation of the data
represent the possible best fit; clearly in the figure, the
null approach is observed.

When an asymmetric distribution, such as Gamma, is
applied to the information, the methodology for achieving
the best possible adjustment consists in optimizing the
shape parameter (α) since it represents the region of
greatest probability (area under the curve) and obtaining
the average of the data to estimate the value of the scale
parameter (σ), due to the above, in the figure, there is
a better visual adjustment in the upper part and in the
asymptotic low zone there is a mismatch. However, the
proximity is greater compared to the normal distribution.

On the other hand, statistically, the likelihood parameter
[-2log (Likelihood)] estimates how good the adjustment to

the observed points is; the smaller this value, the better
the proximity ; under this criterion the Gamma distribution
represents greater proximity to the radiation behavior. In
addition, in the quantile diagram of Figure 5 approximately
up to 450 W/m2 there is a good coupling, above that value
the distribution no longer behaves properly. That is,
globally the Gamma setting is better. By reviewing the
behaviors of the experimental points and histograms, it
was detected that there is no single distribution; that is,
there are two different probabilistic behaviors. Visually
the first behavior, between 0 and 350 W/m2, tends to be
a gamma with α = 1 (exponential), and the second to
a normal one, its combined effect would generate the
histogram of the data.

The above combination was tested without the expected
response. Due to this, two normal curves were associated,
being equally rejected. When this possibility was ruled
out, two crossed Gamma distributions were tested: the
first represents the days of low radiation and the crossed
represents the one with the highest solar resource. When
carrying out different tests, combining them, and varying
their characteristic parameters, the strong approximation
is observed with the radiation measured in each month,
generating them without spaces that serve as input for
photovoltaic systems.

Radiation simulation with Gamma distributions

To find the parameters of the Gamma distributions that
produced a closer approximation to the radiation, four
simulations were performed, creating four years of
radiation. Figure 6a shows the behavior of the observed
points and the spline fit with their R2. Where “X” is the
reading number (NL) and ”Glo” is the radiation for the
month of January. In contrast, Figure 6b shows 15,000
simulated points every five minutes of radiation, as well
as its spline approach that reaches a correlation factor
(r =

√
R2) of 0.7141, exceeding what was found in the

observed data. The main difference in the correlation
factor is the number of points, that is, in the acquisition
of information there are absences of records. A criterion
taken into account to get closer to reality was to keep
the spline function at the same original value, that is, for
this month the peak of the original data is 350 W/m2 and
346.157 W/m2 was reached in the simulation. In other
words, there is a difference of 1.11%.

As seen in Figure 6, the Gamma density function allows
the generation of random values and, consequently,
the approach to the real values of the radiation. In all
the months, except July and August, a double modeling
is carried out because there are, notably, days of high
radiation, reflected by the cross Gamma, and days of low
solar resource, shown with the positive asymmetry curve.
The parameter values for each Gamma are found in the
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Figure 4 Normal distribution for the month of January

Figure 5 Gamma distribution for the month of January
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(a)

(b)

Figure 6 (a) Radiation measured in the month of January. (b)
Radiation simulation with two Gamma distributions with their

corresponding spline fit for the month of January

Rad matrix. Figure 7 shows the two Gamma probability
density functions applied to the month of January. It is
observed that the crossing of both functions is very close
to the value given by the spline (350 W/m2).

Figure 7 Gamma probability density functions applied to the
month of January

The reason for not using the Weibull distribution,
although it is very flexible in its form, is the drawback
of re-parameterizing the horizontal axis, being equally

necessary the crossing of two functions, but with different
”scales” in it.

For the characterization of the spline reference frame,
polynomial approaches were used. Figure 8 shows the
one achieved for the month of January, where ”X” is
NL and ”Y01” is radiation. The correlation coefficients
for the remaining months are found in [22]. It is easily
observed that the 4th order polynomial achieves a very
high adjustment with a R2 determination value of 0.999.
This function is used in the Rad matrix.

In another order of ideas, they were simulated 10
times each month to determine the Ipm; Table 2 shows
the values of this indicator. As shown in the table, no Ipm
exceeds the measured by 10%. April is the month where
the difference is greater with 6.6%, due to intermittences of
great duration, and in the months with low temperatures,
the simulator is closer to the measurements.

Figure 8 Polynomial adjustment of the spline of the month of
January

Matrix Rad

The matrix that was formed for the simulation of the
particular radiation of each month is presented in Table
3. The simulator automatically decides the section of
the matrix from which it will take the information when
requesting the generation of a certain month. As a
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Table 2 Radiation measurement approach index

Month Ipm (%) Month Ipm (%)
January 98.9 July 94.9
February 98.6 August 95.4
March 98.1 September 98.7
April 93.4 October 97.6
May 97.3 November 98.1
June 97.6 December 96.9

characteristic of the polynomials, a majority of negative
odd coefficients are observed in contrast to the pairs;
this means that, odd-order contributions compensate for
the increasing increases off even contributions. Since all
functions are of 4th and 5th order, at least 3 curvature
changes are possible, reflecting the radiation behavior.
The parameters α and β of the Gamma distributions are
highlighted in the matrix.

4.2 Photovoltaic generation

r’s function

With the intention of exposing the three typical behaviors,
it has been decided to present models of the functions
found with their statistical analyses. For this, Figure 9
shows the functions for four PVAs measured by AE1037
(March), AE1044 (June), AE2000 (February), and AE2010
(April), respectively.

The characterization of the functions r’s of the first
PVA shows, on the one hand, the best adjustments in
the months of March and December, with coefficients
R2 of 0.97 and 0.92 respectively; on the other hand, the
approaches with less quality in the prediction are the
months of May, July, and September. Relations in parks 2
and 3 show better correlations between 0.91 and 0.99. In
the three PVAs of lower power perfectly marked behaviors
of “U” prevail in the “cold” and “M” in the “hot” months.
The best correlations, in general, coincide in the fourth
PVA and at the same time, their characterizations are
more complex (4° and 5°), in the months where the
temperature is low they have perceived behaviors in the
form of “∩” and under this trend, the results are better,
averaging R2 determination coefficients of 0.935. In Figure
9d, although the shape does resemble the “m” shape, two
maxima are clearly differentiated, which represent greater
effectiveness in the conversion. It is visible that the degree
of function is higher in relation to smaller PVAs. The
latter system has greater diversity in the behaviors found,
however, it is still the high order functions that best fit.

It is emphasized that in each of the analyzes meaningful
relationships (α ≤ 0.05) are met and all the estimated
parameters satisfy the tests of statistical behavior causing

the regression.

Photovoltaic power simulation

Although the simulator has an interval where the user can
request different powers of the PVA, it was decided to use
the CEDER nominals to compare the simulation with its
consumption, the period requested was one year. Table
4 shows two of the most important characteristics: Fhr is
the factor of days where the radiation is greater than the
reference spline and Ppmed corresponds to the average
peak photovoltaic power of all PVAs.

The Table 3 shows three months that would not cover, on
average, themaximumpower of the CEDER (40 kW). For its
part, the summer months would supply this requirement
without any difficult, it would even be necessary to define
which solar generators would interrupt its connection
to the microgrid. The above is clearly, reflected in the
Fhr, with an exceptional case being December, reaching
8.3% of days above the expected. During the months
of June-August, Ppmed reached the nominal PV power
installed. As the simulation reflects, lower production is
frequently present in November.

5. Conclusions

The simulation with the crossing of two Gamma probability
functions, using little processing time, reflects the best
approximation of the monthly behavior of the measured
radiation. This certainty allows us to affirm that the found
powers PVA are reliable and, at the same time, with the
relationships obtained, are include factors such as the type
of solar technology, geometry of the solar assemblies,
wiring losses, dirt degradation, and aging. All of the above
has allowed us to establish, approximately, the capacity
of the backup system necessary in each month to satisfy
the electrical demand of the CEDER, at the same time, the
results obtained will be rawmaterial in the development of
energy management for the same microgrid.
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Table 3 Matrix Rad

β0 β1 β2 β3 β4 β5 nd hd rd mv sr er αa βa αb βb

5.4e3 -184. 1 2.2 -1.06 e-2 1.79e-5 0 31 750 346.1 25 89 204 4.6 42 5.8 28
4.0e3 -147.1 1.8 -9.08e-3 1.53e-5 0 28 975 445.2 60 84 210 5.6 48 5.7 45
1.8e3 -83.1 1.2 -6.17e-3 1.06e-5 0 31 1000 537.3 30 79 216 6.2 48 7 45
2.0e3 -89.0 1.3 -6.63e-3 1.14e-5 0 30 1280 654.4 30 69 226 5.7 47 7.5 45
3.1e3 -143.0 2.3 -1.52e-2 4.51e-5 -5.0e-8 31 1300 739.9 5 64 231 3.5 85 7.8 58
4.8e2 -40.2 0.8 -4.37e-3 7.65e-6 0 30 1325 838.6 5 62 236 3 95 8.5 65
2.6e3 -126.4 2.1 1.37e-2 3.93e-5 -4.1e-8 31 1380 861.4 0 64 231 3.2 110 0 0
3.7e3 -168.4 2.7 -1.75e-2 5.11e-5 -5. 6e-8 31 1350 834.2 0 69 226 3.3 100 0 0
5.4e3 -232.7 3.5 -2.32e-2 6.99e-5 -7.9e-8 30 1100 677.4 5 74 220 2.8 84 8.5 50
6.2e3 -240.6 3.3 -2.02e-2 5.57e-5 -5.6e-8 31 975 509.3 5 84 213 5 60 8.5 42
5.2e3 -177.7 2.1 -1.01e-2 1.71e-5 0 30 800 339.5 5 89 204 5.1 62 8.2 30
6.7e3 -224.1 2.6 -1.26e-2 2.14e-5 0 31 650 346.9 5 93 200 4.7 45 6.1 31

(a)
(b) (c)

(d)

Figure 9 r’s function. (a) Park 1 for the month of March, (b) Park 3 for the month of June, (c) E01 Arfrisol for the month of
February, (d) Turbine zone for the month of April
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