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ABSTRACT: Machine learning methods have been used to solve complicated practical
problems in different areas and are becoming increasingly popular today. The purpose
of this article is to evaluate the prediction of the energy production of three different
photovoltaic systems and the supervision of measurement sensors, through Machine
learning and data mining in response to the behavior of the climatic variables of the
place under study. On the other hand, it also includes the implementation of the resulting
models in the SCADA system through indicators, which will allow the operator to actively
manage the electricity grid. It also offers a strategy in simulation and prediction in
real-time of photovoltaic systems and measurement sensors in the concept of smart
grids.

RESUMEN: Los métodos de aprendizaje automático se han utilizado para resolver
problemas prácticos complicados en diferentes áreas y se están volviendo cada vez
más populares hoy en día. El propósito de este artículo es evaluar la predecición de
la producción de energía de tres sistemas fotovoltaicos diferentes y la supervision de
sensores de medición, por medio un aprendizaje automático y minería de datos en
respuesta al comportamiento de las variables climáticas del lugar en estudio. Por
otro lado, también incluye la implementación de los modelos resultantes en el sistema
SCADA pormedio de indicadores, que permitirá al operador gestionar activamente la red
eléctrica. Ademas ofrece una estrategia en la simulación y predicción en tiempo real de
sistemas fotovoltaicos y sensores de medición en el concepto de redes inteligentes.

1. Introduction

The integration of Renewable Energies (RE) in the electric
grid intensifies the complexity of electric gridmanagement
to maintain service continuity and the production

-consumption balance, due to the intermittent and
unpredictable nature [1, 2]. Therefore, it is necessary to
focus more on research and development in government
and other levels to explore RE resources and meet energy
needs globally [3].

The prediction in photovoltaic (PV) production is necessary
for the optimal integration of this technology in the existing
power systems and is an important factor for the operators
of the electric grid [2, 4] However, there are two main
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concerns about the implementation of PV systems in high
penetration rates, intermittent nature and uncertainty of
availability [5]. In addition, poorly functioning photovoltaic
panels can cause gradual or rapid falls in the amount of
energy generated. One study shows that it is possible
to predict the daily power curve of a photovoltaic panel
depending on the power curves of neighboring panels,
by applying neural networks which allows monitoring
the correct operation [6]. The precise forecast of PV
production can mitigate the effects of energy quality
that represent large quantities of distributed systems
through the active management of electric grid and is an
important feature that can help companies and operators
in energy management and economic dispatch planning
[2]. The power generated by a PV system at a given time is
proportional to the solar radiation received by the panel.
However, the radiation varies due to the seasons and for
several hours of the day, depending on the geographical
location and orientation of the panel [6]. Therefore, it is
important that the solar radiation and the corresponding
energy production be predicted, so that the operator
can acquire the appropriate measures and manage the
intermittency [7]. The methodology proposed in [4] is
based on the implementation of the sensor in the RES
operation and is considered big data technologies for the
processing and analysis of data for the prediction of PV
systems. In the article [8], authors presents a complete
review of the forecast of the generation of PV energy based
on machine learning and metaheuristic techniques, which
is represented in classifiers (i) Persistence method, (ii)
Statistical approaches, (iii) Machine learning approaches
and (iv) hybrid techniques. In addition, according to the
Classification of PV power forecasting based on time:
Very short-term (1 sec - <1h), Short-term (1h - 24h),
Medium-term (1 week-1 month) and Long-term (1 month-
1 year).

Advanced data analysis applications with functionality and
versatility allow managing energy system information to
analyze and extract information, for example: improving
energy quality, more efficient distribution, optimization,
machine learning, among others. Under this same
criterion, the slogans are corrected as new information is
known [9, 10]. However, to obtain an acceptable model it is
necessary to analyze a large amount of data for its training,
considered thus an inconvenience in new systems and
applications where this information is not yet available.
Especially the technology of “Big Data” (BD) applied in the
energy system that is currently in its initial stage and there
is a long way to go [9].

In [11] an intelligent method of fault diagnosis for PV
arrays based on an improved rotation forest algorithm
has been proposed. This consists of the selection and
classification of characteristics based on two rotation

forest (RoF) algorithm classifiers ensemble hybridized
with extreme learning machine (ELM) for fault diagnosis
of PV arrays. In addition, a PV system of 9.54 kWp has
proposed a new procedure for the detection and diagnosis
of PV system failures, based on a red probabilistic neuronal
classifier (PNN) [12].

There are several related studies of solar photovoltaic
systems, from the point of view ofmodeling and simulation,
however, this behavior in these systems is not always the
same, because the climatic conditions are different in each
part of the world. For this reason, it is necessary to carry
out an additional study in real measured data to observe
its behavior under normal operating conditions. In this
study, we present a prediction model of electric power
(kW) generated by three different photovoltaic systems:
polycrystalline, monocrystalline and one-axis tracking.
Using machine learning and data mining techniques
applied in SCADA databases (Supervision Control and Data
Acquisition) and climatic data obtained from the weather
station, whose main objective is to establish a model
using real-time indicators, which will allow establishing
a comparison between actual PV production compared
to the PV production of the model. Additionally, a focus
has been carried out on fault detection methods with the
obtained equations. The results were implemented in
the SCADA system which allows the operator to obtain a
better reference in themonitoring, control and detection of
failures on the production of photovoltaic energy. Finally,
this article is an extension of the document published
at the ICSC-CITIES 2019 conference, entitled “Machine
learning data applied to monitoring PV systems: A case
study*”[13]. Among the novelties of this article lie in the
application of the PVS1 PVS2 and PVS3 models for the
detection of faults in photovoltaic systems in a comparative
way between the photovoltaic generation measured in
real time and the value of the model estimated with the
calculation of meteorological variables. Establishing a
20% allowable range between the actual value and the
specific value to determine if a measurement failure or
error has occurred with alarm indicators.

2. Applications in energy
management

There are many challenges ahead in terms of the BD
Technology of smart grids, such as: data integration
and storage, real-time data processing technology, data
compression, great technology data visualization and
privacy and data security [9]. Figure 1 shows some current
applications of BD and “Machine learning” focused in
terms of RE management for smart cities [14]. Analytics
and big data can help with processing large amounts of
historical data, thus increasing the wind, solar and loading
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Nomenclature
PV S1 photovoltaic system 1
PV S2 photovoltaic system 2
PV S3 photovoltaic system 3

f(t)
approximate value of the
temperature

g(t) solar radiation limit values

PV S1Cloudless(t)
prediction clear days’ power
of the photovoltaic system 1

PV S2Cloudless(t)
prediction clear days’ power
of the
photovoltaic system 2

PV S3Cloudless(t)
prediction clear days’ power
of the
photovoltaic system 3

PPV S1(rad, temp)
prediction of the power of the
photovoltaic system 1

PPV S2(rad, temp)
prediction of the power of the
photovoltaic system 2

PPV S3(rad, temp)
prediction of the power of the
photovoltaic system 3

PPV S1(real−time)
power of photovoltaic system 1
in real-time

PPV S2(real−time)
power of photovoltaic system 2
in real-time

PPV S3(real−time)
power of photovoltaic system 3
in real-time

a0,w
coefficient of the equations of
the models Fourier 4th

a1,a2,a3,a4
coefficient of the equations of
the models Fourier 4th and Sum
of Sine 4th

b1,b2,b3,b4
coefficient of the equations of
the models Fourier 4th and Sum
of Sine 4th

c1,c2,c3,c4
coefficient of the equations of
the models Sum of Sine 4th

SSE sum of squares due to error
RMSE root of the mean square error
temp ambient temperature
rad solar radiation
t time

forecast accuracy [10]. All these topics can be analyzed
from a database, through machine learning techniques
and their derivatives. Therefore, progress in different
energy management applications with ER sources and
distributed storage systems in smart grids is under
development.

Some techniques of Artificial Intelligence (AI) can be
applied as an effective method to achieve the future
objectives of renewable energy [3]. AI is used in almost all
RE types (wind, solar, geothermal, hydroelectric, oceanic

and hydrogen) for design, optimization, control, estimation,
management, distribution and economics. The present
and future in RE consists mainly of the development of
innovative technology for optimal production from the
available natural resources, in environmental awareness,
and the best management and distribution system, as
mentioned in previous studies. Like other domains (health,
education, business, technology, industry, security, etc.),
AI could help achieve the future objectives of the RE and
within it also shares its study of machine learning [14].

Machine learning methods have been used to solve
complicated practical problems in different areas and are
becoming increasingly popular today [15]. For example,
the energy system presents some important challenges
for microgrid and power management of smart grids,
advanced technologies that use sensors and actuators,
IT&C, big data, complex analytics, etc. [10, 16]. A study
using the data mining algorithm “Decision Tree” with a
black-box model based on Random Forest proposes the
detection and classification of microgrid faults [9].

3. Case study

These case studies were developed in the energy
laboratory of the Universidad de Cuenca. Figure 2, shows
the location of the energy laboratory, located in the area
GTM-5 with geographic coordinates (-2.8919, -79.0385).
The laboratory is made up of a 35kW photovoltaic system
with a connection to the electricity grid and a weather
station that records data [17].

An example of data analysis and tools applied to the
modeling and simulation of a photovoltaic system of
this study is presented in [18], Its structure consists
of 4 stages, data acquisition, modeling and simulation,
validation and finally its applications. This study analyzes
its application for the monitoring and detection of PV
system failures through the implementation of equations
resulting from an analysis of databases in the SCADA
system, considering the databases of the PV system and
the weather station. In Figure 3, the structure of the
example of a machine learning application in a mentioned
PV system is described. For the study, a database
generated by the data logger of the SCADA system is
necessary.

3.1 PV System

The Photovoltaic System (PVS) consists of 136 panels of
250Wp of the Atersa brand, 60 of the monocrystalline type
(15kW), 60 of the polycrystalline type (15kW) and 16 of the
polycrystalline type with tracking on an axis (5kW). Each
system is connected to a separate DC/AC inverter with the
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Figure 1 Machine learning applications in energy systems

 

 

Figure 2 Energy laboratory for the case study

 

 

Figure 3 Example of machine learning application in a PV system

public grid (See Figure 2) [17]. Table 1 summarizes the
characteristics of these systems.

3.2Weather Station

A weather station located in the study area and at the same
level of the photovoltaic installation (See Figure 2), obtains
the climatic information of the zone corresponding to
the variables of solar radiation (W/m2) [measuring range,
precision][1-1,250W/m2,± 5%], ambient temperature (°C)
[-20° to 70°C, ± 0.6°C], relative humidity (%) [20% to
100%, ± 3%], precipitation (cm) [0.01”(0.25cm), ± 2%],
wind speed (m/h) [0-175 m/h, ±5%], wind direction (°) [2°
increments,± 7°] and wind gust (m/h) [0-175 m/h,± 5%].

For the study, these variables were assigned a sampling
rate of 1 minute.

3.3 Database

The database is created with the variables mentioned
above and stored in the server’s datalogger through
the Datalogging and Supervisory Control Module and the
Database connectivity tool of LabVIEW 2015 software with
the communication interface through NI OPC servers. In
this way, the value of the variables is acquired and their
conversion from analog to digital signals for later viewing
and storage. The database for the study corresponds to the
one-year record.
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Table 1 Characteristics of photovoltaic systems

Item Description Panels (series-parallel) Type Max. Power
1st PVS1 Photovoltaic System 1 60 (15× 4) Polycrystalline 15 kW
2nd PVS2 Photovoltaic System 2 60 (15× 4) Monocrystalline 15 kW

3th PVS3 Photovoltaic System 3 16 (16× 1)
Polycrystalline
(tracking)

5 kW

3.4 Monitoring

The main objective of this research focuses on this point.
It proposes an application model in the monitoring of this
photovoltaic installation. It also analyzes the information
of the database and its implementation of the models in
the SCADA system, as a support or help in case of failures
in the PV electrical system or measurement errors in
the sensors as it exceeds a preset range, by means of
indicators related to the variables of the PV system and the
real-time weather station. In this way, it allows the electric
grid operator to improve the safety and reliability of the PV
system and its integration with the grid.

3.5 SCADA System

The SCADA allows the control of the PV system in activation
and disconnection of the DC/AC inverters, from the electric
grid, it also allows the supervision of the electrical
variables of current, voltage and power in DC, current,
voltage, power, (active, reactive and apparent) in AC of
each PV system. Data acquisition is performed by means
of measuring sensors and network analyzers, connected
by means of a PLC through Modbus communication that
allow reading/writing and storing the information in the
local server [17].

4. Machine learning

The advancement of computing in recent years and the
reduction in the cost of hardware allows us to develop
some new methods of extracting information. Machine
learning is a branch of artificial intelligence and deals
with the construction and study of systems that can learn
from data sets by giving computers the ability to learn
without being explicitly programmed [1]. Machine learning
identifies knowledge and patterns in data, which is
currently considered one of the most useful techniques for
extracting information [9]. Machine learning algorithms
use computational methods to “learn” information directly
from the data without relying on a predetermined equation
as a model [19]. In general, there are nine most used
machine learning algorithms, “including k-means, Linear
Support Vector Machines (LSVM), Logistic Regression (LR),
Locally Weighted Linear Regression (LWLR), Gaussian
Discriminant Analysis (GDA), Back-propagation Neural

Network (BPNN), Expectation Maximization (EM), Naive
Bayes (NB) and Value-Added Tax (VAT). Each of the
algorithms has its own characteristics and can be used
under different scenarios” [9]. Several methodologies
based on artificial intelligence such as machine learning,
Genetic Algorithm (GA) and Neural Networks (NN)
have been proposed and applied for the modeling and
forecasting of solar irradiance [15]. Although the main
drawback of neural networks is the long training time and
many parameters that require the intervention of the user
[5].

It is also important to consider that a greater amount of
data and relevant information (data mining) with respect
to a better study topic will improve the possibilities of
finding an appropriate application model. Considering
the objectives of the application of the case study, data
analysis is projected through supervised learning, which
is, creating a predictive model from known input and
response data. In this type of learning two categories of
algorithms are used: classification destined to databases
that include qualitative values (words) and regression
for quantitative (numerical) databases. Based on the
numerical characteristics of the databases obtained
from the SCADA system, it will be used in the regression
category for the analysis.

Figure 4 shows the workflow to establish an ideal
model defined under two criteria in training and application
phases. In the training phase to effectively apply a learning
technique to a performance function, it must be subdivided
into 4 stages: initially enter the database, then perform
a preprocessing (filters, statistical summary, cluster
analysis), then define the category of supervised learning
(classification or regression) and finally the model is
obtained. In the application phase, the new database is
entered, the preprocessing is performed again, the model
obtained in the training phase is applied to identify the
important characteristics and architectural parameters
of each model, to define the predictive model. Finally, the
performance of the model is evaluated [2, 19].

4.1 Training phase (75% of data)

In the application of a predictive model for the estimation
of solar energy, the databases of both the PV system and
weather station will be studied under the same sampling
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Figure 4 Ideal workflow of Machine Learning [19]

 

 

(a) PSV1
 

 

(b) PSV2
 

 

(c) PSV3

Figure 5 Power generated during one month (July 2018)

rate corresponding to one year, which allows establishing
a correct relation of variables of equitable way. Before
applying a learning algorithm to the model, it is necessary
to perform a preprocessing, where the database must be
analyzed, for example in SCADA systems it is very frequent
the loss of information from a record, either in errors
of measurements of the sensors or in the discretization
processing of analog reading variables. For this reason,
it is necessary to be familiar with all the variables in the
database, in order to verify some type of irregularities.
An effective method in the case that the database has
lost values, is to replace its value by the average of the
previous and subsequent data in the registry.

The ideal methodology for developing optimal models
of machine learning for predictions of PV energy should
include a training phase (one-year), a validation phase

(per month) and a test phase (per month), as shown by a
similar study in [2]. Figure 5 shows the production of PV
power (kW) defined as a variable to be predicted under the
supervised learning criterion. The records correspond to
a one-month test database (43,200× 3 data) for the PVS1,
PVS2 and PVS3 systems. The maximum generation limit
for PVS1, PVS2 is 15kW and for PVS3 is 5kW. This power
is limited by the inverters connected to the power grid.
In this way it is possible to observe the differences in the
electrical generation by the three PV systems. The PVS3
(5kW) differs from other systems, due to its structure of
solar tracking on an axis, which allows obtaining a better
use of solar energy. An average percentage increase of 15
% is estimated for the same installed power capacity with
respect to the fixed system in a study conducted during
the test phase for the month of July 2018. In general, solar
sensors provide information about the relative position of
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the sun. This is very useful information for the tracking
system that has a better use with approximately 30%more
than a fixed system according to the size of the PV system
[10].

The prediction of PV generation depends largely on
the study of the behavior of the system, because it plays an
important role in the operational management of power
grids [16]. The data of the weather station as a function of
the variable to predict Power PVS1, are shown in Figure 6.
It is possible to observe its correlation with the variables
of solar radiation, temperature, relative humidity, wind
speed, wind gust and precipitation respectively. A possible
linear regression model can be clearly observed with
respect to the variable of solar radiation. Another
point of interest is the inverse relationship between the
parameters of temperature and relative humidity. On
the other hand, the variables of wind speed, wind gust,
wind direction and rainfall do not show a pattern of
interest in the model. This analysis can also be observed
when constructing the correlation matrix between the
aforementioned variables, as established in a preliminary
study in [18].
Figure 7 presents a statistical summary of the
meteorological variables of solar radiation and
temperature, as well as the variables to predict PVS1,
PVS2 and PVS3, according to what is established in
the data preprocessing (See Figure 6), the maximum,
minimum, average and standard deviation values are
indicated. It should be noted that these values were
calculated considering 24 hours a day, so that the zero
values generated during the night have been suppressed
in the graphs since there is no radiation and consequently
no power.

In the database corresponding to the weather station,
solar radiation and temperature are defined as the most
influential variables on the photovoltaic prediction
models, as detailed in a preliminary study [18]. Figure 8a
shows the behavior of the temperature of the maximum
and minimum values during the 24 hours of the day
corresponding to the month of August 2018 (test phase).
An average of variations between 8 - 22 °C can be observed
and it is possible to define a model of the temperature by
means of the “sum of sine” function defined in Equation 1
[18]:

f (t) = 15.87 · sin (0.05 · t+ 0.686)

+ 2.664 · sin (0.4139 · t+ 2.199) (1)

Where f (t) represents the approximate value of the
temperature in the study area and “t” corresponds to the
record variable (hour-minutes). In addition, it is possible
to observe that the temperature decreases in the night
hours and increases its maximum values with the solar
radiation data during the midday hours.

A machine-learning study for the prediction of the
solar radiation of the PV system, shows that it is possible
to obtain a model with great approximation, using the
forecast parameters the variables of temperature, relative
humidity, wind speed and irradiance [15]. Using a model,
it has been established that there is a large percentage
of data below the curve of the solar radiation limit
values g (t), according to Equation 2, where “t” indicates
the number of records (value between 0 − 290 for the
example), obtained through machine learning in Matlab:

g(t) = 477.5 · sin(0.0017 · t+ 1.345)

+ 276.75 · sin(0.0498 · t+ 0.3721)+

723.25 · sin(0.0249 · t− 2.16) (2)

Figure 8a and Figure 8b, show the results of the
application of Equations 1 and 2, together with the
values of temperature and solar radiation respectively,
corresponding to the month of August 2018 (test phase). It
should be noted that the same procedure performed for
the rest of the months of the year.

Although, in this study it is necessary to consider an
important factor of cloudiness, since according to the
State Agency of Metrology (SAMET) the areas of maximum
cloudiness are in the equatorial zone and between 60
and 70º. A single cloud that passes can bring the energy
production of a solar farm from the total production to the
minimum and return to the whole in a matter of minutes
or even seconds [7]. This information can be seen in
Figure 9a, where there is a large amount of solar radiation
data that drastically change during daylight hours. This
effect directly affects the production of energy in PV
systems. Figure 9b shows the power generated by the
three photovoltaic systems under study, under practically
zero cloud conditions. Mitigation measures for large drops
in solar radiation, such as response to demand, storage
and scheduling within an hour can only be maximized with
accurate and reliable forecasting [7].

Figure 10 shows a comparison between the PV production
in two completely different scenarios, considering the PV
production on a normal day, compared to a completely
cloudless day. A symmetric distribution can be observed
at 12:00 a.m. for the PVS1 and PVS2 systems, with an
amplitude difference of 1.5kW. On the other hand, the
PVS3 represents an increase in the generation during the
afternoon hours (13:00pm - 18:00pm). These results of
symmetric data are due to the fact that the case of studies
is close to the equator, where its maximum production
point is around noon 12:00 pm for fixed PV systems.

In Table 2, the results of the application of some models
are described in terms of cloudless conditions on the
power curve of the PVS1, PVS2 and PVS3 systems, defined
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(a) Solar radiation
 

 

(b) Temperature

 

 

(c) Relative humidity

 

 

(d)Wind speed
 

 

(e)Wind gust
 

 

(f)Wind direction

 

 

(g) Rainfall
 

 

(h) Temperature vs Relative humidity

Figure 6 Power PVS1 according to the variables of the weather station

Table 2 Application of models for cloudiness PVS1, PVS2 and PVS3 systems

Fourier 4th Gaussian 4th Sum of Sine 4th
Description Goodness of fit: SSE RMSE: Goodness of fit: SSE RMSE: Goodness of fit: SSE RMSE:
PVS1 98.24 0.262 81.21 0.239 96.89 0.261
PVS2 109.10 0.276 76.28 0.231 113.90 0.283
PVS3 83.04 0.241 58.93 0.203 97.28 0.261

by means of the adjustment parameters of the sum of
squares due to error SSE and the root of the mean square
error RMSE. The RMSE parameter for prediction improves
considerably when more parameters are used in the
machine learning process [4]. This process was carried
out using the tool Curve Fitting Toolbox™ software of
MATLAB, on the models that best described the curvature
based on the functions of “Fourier”, “Gaussian” and “Sum
of Sine”, all of the 4th order and considering as variable
only the time (hours-minutes).

Next, according to the results in Table 2, the equations
of the prediction models of completely cleared days
corresponding to the PVS1, PVS2 and PVS3 systems
according to Equations 3, 4 and 5, respectively, are
presented.
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(a) Solar radiation
 

 

(b) Temperature

 

 

(c) PVS1
 

 

(d) PVS2
 

 

(e) PVS3

Figure 7 Histograms of the meteorological variables

 

 

(a)
 

 

(b)

Figure 8 (a) Temperature and (b) Solar radiation, during one-month weather station (Test phase -August 2018)

PVS1 for cloudiness (General model Fourier 4th):

PV S1Cloudless(t) = a0 + a1 · cos(t · w) + b1 · sin(t · w)
+ a2 · cos(2 · t · w) + b2 · sin(2 · t · w)
+ a3 · cos(3 · t · w) + b3 · sin(3 · t · w)

+ a4 · cos(4 · t · w) + b4 · sin(4 · t · w) (3)

PVS2 for cloudiness (General model Fourier 4th):

PV S2Cloudless(t) = a0 + a1 · cos(t · w) + b1 · sin(t · w)
+ a2 · cos(2 · t · w) + b2 · sin(2 · t · w)
+ a3 · cos(3 · t · w) + b3 · sin(3 · t · w)

+ a4 · cos(4 · t · w) + b4 · sin(4 · t · w) (4)
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(a)
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Figure 9 (a) Impact of cloudiness on radiation, (b) Photovoltaic power PVS1, PVS2 and PVS3 (clear day)

 

 

(a) PVS1

 

 

(b) PVS2
 

 

(c) PVS3

Figure 10 Comparison in the PV generation against an ordinary and clear day

PVS3 for cloudiness (General model Sin 4th):

PV S3Cloudless(t) = a1·sin(b1·t+c1)+a2·sin(b2·t+c2)

+ a3 · sin(b3 · t+ c3) + a4 · sin(b4 · t+ c4) (5)

Next, the function models for cloudiness are described
and the values of the coefficients are detailed in Table 3.

A comparison between the photovoltaic generation of
the PVS1, PVS2 and PVS3 systems of a completely clear
day vs the result of the application of the Equations 3, 4, 5
respectively are presented in Figure 11. This shows that
for days of low cloudiness, it is possible to establish a
model based on the variable “time” (hours of the day) only
with an excellent approximation as a special case.

4.2 Validation phase (25% of data)

Now, considering the effects of cloudiness in this study, it
can be seen that it is not possible to define a model only
with the variable “time”, it is necessary to find patterns

with respect to the meteorological variables described
above. For this reason, linear regression models are
defined below using temperature and solar radiation as
input variables of the functions [18].

PVS1 Polycrystalline equation (83.27%)

PPV S1 (rad, temp) = 0.0088∗rad+0.0999∗temp−1.1393
(6)

When applying the linear regression model with the
variables of solar radiation and temperature, a correlation
coefficient of 0.8327 was established, which demonstrates
an acceptable value in the model. In Equation 6, the power
generated from the PVS1 is presented as a function of
the variables of solar radiation (W/m2) and temperature
(°C). Figure 12a shows the approximation of the real value
and the prediction result during the training phase, where
the values outside the line of the model represent in
large part the effects caused by the crossing of clouds in
the area. Subsequently, the results are presented in the
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Table 3 Coefficient of the equations of the models

PVS1 (Fourier 4th) PVS2 (Fourier 4th) PVS3 (Sum of Sine 4th)
Coefficients (with 95% confidence
bounds):

Coefficients (with 95% confidence
bounds):

Coefficients (with 95% confidence
bounds):

a0 = 4.27 (4.22, 4.31) 4.682 (4.634, 4.73) - -
a1 = -5.76 (-5.85, -5.66) -6.396 (-6.489, -6.304) 3.227 (3.195, 3.26)
a2 = 1.256 (1.071, 1.44) 1.443 (1.246, 1.641) 0.3615 (0.339, 0.383)
a3 = 0.0464 (0.001, 0.091) 0.1421 (0.0976, 0.1865) 1.297 (1.274, 1.32)
a4 = 0.255 (0.177, 0.333) 0.2201 (0.1318, 0.3085) 0.307 (0.286, 0.328)
b1 = -3.192 (-3.42, -2.96) -3.348 (-3.595, -3.101) 0.166 (0.164, 0.167)
b2 = 2.052 (2.004, 2.099) 2.21 (2.153, 2.267) 0.8523 (0.838, 0.867)
b3 = 0.3879 (0.334, 0.442) 0.4118 (0.3454, 0.4781) 0.4889 (0.483, 0.495)
b4 = -0.5591 (-0.62, -0.502) -0.6314 (-0.685, -0.577) 1.12 (1.1, 1.14)
c1 = - - - - -0.6329 (-0.65, -0.611)
c2 = - - - - -5.416 (-5.58, -5.244)
c3 = - - - - -5.124 (-5.21, -5.039)
c4 = - - - - -3.941 (-4.187, -3.69)
w = 0.2971 (0.294, 0.3002) 0.2964 (0.2935, 0.2994) - -

 

 

(a) PVS1
 

 

(b) PVS2
 

 

(c) PVS3

Figure 11 Results of the application of the models clear sky

 

 

(a)
 

 

(b)

Figure 12 (a) Regression model applied to PVS1, (b) Phase validation PVS1
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validation phase (See Figure 12b). It is possible to observe
a good approximation to the real values. Under this same
analysis, a criterion will be developed for PVS2 and PVS3
in Equations 7 and 8 respectively below:

PVS2 Monocrystalline equation (82.36%)

PPV S2 (rad, temp) = 0.0096∗rad+0.1162∗temp−1.3018
(7)

Figures 13a and 13b show the application of the regression
model to the PVS2 and the validation of the PVS2,
respectively.

 

 

(a)

 

 

(b)

Figure 13 (a) Regression model applied to PVS2, (b) Phase
validation PVS2

PVS3 Tracking on an axis equation (85.76%)

PPV S3 (rad, temp) = 0.0037∗rad+0.0225∗temp−0.1745
(8)

Similarly, the application of the regression model to the
PVS3 and the validation of the PVS3 are presented in
Figures 14a and 14b, respectively.

 

 

(a)

 

 

(b)

Figure 14 (a) Regression model applied to PVS3, (b) Phase
validation PVS3

5. Application to SCADA

The forecast of the power output of the PV systems is
necessary for the proper functioning of the electric grid
or the optimal management of the energy flows that
occur in the PV system [1]. Therefore, it is very important
to integrate a monitoring system in real-time, which
guarantees the safety in operation and the control of
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Figure 15 Algorithm for monitoring and fault detection with alarm indicators

the electrical systems supervised by the SCADA. Under
this concept, the linear regression models developed
in this study will be integrated. It should be noted that
in order to develop a monitoring system in real-time,
it is necessary to study the corresponding database.
Carrying out all the steps to approximate the real value

with the prediction, once the model is formulated under
all possible considerations and cases, the model can be
applied. A power utility operator must ensure a precise
balance between electricity production and consumption
at any time. This is often very difficult to maintain
with a conventional and controllable energy production
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system, mainly in small or non-interconnected systems
[1]. Therefore, it is necessary to cover the term of
real-time, although to be able to apply a predictive model
in real-time, a previous analysis of databases is required.
Later its application is possible including the equations of
the resulting models in the SCADA system, entering the
measurements in real-time, that is, the SCADA carries
out the measurement, discretization and calculation in the
corresponding formula of the model.

Figure 15 shows the implementation of the study
algorithm, with the integration of Equations 1 to 8,
corresponding to the temperature prediction. f (t) and the
limits of solar radiation g (t). Photovoltaic production on
cloudless days: PV S1Cloudless (t), PV S2Cloudless (t),
and PV S3Cloudless (t).

Photovoltaic production on ordinary days:
PPV S1 (rad, temp), PPV S2 (rad, temp), and
PPV S3 (rad, temp). The input parameters corresponding
to time t solar radiation rad, temperature temp, and
the values of the powers PVS1, PVS2, PVS3. These
parameters are acquired in real-time from the SCADA
system. The values are then processed using the models
of the equations and return the calculated prediction
value. When exceeding the established values, the alarms
corresponding to each case are activated, as indicated in
the almorithm below.

The evaluation of the models will be obtained by means
of a percentage indicator “meter” which is assigned to
compare between the real value of power and the value of
the prediction, in such a way that, if its value is lower than
20% (assigned value according to the results case study)
implies that there is a difference of 20% in the photovoltaic
production of the real value and the prediction, which must
be considered by the operator of the electrical system.
Under these circumstances, an alarm indicator has also
been implemented, in the case of similar situations. On
the other hand, the temperature model f (t), it can be
used to verify the measurement status of that variable.
Similarly, the solar radiation limit model g (t) allows
checking the status of the measurement sensor, that is,
verifying that the measurement value does not exceed
the value of the resulting model at the set time. For
example, in Figure 16 shows the monitoring algorithm
for temperature measurement with the maximum and
minimum values established. In this case, all values are
within the established range, whereby the state of alarm
1a is low.

Similarly, the solar radiation limit model g (t), it allows
checking the status of the measurement sensor, that is,
verifying that the measurement value does not exceed
the value of the resulting model at the set time. If the

measured values exceed the set values, it returns a state
of alarm 1b at a high value. Otherwise, all values within
the model equation return an alarm 1b at low value (See
Figure 17).

5.1 Method for fault detection

A method of detection and diagnosis of failures proposed
by Garoudja [12] consists of four main stages: (i) extraction
of parameters from the PV module, (ii) validation of the
model, (iii) elaboration of relevant data sets and finally (iv)
fault detection and diagnosis.

In this study, the panel configuration corresponds to
15x4 (parallel series) of the PVS1 and PVS2 systems. So if
a fault occurs in one of the branches, the fuse protection
acts and the total power value of the PVS1 system will be
reflected at the measurement point (See Figure 18).
In this way, when analyzing the photovoltaic production
of two normal days (without failure, with failure). It is
possible to observe the behavior of both systems compared
to the prediction model (see Figure 19). For the first case,
the values are within the established limit of 20%. For
example: the point measurement (186, 7.18) and (187,
5.57) would indicate a variation of 7.18-5.57 = 1.61kW that
corresponds to the 10.73% variation and for the second
case exceeds the limit by 12.85-6.96 = 5.89kW (39.27%).

When the time of the branch failure in the PVS1 system is
specifically analyzed, as shown in Figure 20 of record 1,140
approximately. The reference of PV production is higher
by a large percentage and during a wide range of records.
Therefore, alarm 2a is activated at high value, otherwise if
the power value is within the percentage of 20% alarm 2a
returns a low value.

The application of the equations has been implemented
in the SCADA system (See Figure 21). By means of a
modification in the LabVIEW Sotfware, the calculation in
real-time has been included that allows the operator to
obtain a better reference of the PV production and the
detection of failures for optimal operation.

6. Results and discussion

The application of the equations obtained in this study
have allowed obtaining reference values of photovoltaic
power of PVS1, PVS2 and PVS3. Thus, they can vary
as a system for monitoring and detecting faults when
comparing the photovoltaic power generated in real time
with the values calculated based on the meteorological
variables of radiation and temperature.

The equations of the temperature measurement model
and radiation measurement limit also allow us to
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Figure 16 Monitoring algorithm for temperature measurement

 

 

Figure 17 Monitoring algorithm for measuring solar radiation

 

 

Figure 18 Fault simulation in a branch of the PVS1 system

monitor the behavior of the sensors and rule out possible
measurement errors as a function of time.

A 75% training of random data has allowed us to approach
the winter and summer months within the most adaptable
values under those considerations.

In comparison of the PVS1 and PVS2 systems, the
coefficients of the equations have presented some
similarity, due to the same installed power value of 15
kW. Although a small variation in the parameter values
has been determined, due to the characteristics of the
monocrystalline and polycrystalline cell type. In this way,
through data training they have been able to adjust to the
best conditions.
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Figure 19 Algorithm application for PVS1 system (two days of registration)

 

 

Figure 20 Algorithm application before and after a failure (12 hours of registration)

 

 

Figure 21 Example of machine learning application in SCADA
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Unlike the PVS3 system considered its monitoring
characteristic and low value of installed power 5kW, the
parameter values have varied significantly. This is the
main reason why the parameters have been adjusted
differently.

7. Conclusions

As industrial development increases, automation and
processes generate more data and information and
require analysis, interpretation and communication.
Therefore, this study has demonstrated the application of
machine learning techniques in the analysis of real data
and the development of predictive models.

As a result of the study, it has been shown that it
is possible to predict the photovoltaic power of the
three systems studied by means of regression models
established with an excellent approximation.

The importance of monitoring the variables by means
of the measurement sensors has allowed us to obtain
adequate control of the photovoltaic system.

The application of a fault detection strategy has been
demonstrated through predictive model techniques in PV
systems, iIn such a way that it allows us to monitor PV
systems by comparing the PV power generated in real time
with the calculated values based on the meteorological
variables of radiation and temperature.

Correlation coefficients of 83.27%, 82.36% and 85.76%
have been obtained in the model results for the PVS1,
PVS2 and PVS3 systems, respectively. With which a range
of 20% has been established that allows the comparison
of the calculation values with the values measured in real
time.

The equations of the temperature measurement model
and radiation measurement limit also allow us to
monitor the behavior of the sensors and rule out possible
measurement errors as a function of time. In this way,
an additional means of monitoring and control of the
equations using these parameters is obtained.

The implementation of the prediction models of the
PV systems in the SCADA allows the monitoring of the
electrical system operator in an optimal way.

Finally, the importance of the application of machine
learning techniques and its wide variety in development
in the field of energy management and its importance in
smart grids was demonstrated.
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