A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO$_2$

Un estudio cinético de la oxo-transferencia fotoinducida usando un complejo de Mo anclado a TiO$_2$

Julián E. Sánchez-Velandia, Edgar A. Páez-Mozo, Fernando Martínez-Ortega

1Centro de Investigación en Catálisis, Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander Km 2 vía El refugio. C. P. 681011. Piedecuesta, Colombia.

ABSTRACT: Kinetic study of the photo-assisted oxygen atom transfer reaction (OAT) using a dioxo-Mo complex anchored on TiO$_2$, stimulated by light, was performed at ambient conditions using triphenylphosphine (PPh$_3$) as a model molecule. The kinetic of the OAT reaction was studied with three catalytic systems: 4,4’-dicarboxylate-2,2’-bipyridine-dioxochloromolybdenum (MoO$_2$L/TiO$_2$), H$_2$MoO$_4$ (H$_2$MoO$_4$/TiO$_2$) and molybdenum oxide (MoO$_3$/ TiO$_2$) anchored to TiO$_2$. The MoO$_2$L/TiO$_2$ gives conversion higher than 90% and selectivity (to phosphine oxide) close to 100%. MoO$_3$/TiO$_2$ did not allow the oxo-transference, suggesting the importance of the bipyridine ligand as an electronic connector between MoO$_2$L unit and TiO$_2$. With the MoO$_2$L/TiO$_2$ system was observed that when the photonic flux increases, the quantum yield, and the OAT reaction rate increases.

RESUMEN: El estudio cinético de la reacción de transferencia de átomos de oxígeno (TAO) foto asistida se estudió usando un complejo de dioxo-Mo anclado al TiO$_2$, estimulado por la luz en condiciones ambientales usando trifenilfosfina como molécula modelo. La cinética de la reacción TAO fue estudiada con tres sistemas catalíticos anclados al TiO$_2$: 4,4’-dicarboxilato-2,2’-bipiridina-dioxochloromolibdeno (MoO$_2$L/TiO$_2$), H$_2$MoO$_4$ (H$_2$MoO$_4$/TiO$_2$) y óxido de molibdeno (MoO$_3$/ TiO$_2$). El catalizador MoO$_2$L/TiO$_2$ permitió la conversión más alta del 90% y una selectividad (al óxido de fosfina) cercana al 100%. MoO$_3$/TiO$_2$ no permitió la oxo-transferencia sugiriendo la importancia del ligando biperídinico como una conexión electrónica entre la unidad MoO$_2$L y el TiO$_2$. Adicionalmente, se observó que cuando se incrementa el flujo fotónico, el rendimiento cuántico y la concentración inicial de la PPh$_3$, aumenta la velocidad de reacción de la TAO para el sistema MoO$_2$L/TiO$_2$.

1. Introduction

The direct use of molecular oxygen as an oxidant for the selective oxidation of organic compounds requires activation of O$_2$ by transforming the triplet spin state in order to allow the reaction with organic substances [1, 2]. The traditional activation of oxygen is done by thermal action at least 400K, with probability of explosion [3]. An alternative activation procedure is using a pathway of lower activation energy, through the formation of a metal-dioxygen complex [M (paramagnetic)-O$_2$] (doublet state): $[M^{n+}O_2]$ (O = O M^{n+}) (O$_2$). (doublet state) which can selectively react with organic molecules (R-H), following a similar mechanism to autoxidation. Coordination of O$_2$ to a complex with metal oxo (M=O) unit [4–6] permits the transfer of oxygen atom to organic molecules under mild reaction conditions but requires an oxygen donor agent to regenerate the metaloxo center [7]. The (Mon = O$_2$L) (L is bipyridine, thiocyanate) has
been used for Oxygen Atom transfer (OAT) [8, 9]. The OAT process begins by the nucleophilic attack of the compound \(X \) on an empty \(\text{Mo}=\text{O} \) \(\pi^* \) orbital, forming \(\text{XO} \) and \(\text{Mo}^{\text{IV}} \) species [10]. The initial reaction depends on the oxo-donor center nucleophilicity or electrophilicity. Generally, the re-oxidation of \(\text{Mo}^{\text{IV}} \) is based on an oxygen donor such as DMSO, which is used as a solvent in the reaction, but it can generate unwanted byproducts [11].

The anchoring of dioxomolybdenum complexes on \(\text{TiO}_2 \): \([\text{Mo}^{\text{VI}}\text{O}_2\text{L/TiO}_2]\) favors the OAT to the organic substance under UV radiation and allows to use molecular oxygen as oxidant agent [12]. Our experience showed that the re-oxidation of the reduced metal center \([\text{Mo}^{\text{IV}}\text{O}\text{L/TiO}_2]\) with \(\text{O}_2 \) and without light is able to continue the catalytic cycle [13].

The OAT kinetics has been studied with several dioxo-molybdenum complexes in solution [14], using triphenylphosphine (PPPh\(_3\)) as the oxygen acceptor. However, there are no studies on the kinetics of a heterogeneous system like \([\text{Mo}^{\text{V}}\text{O}\text{L/TiO}_2]\) that works with light and molecular oxygen.

In this work, the effect of kinetic parameters (initial concentration of PPh\(_3\), photonic flux, and the quantum yield) of the photoinduced OAT were studied to PPh\(_3\) with 4,4'-dicarboxylate-2,2'-bipyridine-dioxodichloromolybdenum, molybdic acid and molybdenum oxide, anchored to \(\text{TiO}_2 \) with molecular oxygen as the oxidant agent.

2. Experimental methodology

2.1 Catalyst synthesis

4,4'-dicarboxylate-2,2'-bipyridine-dioxo-dichloro molybdenum anchored to \(\text{TiO}_2 \) (BipyMoO\(_2\)/TiO\(_2\))

0.120 g of 4,4'-dicarboxylic acid (Aldrich, 70% wt) was dispersed on 40 mL of benzene and 0.102 g of 1,3 Bis-trimethyl silil urea (Aldrich, 95% wt) and was stirred for 4h at room temperature. After, the solid was filtered and the excess of solvent was evaporated, a white solid called Bipy-Sil (A) was obtained. 0.5 mmol of A was dissolved on 40 mL of benzene and in a solution of 0.5 mmol of \(\text{MoO}_2\text{Cl}_2 \) in 30 mL of the same solvent, stirring for 4h at room temperature until the formation of a solid (B). Finally, 0.294 g of B in 30 mL of benzene was added to 1 g of dehydrated \(\text{TiO}_2 \) [Degussa P-25] at constant stirring (400 rpm) for 12h. The resultant solid (BipyMoO\(_2\)/TiO\(_2\), Figure 1a) was filtered and washed with benzene. As benzene is a very toxic solvent, other green solvents could be used for this application (Toluene, heptane or DMF that are less toxic and have been used for silylation of secondary amines) [15].

Molybdic acid anchored to \(\text{TiO}_2 \) (H\(_2\)MoO\(_4\)/TiO\(_2\))

0.294 g of molybdic acid (Aldrich) in 30 mL of benzene was added to 1.0 g of dehydrated \(\text{TiO}_2 \) (Degussa P-25) at constant stirring (400 rpm) for 12h. Finally, the solid was washed with benzene (Figure 1b). The same consideration for increasing the sustainability of the synthesis could be taken into account, changing the solvent for others such as DMF [15].

Molybdenum trioxide anchored to \(\text{TiO}_2 \) (MoO\(_3\)/TiO\(_2\))

The catalyst was synthesized according to [16]. For this, 5.52 mL of ammonium heptamolybdate tetrahydrate (Aldrich 97% wt) was added dropwise over 2.1077 g of dehydrated \(\text{TiO}_2 \) at constant stirring (400 rpm) for 1 h. Finally, the solid was dried at 383 K for 16 h and calcined in air at 773 K for 6h (Figure 1c).

![Figure 1](image-url) Scheme of the synthesized catalyst. In each figure, the molecular structure is shown: A) BipyMoO\(_2\)/TiO\(_2\) B) AcMo/TiO\(_2\) and C) MoO\(_3\)/TiO\(_2\).
2.2 Characterization of catalysts

The specific area BET (Brunauer-Emmett-Teller) and the pore volume were determined using the adsorption-desorption isotherms of N2 in a Micromeritics 3 flex equipment at 77 K. Samples were degasified at 523 K for 30 min previously to the analysis. FTIR spectra were taken in an infrared spectrometer Bruker tensor 27 using a NaCl cell at 32 scans. To estimate the amount of anchored complex, TGA was performed using a thermogravimetric analyzer model 5,500, with a heating rate of 10°C/min and a nitrogen atmosphere from 298 K to 1,073 K. UV-Vis diffuse reflectance measurements were acquired in a Shimadzu UV-Vis RD spectrometer model 2,401. For the Raman spectra, an Evolution Horiba confocal microscope was used, with 10x objective, 2s integration time and 10 accumulations. Atomic absorption was performed to determine the amount of metal in all catalysts. For this, 50 mg of each material was dissolved on a mix of HF/HCl/HNO3 and measured in an atomic absorption equipment Philips PU9100X model. The powder XRD was not included because of the quantity of each Mo catalyst is low and only detected phases anatase and rutile of TiO2.

2.3 Catalytic activity

The photocatalytic reactions were carried out in a 15 mL microreactor Batch type (Aceglass), with a pen-ray lamp (λmax = 360 nm), 60 mg of catalyst and 10 mL of 0.01 M of PPh3 (acetonitrile as solvent) was used at 293 K. Initially, the reaction was left 1 h with an atmosphere of nitrogen (purge) and in the darkness to eliminate possible radical species (O2−; OH, HO2). Afterward, it was changed under an oxygen atmosphere for 30 min before the light turns. Finally, the catalytic reaction was put in a way (60 mg of catalyst, 10 mL of 0.01 M of PPh3 with acetonitrile as solvent at 293 K). The Selection of the amount of catalyst was based on previous results [17].

The formation of triphenylphosphine oxide (OPh3) was determined with UV-Vis spectroscopy, measuring the P=O band (n → π*) at 265 nm [18] and the PPh3 band at 258 nm [19]. The kinetic study was performed varying the initial concentration of PPh3, photonic flux, and quantum yield.

The determination of photonic flux was carried out using chemical actinometry [20, 21] using the Reinecke salt [K[Cr(NH3)2(NCS)4]] and measuring the absorbance from 350 nm to 750 nm. The measures were performed with two Pen-ray lamps with a λmax=360 (with two different voltages: 280 V and 375 V). The NCS ion generation rate was determined from the complexation with Fe(NO3)3∙9H2O in HClO4 at 432 nm. The photonic fluxes determined were 321.54 µEinsteinL−1min−1 y 8360.13 µEinsteinL−1min−1, respectively.

The quantum yield was estimated using the equation reported previously [22, 23] for heterogeneous photocatalytic systems (Equation 1):

\[
\phi = \frac{\frac{V_T}{V}}{\frac{dC_{ph}}{dt}}_{t=0} \frac{LV RPA}{1}
\]

Where \(V_T\) represents the total volume of the reactor, \(V\) the volume used for the reaction, \(\frac{dC_{ph}}{dt}\) is the variation of the concentration at the initial time of the triphenylphosphate and \(LV RPA\) is the local volumetric rate of photon absorption.

\(LV RPA\) can be estimated using the equation [Equation 2] [24, 25].

\[
LV RPA = F_e \left(1 - e^{-\mu\varphi}\right)
\]

Where \(F_e\) represents the radiation in the reaction system, \(\mu = C_{cat}K_\lambda\) \(C_{cat}\) is the concentration of catalyst and \(K_\lambda\) is the specific absorption coefficient and \(\varphi\) is the reactor diameter.

3. Results and analysis

3.1 Characterization of the materials

Figure 2 shows the IR spectra for all molybdenum materials. The presence of Mo-pyridine anchored on titanium oxide (Figure 2a), was determined with the bands at 1,395 cm−1 and 1,797 cm−1 related to the C-O and C=O vibrations [26]. The presence of the bipyridine ligand was confirmed with the bands at 1,591 cm−1 and 1,797 cm−1 associated with the C=C and C=N vibrations [27, 28] and the signals at 940 cm−1 and 915 cm−1 corresponding to the symmetric and asymmetric vibrations of the MoO2 group, respectively [29]. The molybdic acid supported on titania (Figure 2b) shows bands at 500 cm−1 and 600 cm−1 due to TiO2 while that OH group present bands at 3,000 cm−1 and 3,100 cm−1 (related to geminal and terminal groups of the titanium oxide) [30]. The dioxo-Mo compound show bands at 894 (asymmetric) and 945 cm−1 (symmetric) and at 721 cm−1 associated with the Mo-O stretching vibration [31, 32]. On the other hand, The MoO2/TiO2 (Figure 2c) system presents bands at 867 and 831 cm−1 [32] related to the symmetric and asymmetric vibrations of the MoO2 group, respectively [30].

Figure 3 show the UV-Vis spectrum of the Mo supported materials which presents an asymmetric band at around 360 nm associated with the charge transference ligand-to-metal (\(O^{2+} \rightarrow Mo^{6+}\)) [10, 33, 34]. The Mo anchored on TiO2 bandgap is evaluated with the UV-Vis spectra, according to Equation 3 [35, 36].

\[
(ahv)^{\frac{1}{2}} = A_1(hv - E_g)
\]
Where \(h\nu \) is the photon energy, \(A_1 \) is the independent parameter of the photon energy for the complex transitions, and \(E_g \) is the band-gap energy. The calculated values of the band-gap of BipyMoO\(_2\)/TiO\(_2\) give a value of 3.2 eV, with the same values for the other Mo systems, suggesting that the TiO\(_2\) band-gap was not affected after anchoring the Mo compounds.

Figure 2 IR spectra of Mo supported heterogeneous catalysts: a) BipyMoO\(_2\)/TiO\(_2\) b) AcMo/TiO\(_2\) c) MoO\(_3\)/TiO\(_2\) d) TiO\(_2\)

Table 1 presents the textural properties of the synthesized materials. The system (MoO\(_3\)/TiO\(_2\)) has the highest amount of Mo per gram of catalyst and the smallest surface area, with a considerably larger pore diameter in comparison with the bipyridine system. In the case of AcMo/TiO\(_2\), which has a lower amount of Mo, it has an intermediary surface area. In all cases, it is observed that the incorporation of Mo on the support considerably decreases the BET surface area. In the case of AcMo/TiO\(_2\) and MoO\(_3\)/TiO\(_2\) catalysts, the BET area is almost 50% as compared to TiO\(_2\). The decreasing of the surface area compared to titanium oxide (Degussa P-25) can be attributed to increasing of the dispersion of Mo species. In contrast with other Mo supported catalysts, it has been showed that, increasing the MoC (Molibdenum carbide) onto TiO\(_2\) supported [12.0% wt] presents a similar
Table 1 Textural properties of the Mo-heterogeneous catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Pore diameter (Å)</th>
<th>mmol Mo/g catalyst*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂ - degussa P25</td>
<td>49</td>
<td>- - - -</td>
<td>- - - - -</td>
<td>0.00</td>
</tr>
<tr>
<td>BipyMoO₂/TiO₂</td>
<td>43</td>
<td>0.0054</td>
<td>289</td>
<td>0.15**</td>
</tr>
<tr>
<td>AcMo/TiO₂</td>
<td>26</td>
<td>0.0049</td>
<td>337</td>
<td>0.13</td>
</tr>
<tr>
<td>MoO₃/TiO₂</td>
<td>23</td>
<td>0.0029</td>
<td>329</td>
<td>0.52</td>
</tr>
</tbody>
</table>

* Values determined using atomic absorption.
** TGA determined this value.

Table 2 Catalytic activity of the different Mo supported catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion (%)</th>
<th>Selectivity to OPPh₃</th>
<th>TON</th>
<th>TOF (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BipyMoO₂/TiO₂</td>
<td>96</td>
<td>>95</td>
<td>5.92</td>
<td>9.66</td>
</tr>
<tr>
<td>AcMo/TiO₂</td>
<td>95</td>
<td>4*</td>
<td>3.95</td>
<td>12.17</td>
</tr>
<tr>
<td>MoO₃/TiO₂</td>
<td>93</td>
<td>15*</td>
<td>1.03</td>
<td>1.53</td>
</tr>
</tbody>
</table>

*Reaction conditions: 0.01 M of PPh₃ in acetonitrile (10 mL), 60 mg of catalyst, 450 rpm at room temperature. Conversion and selectivity were calculated at 240 min. TON was calculated as mmol of PPh₃ per mmol of Mo (t=30 min). TOF was taken as the first derivate of TON with respect to time at saturation regime and instantaneous conditions [TOF=(dTON/dt) t=1 min]. *Other by products were obtained but not identified.

3.2 Effect of the photocatalytic parameters: Estimation of the oxo-transfer kinetics

The kinetics of the photo-oxidation of triphenylphosphine was performed using BipyMoO₂/TiO₂, MoO₃/TiO₂ and AcMo/TiO₂ catalysts, taking into account the effect of the initial concentration, photonic flux and the quantum yield. Blank reactions were carried out: without catalyst (oxygen atmosphere) and with catalyst and without light. It is observed that the oxidation of triphenylphosphine is not carried out in presence of oxygen and without light. TiO₂ support without light did not show activity towards oxygen transfer to phosphine. In this way, Table ?? shows the catalytic oxo-transfer activity of different Mo supported catalysts. It can be seen that the highest conversion and selectivity to OPPh₃ was obtained with BipyMoO₂/TiO₂. BipyMoO₂/TiO₂ presents the highest TON (at 30 min), suggesting that the bipyridine ligand favor the oxo-transfer to PPh₃. Also, the electronic transference from TiO₂ favor oxygen donation by decreasing the Mo=O bond order [12].

Effect of the photonic flux

Figure 5 shows the effect of the radiation intensity in the concentration of PPh₃ as a function of time. It can be seen that when increasing photonic flux, the phosphine transforms rapidly. Similar behavior is observed with the three Mo-catalytic systems. The photocatalytic support properties remain the same, which could be associated to the location of Mo species in the material. The kinetic was evaluated, calculating the specific rate constant, using the Langmuir–Hinshelwood–Hougen–Watson (LHHW) model (Equation 4), which gives the best fitting in comparison with other pseudo-homogeneous (o polynomial) kinetic models. It was considered that the limiting step corresponds to the surface reaction and that the heat of adsorption is constant in the surface [ideal model] [44, 45].

\[
r_a = -\frac{d[PPh_3]}{dt} = \frac{kK[PPh_3]}{1 + K[PPh_3]} \tag{4}
\]

Where \([PPh_3]\) means the concentration of the substrate, \(k\) is the kinetic constant (associated with the product of the quantum yield and the volumetric rate of absorption of photons \([F_{abs}])\) and \(K\) is the adsorption constant [44, 45]. The kinetic was considered as first-order because oxygen is in excess in comparison with the other reactants: solvent and catalyst present in the reaction.

Table 3 indicates the specific rate constants estimated for each catalyst as a function of photonic flux. It can be observed that the catalytic system BipyMoO₂/TiO₂ presented the highest rate constant for both photonic
Table 3 The specific reaction rate constant of the Mo heterogeneous catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Lamp 1: Photonic flux of 321.54 µEinsteL⁻¹min⁻¹</th>
<th>Lamp 2: Photonic flux of 8,360.13 µEinsteL⁻¹min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_{\text{specific}} \pm \Delta k(\text{min}^{-1})$</td>
<td>$k_{\text{specific}} \pm \Delta k(\text{min}^{-1})$</td>
</tr>
<tr>
<td>BipyMoO$_2$/TiO$_2$</td>
<td>0.014±0.005</td>
<td>0.040±0.008</td>
</tr>
<tr>
<td>AcMo/TiO$_2$</td>
<td>0.011±0.004</td>
<td>0.017±0.007</td>
</tr>
<tr>
<td>MoO$_3$/TiO$_2$</td>
<td>0.012±0.003</td>
<td>0.013±0.008</td>
</tr>
</tbody>
</table>

Given the observed correlation between the increase in photonic flux (8,360.13 µEinsteL⁻¹min⁻¹), and the significant increase of the velocity constant, it can be seen that with this lamp, the kinetic constant is almost four times higher than the other one. In the case of the AcMo/TiO$_2$ and MoO$_3$/TiO$_2$ catalysts, there is no noticeable change when increasing the photon flux, which may suggest that the oxidation mechanism is different.

When the BipyMoO$_2$/TiO$_2$ catalyst is used, the formation of OPPh$_3$ (triphenylphosphine oxide) as a function of time corresponds to 1:1 molar ratio between PPh$_3$ and OPPh$_3$ (Figure 6), which is associated to the transference of the oxygen atom from dioxo-Mo to phosphine, according to the OAT mechanism. While for the other two catalysts (Figure 6b and 6c), this molar ratio is different, generating other oxidation products via a radical pathway (Figure 7) [46]. This is because between the Mo unit and the support does not exist a good electronic connection as occurs with BipyMoO$_2$/TiO$_2$. Besides, for the AcMo/TiO$_2$ system (Figure 6b), and MoO$_3$/TiO$_2$ (Figure 6c), the stoichiometric ratio is not 1:1 evidencing that the mechanism is a radical pathway instead of an electronic transfer.

Effect of the initial concentration

The initial concentration of the reactant affects the oxidation rate. To evaluate the effect of concentration, the following solutions of PPh$_3$ 0.01, 0.005 and 0.001 M were taken, and the catalytic activity was observed at the same reaction time, using a photonic flow of 321.54 µEinsteL⁻¹min⁻¹.

Figure 8 shows the effect of the concentration for each catalyst. The increase in concentration generates an increase in the specific reaction rate constant in each case (Table 4).

It was observed that the BipyMoO$_2$/TiO$_2$ catalyst showed that the rate constant is a function of the concentration. The activity of AcMo/TiO$_2$ changes slightly with the initial fluxes. It could be associated with the conductive nature of the bipyridine ligand, which favors the electronic conduction between the dioxo-Mo and the semiconductor surface. It is correlated with the highest generation of the OPPh$_3$.

Figure 5 Photocatalytic transformation of PPh$_3$ as a function of the time with the lamp of a photonic flux of (a) 321.54 µEinsteL⁻¹min⁻¹ and b) 8360.13 µEinsteL⁻¹min⁻¹. Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst
Figure 6 Generation of OPPh$_3$ as a function of the time: (a) BipyMoO$_2$/TiO$_2$ (b) AcMo/TiO$_2$ and (c) MoO$_3$/TiO$_2$. Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst.

Figure 7 Formation of different products of the oxidation of PPh$_3$ on time towards a radical pathway. Modified from reference [46]
Table 4 The specific rate constant of reaction as a function of the initial concentration of \(\text{PPh}_3 \)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>0.01 M</th>
<th>0.005 M</th>
<th>0.001 M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k_{\text{specific}} \pm \Delta k(\text{min}^{-1}))</td>
<td>(k_{\text{specific}} \pm \Delta k(\text{min}^{-1}))</td>
<td>(k_{\text{specific}} \pm \Delta k(\text{min}^{-1}))</td>
</tr>
<tr>
<td>BipyMoO(_2)/TiO(_2)</td>
<td>0.014(\pm)0.005</td>
<td>0.011(\pm)0.005</td>
<td>0.003(\pm)0.006</td>
</tr>
<tr>
<td>AcMo/TiO(_2)</td>
<td>0.011(\pm)0.004</td>
<td>0.008(\pm)0.007</td>
<td>0.005(\pm)0.007</td>
</tr>
<tr>
<td>MoO(_3)/TiO(_2)</td>
<td>0.013(\pm)0.003</td>
<td>0.011(\pm)0.005</td>
<td>0.001(\pm)0.006</td>
</tr>
</tbody>
</table>

Figure 8 Effect of the initial concentration for Mo-heterogeneous catalysts: (a) BipyMoO\(_2\)/TiO\(_2\) (b) AcMo/TiO\(_2\) and (c) MoO\(_3\)/TiO\(_2\). Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst. (Symbols indicate the tendency of each initial concentration; squares=0.01 M, asterics=0.006 M and triangles=0.002 M)

concentration, and its value does not increase significantly as a function of concentration. At the same time, in the other two cases, the specific constant varies significantly. When the concentration is 0.01 M, the constant presents a maximum for BipyMoO\(_2\)/TiO\(_2\). In contrast, for the concentration of 0.005 M, the kinetic behavior was higher for MoO\(_3\)/TiO\(_2\), perhaps associated with its higher concentration of Mo.

Estimation of the quantum yield and their effect

Estimation of the quantum yield was calculated using the Equations 1 and 2. Figure 9 shows the variation of the reaction kinetic constant as a function of the quantum yield for each Mo catalyst. Increasing the quantum yield, the initial reaction rate increases for all catalysts; nevertheless, the behavior is different for the MoO\(_3\)/TiO\(_2\) material, where the increase of reaction rate is slowest; this fact could be associated with the
Table 5 Comparison of Quantum Yields for different heterogeneous photocatalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Substract</th>
<th>Reaction conditions</th>
<th>Quantum Yield (einstein s⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂ (Degussa P-25)</td>
<td>Phenol</td>
<td>Photodegradation, 200 µm of substract, 2 g L⁻¹ of catalyst, pH=3</td>
<td>0.11±0.01</td>
<td>[47]</td>
</tr>
<tr>
<td></td>
<td>2,6-dimethylphenol</td>
<td></td>
<td>0.33±0.02</td>
<td></td>
</tr>
<tr>
<td>Colloidal TiO₂</td>
<td>Formaldehyde</td>
<td>100 mg L⁻¹ of catalyst, pH=2, 100 mM of substrate</td>
<td>0.02</td>
<td>[48]</td>
</tr>
<tr>
<td>TiO₂ (Degussa P-25)</td>
<td>Phenol</td>
<td>Photodegradation, 50 mg L⁻¹ of substract, 1 g L⁻¹</td>
<td>0.13 (0.02*)</td>
<td>[49]</td>
</tr>
<tr>
<td>BipyMoO₂/TiO₂</td>
<td>Triphenylphosphine</td>
<td>0.01 M of substract, 10 mL of solvent, 6 g L⁻¹ of catalyst</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>AcMo/TiO₂</td>
<td></td>
<td></td>
<td>0.85</td>
<td>This work</td>
</tr>
<tr>
<td>MoO₃/TiO₂</td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
</tr>
</tbody>
</table>

*If not considering the absorption coefficient of the incident light.

amount of Mo. As for both BipyMoO₂/TiO₂ and AcMo/TiO₂ catalysts, the same amount of Mo was added, a similar quantum yield behavior was achieved. Other reason for this fact could be associated with the variation of the reaction rate, the photonic flux and the absorption coefficient, which are associated mainly with the TiO₂ support. It was assumed that only TiO₂ contributes to the photocatalytic properties of the material, and besides, that other properties are considered constant (scattering and absorption coefficients). The quantum yields are lower than 25 Einstein min⁻¹; the reaction rate appears to be the same for the three catalysts and by increasing the quantum yield, the reaction rate increases exponentially for all materials.

As no detailed kinetics have been reported, the current study shows references values of quantum yield (at different conditions) of Mo catalysts supported on TiO₂, characteristic of photocatalysts used in different applications. As can be seen in Table 5, all heterogeneous catalysts present a quantum yield in a range between 0 and 0.9 Einstein s⁻¹, being our system AcMo/TiO₂, the higher as compared with the other materials. It is essential to highlight that in all cases, only TiO₂ was used. The lowest value was achieved for the colloidal TiO₂ used for the degradation of formaldehyde (0.019). Similar yields were obtained towards the degradation of phenol with TiO₂ (Degussa P-25) [0.11-0.1275]. Also, the quantum yield obtained for the MoO₃/TiO₂ catalyst showed the same value that TiO₂ (Degussa P-25) used for the degradation of 2,6-dimethylphenol.

Figure 9 Effect of the quantum yield for Mo heterogeneous catalysts. Reaction conditions: room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst

4. Conclusions

The kinetics of the oxygen atom transfer reaction to triphenylphosphine with several Mo heterogeneous catalysts anchored to TiO₂ stimulated with the light was studied. The rate constant increases as the concentration of the triphenylphosphine as does the photonic flux and the quantum yield increases.

Molybdic acid, as molybdenum oxide anchored on TiO₂, does not allow oxygen atom transfer reaction, suggesting
the importance of the bipyridine ligand as an electronic connector between the Mo complex and TiO₂ that favor the transfer of oxygen.

This work corresponds to the first report of the kinetic effects of a reaction of heterogeneous photo-oxidation with dioxo-Mo compounds anchored to TiO₂.

5. Declaration of competing interest

None declared under financial, professional and personal competing interest.

6. Acknowledgments

The authors acknowledge the DIEF of the sciences faculty of the Universidad Industrial de Santander (project 1898) for their financial support and Parque Tecnológico de Guatiguará (PTG) for the physicochemical characterization.

References

J. E. Sánchez-Velandia et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 98, pp. 83-93, 2021

