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ABSTRACT: Human activity detection has evolved due to the advances and developments of
machine learning techniques, which have enabled solutions to new challenges without
ignoring prevalent difficulties that need to be addressed. One of the challenges is
the learning model’s sensitivity regarding the unbalanced, atypical, and overlapping
information that directly affects the performance of the model. This article evaluates
a methodology for the classification of human activities that penalizes defective
information. The methodology is carried out through two redundant classifiers, a
penalized support vector machine that detects the sub-movements (micro-movements)
and the Marvok Hidden Model that predicts the activity given the micro- movements
sequence. The performance of the method was compared with state-of-the-art
techniques, and the findings suggested significative advance in the detection of
micro-movements compared to the data obtained with non-penalized paradigms. In this
research, an adequate performance is found in the classification of primitivemovements,
with hit rates of 95.15% for the Kinect One®, 96.86% for the IMU sensor network, and
67.51% for the EMG sensor network.

RESUMEN: La detección de actividades humanas ha logrado evolucionar debido a los
avances y desarrollos de técnicas del aprendizaje demáquinas, las cuales han permitido
dar soluciones a nuevos desafíos sin ignorar las dificultades que aún persisten y
abogan atención; uno de ellos concierne a la sensibilidad que presenta el modelo
de aprendizaje ante información traslapada, desbalanceada y atípica que repercute
propiamente en el desempeño del modelo. En este artículo se evalúa una metodología
para la clasificación de actividades humanas que castiga información con imperfectos.
El proceso metodológico se lleva cabo por medio de dos clasificadores redundantes,
una Máquinas de Vectores de Soporte penalizada que detecta los sub movimientos
(micromovimientos) y luego unModelo Oculto de Markov que predice la actividad dada la
secuencia de micro movimiento. El desempeño del método fue comparado con técnicas
del estado de arte, los resultados sugieren un avance significativo en la detección de
micromovientos frente a los obtenidos con paradigmas no penalizados. En este trabajo
se obtiene un adecuado desempeño en la clasificación de movimientos primitivos, con
aciertos del 95,15% para el Kinect One®, del 96,86% para la red de sensores IMU y del
67,51% para la red de sensores EMG. Lo anterior impacta directamente la detección de
actividades físicas con aciertos mayores al 95% de eficiencia.

1. Introduction

The recognition of physical activities aims to understand
the actions carried out by people and how they interact
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with their physical environment. Some of the areas of
application are videogames, robotics, rehabilitation, sports
engineering, safety, among others [1–4]. In this way, the
identification of activities seeks to track the human body’s
movements [1, 4, 5]. Different sensor methods such
as depth cameras, inertial measurement unit sensors
(IMU), and electromyography sensors (EMG) have been
used to detect physical activity. Kinect One® is one of
the most widely used non-invasive devices for motion
tracking. This device records different types of data, such
as articulated points, depth maps, and video. However,
it poses practical problems with partial occlusions of the
objective [6–9]. In other works, IMU sensors have been
used, which measure the acceleration changes generated
by movement. Although there have been advances using
this sensor method, the advances have been invasive
and require a device network to track activity [10, 11].
Other approaches have used electromyographic sensors
(EMG) to measure muscle contraction and extension
and detect movement [7]. Although these methods are
robust to partial occlusions, both IMU’s and EMG’s require
more than one sensor to completely register different
activities; this is made computationally in the algorithm
development process [2–7]. Modern approaches suggest
that an activity can be represented as a continuous
sequence or actions, known as primitive movements. In
other words, the segmentation of activities into simpler
components that are configured in n specific order
can be classified using a learning machine approach.
Although this approach produces satisfactory findings, a
large volume of information is presented when labeling
the data, making this process extremely expensive.
Furthermore, determining a window size is a subject
of study, and there is no satisfactory solution for it yet
[1, 6, 7, 12, 13]. In other case studies, a codebook has
been built with the key positions for each of the activities.
Unfortunately, this process can only be applied with the
articulated points of the skeleton, which limits the usage
of other sensor methods [13]. The combination of different
types of sensor devices has been an emerging topic of
study in the activities recognition. However, there are
a few studies where the fusion of more than two types
of multimodal sensor system is performed [14–16]. In
state of the art, combinations such as Kinect One® IMU,
Kinect® EMG, and EMG IMU and Kinect One® IMU
EMG are reported [6–16]. This method has been found
to attain a more satisfactory performance with respect
to themethods thatmix one or two types of devices [17–21].

The work from [16] carries out the fusion of the Kinect
One®, IMU, and EMG for the characterization of the
movements through two redundant classifiers (SVM and a
hidden Markov chain (HMM)) where efficiency greater than
95% in the detection of activities is achieved. Although
satisfactory findings are computed, their computational

cost is high, and the number of activities under study is
limited, which does not allow evaluating the real scope
of the method. On the other hand, the state-of-the-art
reports difficulties in classifying primitive movements
claiming issues in the labeling and overlapping the data.
Therefore, a penalty paradigm is required in order to
assign less weight to data that biases the model. For
instance, some papers have achieved satisfactory findings
in classification problems where overlapping conflicts
regarding the data reported.

This article studies the usage of SVM penalized classifiers
asmethodological tools to increase performance detecting
primitive movements. In summary, it follows the
procedure shown in [13–16] with a penalized classification
model in the recognition of sub-activities using the SVM
sanctioning strategy explained in Section 2. The findings
are validated and compared with different sensor methods
and state-of-the-art models. The main contributions of
this article are:

• Construction of an annotated database with the
synchronized registration of three sensor methods
(Kinect One®, IMU, and EMG). The same configuration
proposed by [16] is used to construct the database
extending it to 10 physical activities.

• A procedure that improves the performance of the
primitive movement classifier through a paradigm
of data penalization that can compare its own
performance with similar methodologies that do not
consider penalization [13–16], evidencing the benefits
of the proposed technique.

This article is organized as follows. Firstly, a
methodological section shows the summary of the
procedure used to recognize physical activities,
emphasizing the methodological instruments utilized.
Secondly, a section goes over the findings where the
performance of the method is evaluated and quantified.
Lastly, a section describes the conclusions and further
discussions of this research.

2. Methodology

Figure 1 shows the methodology used for human physical
activity recognition, mainly based on the work shown in
[16]. The method starts with the identification of the
primitive movements that later determine the activity
performed according to the coding or sequence of the
sub-movements. In turn, the model controls a task based
on the execution of a sequence of simpler sub-tasks
through a hybrid model between HMM and SVM, as is
pointed out by [22]. This means that the SVMs segment
the input data, and the HMMs use the output of the
SVMs to determine the most probable sequence regarding
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time; thus, the methodology allows the execution of new
actions according to a set of known movements. Moreover,
it is possible due to the characteristics of the support
vector machine to classify multidimensional data and to
identify theHMMsability when they operatewith temporary
sequential data [12, 22, 23]. It is important to point out
that the HMM allows decoding the labels computed by the
penalized classifier of micro-movements (sub-activities)
and then reconstructing and recognizing the physical
activity. Modern deep learning methods have been
introduced to identify human physical activities achieving
good findings when compared with classical techniques.
However, they have been considered under a procedure
that classifies the movement first and predicts the activity
later, giving context to the movement. The foregoing
disagrees with the approach to classifying human activities
by primitivemovements since themergedmicromovement
space is small, discrete, and inhomogeneous [24].

 

 

Figure 1 Methodology for human physical activity recognition

Unlike the work by [16], a penalized SVM is introduced in
order to punish atypical and spurious data. Consequently,
the performance and efficiency in the detection of the
sub-movements through a sanctioning paradigm can be
evaluated.

2.1 Data capture system

A database consisting of 10 activities with some challenges
in classifying activities such as walking and jogging,
sitting, and getting up, among others, was created. The

construction is divided into two tasks. Firstly, there
is a storage of the synchronized record of the sensors
(Kinect One®, IMU, EMG) in a binary structure. The data
acquisition was carried out through the LabView Software
following the suggestion expressed by [16, 25]. Figure 2
shows a graph that summarizes this stage. It is important
to say that there are different articulated points for each
sensing modality, where the articulated points of the
Kinect One® are represented with Ψ using Cartesian
coordinates system, the acceleration vector IK is delivered
by the IMU sensor, and EMG is an information vector which
takes information by electromyographic sensors.

The second stage consists of labeling the activities
as well as the primitive movements of the executed
sequences. The first sequence was determined according
to the ones presented in [1, 15, 16, 24–26]. Table 1 lists the
10 activities with their respective labels provided in this
work. The data was retrieved from 12 participants (8 men
and 5 women with 5 repetitions).

The primitive movement labels were constructed by
segmenting the signal for each submovement sequence
for each of the actions. Therefore, the data collected in
three seconds (see Figure 2) is divided into N windows.
These signals are stored in a file encoded according to the
following structure: Base {Example} {Second} {Sensor}
{Segment}.

On the other hand, the labeling of the database was carried
out manually. In this way, it was possible to observe the
spatial distribution of the different postures provided
by Kinect One® during the recording time, establishing
the separation between each of the submovements. The
selection of each primitive movement is achieved by
analyzing the execution of each activity. In addition, the
phases introduced in the study of the kinematic analysis
of the upper and lower limb of the human body used
in [27–30] were considered. Table 1 summarizes the
primitive movements that were determined for each
activity. After recording the execution of different physical
activities, these data are segmented into small windows
to obtain the primitive movements, producing a new
database, which presents unbalance and overlapping
issues. This is probably because during the developments
of the activity, there are micro-movements that appear
more frequently. For instance, positions like standing still
have more samples than movements such as raising the
left hand to ¼. There are also overlap issues with the EMG
sensor network, a problem also reported in [16].

Figure 3 shows the thresholds of the labels established for
each of the activities, considering the primitivemovements
defined in Table 1. Although threshold management could
be considered a way to solve the issue, this approach does
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Figure 2 Sensors distribution diagram and synchronized capture system

Table 1 Physical activities and primitive movements list with their corresponding labels

Activity (label) Primitive Movement (label)
Hold Still (1) Repose (1)
Squat and stand up (2) Repose (1), Half squat (2), Full squat (3)
Jump (3) Repose (1), Suspended in the air ¼ (4)

Rise right hand (4)
Repose (1), Rise right hand to ¼ (5), Rise right hand to
¾ (6)

Jogging (5)
Repose (1), Left leg forward with Flexed knee (7), Right
leg forward with Flexed knee (8)

Rise left hand (6)
Repose (1), Rise left hand to ¼ (9), Rise left hand to
¾ (10)

Rise both hands (7)
Repose (1), Rise both hands to ¼ (11), Rise both hands to
¾ (12)

Walking (8)
Repose (1), Step forward left leg (13), Stef forward right
leg (14)

Sit down (9) Repose (1), Halfway sit down (15), full sit down (16)
Stand up (10) Full sit down (16), Halfway sit down (15), Repose (1)

 

 

Figure 3 Threshold for label assignment of every primitive movement
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not accurately describe the activities and, requires human
intervention for different cases [16].

2.2 Primitive movement recognition

In this section, a dictionary describes the set of
sub-movements as designed. Figure 3 summarizes
the process for primitive movement detection for each
sensing modality.

Kinect one® feature extraction

For all 25 join points provided by the Kinect One® (see
Figure 1), the following descriptors were computed (polar
and statistical) at a frequency of 15 Hertz [31, 32]:

Polar Features [33] Each joinpoint was transformedψ =
{x, y, z} to the polar plane by using the center of mass
as the origin of coordinates {CMx, CMy, CMz} of the
Kinect One® join points (see Figure 1), which allows
obtaining the vector Equation 1.

Pi = [r1θ1r2 · · · r25θ25] (1)

Where Pi is the feature polar vector in the i-th sampling
window for i = {1, 2, 3}, rj and θj are the radial and
angular components, respectively, of the joinpoint, with
j = {1, . . . . . . .25}. Figure 4 shows a graphical diagram
primitive movements detection.

 

 

Figure 4 Primitive movement detection

Statistical descriptors The arithmetic mean
(mx my mz ) and the variances (vx vy vz) of the spatial
coordinates of the Kinect One® join points {x, y, z} and
their polar equivalent {r, θ} were calculated with respect
to the centers of mass {CMx, CMy, CMz}, obtaining
the following feature vector Equation 2.

MDj = [mxmymzmrmθvxvyvzvrvθ] (2)

Where (mr mθ) are the mean of the polar coordinates and
(vr vθ) their variances. Finally, the total feature vector for
each join pointKITF j Equation 3 of the Kinect One® was
calculated by concatenating Pi andMD. For more detail
of the process of these descriptors refer to [7].

KITF j = [P1 P2 P3 MD] (3)

IMU Sensor network feature extraction

The IMU network data (see Figure 2) focuses onmeasuring
the tri-axial components supplied by this network; the
vector (ax, ay, az) is obtained, where the variables are
the rectangular acceleration components. Then, we
calculated the Roll and Pitch orientations by performing
the spherical coordinates conversion. This way, vector Ik
Equation 4 is reached at each sampling time and for the
k-th IMU of the network, k is defined as k = {1, 2, 3, 4}.
The sampling frequency for each k sensor was 30Hz.

Ik = [ax ay az Pitch Roll] (4)

The characterization of the vector Ik is performed by
calculating the characteristics based on the physical
parameters of human movement [34] (measurement of
the AI , variance of AI (V I), area of magnitude of
normalized signal SMA, dominant direction eigenvalues
EV A, average acceleration energy AAE and average
rotation energy ARE). Additionally, statistical measures
to Ik, which are the arithmeticmean and the variance of the
rectangular and spherical components of the accelerations
were computed, obtaining the following vector Equation 5:

IMUF = [IMH Ima Iva]1×15 (5)

With IMH = [AI V I SMA EV A AAE ARE], Ima =
[max may maz mar map] and Iva = [vax vay var vap].
Where maw and vaw is the arithmetic mean and variance
of the rectangular and spherical components of Ik, with
w = {x, y, z P itch, Roll}. For more detail of the process
of these descriptors, refer to [7].

EMG Sensor network feature extraction

As can be seen in Figure 1, during this stage, four muscles
of the body are sampled at a frequency of 2KHz, obtaining
an analogous signal in the p-th EMG sensor being p =
{1, 2, 3, 4}. Then, sampling window Vq was characterized
by aWaveleth transform, acquiring a feature vectorEMGp

Equation 6, whose dimensions are 1 × 2000. For each
window q, the following feature vector reached.

EMGF q = [EMG1 · · ·EMG4]1×8000 (6)
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(a)

 

 

(b)

Figure 5 Algorithm penalized by: (a) C-SVM method; (b) algorithm of binary combined SVM

2.3 Primitive movement classification

Three models of multiclass support vector machines with
several classification strategies were used. Firstly, the
C-SVC penalty method was used (see Figure 5a) [35];
secondly, the Weighted Binary SVM was implemented [36]
(see Figure 5b); and lastly, a classic SVM method was
used. For all the models, a Gaussian kernel with a radius
of 1 × 10−4 was established by coupling the database in
Section 2.2. In this case, it is preferred to penalize the data
in the database because they present issues such as class
overlapping and unbalance, in addition to the Kinect One®

partial occlusions or auto-occlusions, or loss of connection
in the acquisition systems of the signals from IMUs or
EMGs, which affect the performance and efficiency of the
classifier in the identification of the primitive movements
[16–37]. For more details, refer to [22]. On the other hand,
the specified value of τ corresponds to an initial value
[6–16], which is refined in a search grid through a Monte
Carlo experiment.

On the other hand, the penalized models seek to punish
the regularization SVM parameter (C and ξ) considering
the size of the data in the search grid. For this specific
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case, the Bayesian Optimization Procedure (OP) was
implemented. This algorithm allows computing the
regularization parameters of the penalized strategies (C
and ξ), given the training vector Dt and the validation
vectorDv .

The value of this parameter can be very small (close
to zero) or very large (tend to infinity), allowing the data
penalization that is on the wrong side of the margin limit
and thus minimizing the training error. However, these
methods are sensitive to atypical information present
in the data, the error is increasing in a linear process.
Therefore, it is important to choose a suitable initial value
for C [38]. Some authors recommend performing an
observation grid by finding a value for C within the range
in order to maximize the margin while penalizing the
data located on the wrong side [36, 39]. In this work, an
observation grid of

[
1× 10−3 , 1× 103

]
was selected

to compute a C value for each class (see Table 1). On
the other hand, these models consider the size of the
training data set for the penalization of the regularization
parameter C, which operates differently for each case.
Assuming that SVM is a bi-class approach, with C-SVC
there is a value of C with respect to the size of the data
set to be classified, while with binary-weighted SVM, two
values of C (C2, C1) for each one of the classes are
obtained.

3. Activity recognition

Based on the list of activities listed in Table 2 and the
response of each of the SVMs, a posterior merge is
developed, and the HMM is applied to identify the physical
activity. Therefore, a vector of characteristics EF is created
that linearly concatenates and no weighting the labels
generated by the classifiers of each sensor during the
observation window of three seconds, as shown in Figure
6. Equation 7 describes the vector structure EF.

EF =

[[EK1 EK2 · · ·EK15]

[EI1 EI2 · · ·EI30]
[EE1 EE2 · · ·EE60]]105×1 (7)

Where:

• EK: Feature vector of the SVM provided by the Kinect
One®.

• EI: Feature vector of the SVM provided by the IMU
sensors network.

• EE: Feature vector of the SVM provided by the EMG
sensors network.

 

 

Figure 6 Data fusion

3.1 Model classification, training, and
validation

The evaluation and validation of the model by using the
cross-validation strategy through iterations in a Monte
Carlo experiment with the stop criteria ||diag (Mk) −
diag (Mk − 1) || < 0.001 were performed, where
diag (Mk) is the vector generated by the diagonal of the
confusionmatrix, and k is the current average Monte Carlo
iteration. The training data set (according to the database)
of the model established in this work was 70%, and the
remaining 30% was used for validation; the fragmentation
of these percentages was performed randomly for each
iteration. This allows observing the behavior of the HMM
in the activity classification with different input data. In
this last process, 24 states and 32 centroids for the
construction of the codebook were used. To evaluate the
classifier’s performance, the confusion matrix, and the
total number of hits per iteration were calculated and
evaluated, respectively, determining the average behavior
of the findings.

4. Experiments and findings

This section shows the experimental findings that validate
the proposed methodology. These are divided into two
sections. Firstly, the performance findings in the primitive
movement classification stage are documented, in such
a way that the returns are recorded for both the SVM
penalized cases (C-SVM and weighted binary SVM) with
respect to the model proposed in [16]. Secondly, the
results are taught in the physical activities classification
stage; in addition, the efficiency of the HMM model is
evaluated for different types of fusion of the sensor
modalities. Given the large number of experiments
carried out, the confusion arrays are omitted. It is decided
to specify the classes with low and high performance,
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as well as the average behavior of the findings. For the
identification of each finding, the coding of the experiments
is presented based on Table 2:

The physical activity recognition for the following sensor
combinations was performed: Kinect One®, IMUs, EMGs,
Kinect One ®+ IMUs, EMGs, Kinect One®+ IMUs, Kinect
One® + EMGs, IMUs + EMGs, Kinect One® + IMUs +
EMGs

The metric chosen to show the findings in this work
is the mean value of correctness and standard deviation.

4.1 Primitive movement analysis

Figure 7 shows the results obtained in the identification
of primitive movements using the Kinect One® modality.
A high performance of the experiments is evidenced,
reaching efficiencies higher than 90%. In general, it
should be noted that the SVM-BP method presents
better performance than the one obtained with SVM_CyH.
However, class 16 (axis of the abscissa) presents a low
yield close to 20%. On the other hand, the C-SVM strategy
shows a more stable behavior with a success rate greater
than 90%. Figure 8 shows the results obtained for the
primitive movements classification using the IMU sensor
network. The penalized strategies (C-SVM and SVM_BP)
have a performance value higher than 90% of accuracy.
On the other hand, it is evident that these have a better
performance than the one computed by SVM_CyH. It
is highlighted that the SVM_BP method presents the
highest efficiency with a success rate of 96.86% ± 0.01%.
Figure 9 shows the performances of the classifiers by
using the EMG sensor mode, where a low performance in
comparison with those obtained in Figures 7 and 8 was
observed. In summary, the SVM_BP method presents a
better performance with 67.51 ± 0.01%. However, class
8 showed a low percentage of success of 11.85 ± 0.01%,
which suggests the inability of the classifier to detect it.
Although this result is not adequate, the other methods
also show a similar trend of low efficiencies. This could
suggest that the extraction of characteristics under this
modality may not be representative. Although it is not
possible to obtain a competitive detection with the EMG
sensor modality, it is inferred that the penalized strategies
manage to improve the performance of the classification
with respect to the non-penalized model SVM_CyH. On the
other hand, Figures 7, 8, and 9 show better performance
under the SVM_BP paradigm.

Figure 10 shows an average result that summarizes
the finding shown in Figures 7, 8, and 9. It is important
to highlight that the three sensor modalities under study
present a better performance in the classification of
micro-movements when the penalized strategy is coupled

 

 

Figure 7 Primitive movement detection results for the kinect
one® modality

 

 

Figure 8 Primitive movement detection results for the IMU
sensors network

 

 

Figure 9 Primitive movement detection results for the EMG
sensors network

through SVM_BP and C-SVM. On the other hand, it is
interesting to observe how the identification of primitive
movements is more stable under this paradigm.

4.2 Physical activity recognition

Figures 11, 12, and 13 show each sensor modality results.
In summary, the performance of the activity classifier
under the Kinect One® modality or with the IMU sensor
network in most classes is greater than 90%, except
for activities 2 and 3 with the HMM_CyH and HMM_C
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Table 2 Experiment codification initials

Primitive Movements Analysis (first column initial, second column description)
SVM_CyH Non-penalized SVM proposed by [16].
C-SVM SVM with optimization of the regularized parameter C
SVM_BP Weighted binary SVM

Activity Analysis
HMM_CyH HMM classifier with the labels delivered by SVM_CyH.
HMM_C HMM classifier with the labels delivered by C-SVM.
HMM_BP HMM classifier with the labels delivered by SVM_BP.

 

 

Figure 10 Primitive movement detection results with the one
®, IMUs, and EMGs sensor networks

strategies, and activities 1, 9, and 10 with the HMM_BP
technique in the Kinect One® modality. With the IMU
sensor network, there are some issues with labels 3 and
5 by applying HMM_CyH and HMM_C algorithms, where
efficiencies are under 80% of accuracy.

 

 

Figure 11 Physical activity recognition results by using kinect
one®

The same outcome is observed with classes 9 and
10 of the HMM_BP model. On the other hand, with
the EMG sensor network, an acceptable performance
was achieved because label 7 (see Figure 13) shows
the highest percentage of success compared to other
activities, exceeding 83% of accuracy. The results suggest
that only one sensor modality is sufficient for physical
activity recognition. Although acceptable detection was
managed with the EMG sensor modality, strategies to

 

 

Figure 12 Physical activity recognition results by using IMU
sensor network

 

 

Figure 13 Physical activity recognition results by using EMG
sensor network

improve its performance should be explored in further
studies. Meanwhile, Figure 14 shows the performances for
the three human physical activity identification techniques
are higher than 90%, under a structure of IMU sensors.
On the other hand, the results do not show a significant
statistical gap between them. At the same time, the three
classification methods show an activity detection less than
70% of accuracy due to the sequence of labels generated
by the SVM. Comparing Figures 11, 12, and 13, the sensor
modality with the best performance for human physical
activity recognition is the IMU sensor.
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Kinect one® + IMUs experiment

Figure 14 shows the results of the fusion of two sensor
modalities, reaching a performance greater than 82% with
the HMM_CyH and HMM_C methods. It is important
to highlight that the identification of activity 1 presents
a performance of 100.00% for the three models under
study. However, the lowest performance is shown by
the HMM_BP method with 11% contrasting with those
computed by HMM_CyH and HMM_C, which were 70%,
respectively.

 

 

Figure 14 Physical activity recognition results by using kinect
one®+ IMUs

Kinect + EMGs experiment

Figure 15 shows that this combination of sensors performs
poorly for classes 1, 2, and 3, making it for motion
detection.

 

 

Figure 15 Physical activity recognition results by using kinect
one®+ EMGs

IMUs + EMGs experiment

Figure 16 shows that the fusion of these two sensor
modalities allows attaining a performance higher than
84%, where with activity 10 under the HMM_CyH and
HMM_C methods, efficiencies greater than 98% are
achieved, similarly with the HMM_BP strategy it stands out
a yield close to 100% with the label 8.

 

 

Figure 16 Physical activity recognition results by using IMUs+
EMGs

Kinect one ® + IMUs + EMGs experiment

Figure 17 shows the results obtained under the fusion
of the three sensor modalities, where the methods
HMM_CyH and HMM_C present similar performances of
approximately 87%. On the other hand, class 10 with
the HMM_C method shows a 100% hit rate, unlike the
HMM_BP method, where this class shows the lowest hit
rate with 9%. Similar to what is shown in Figure 11
and Figure 18, the results (means ± standard deviation)
of Figures 11 to 17 are condensed. It is observed
that in the detection of the activities, the penalized
strategy is competitive with respect to the non-penalized
one (HMM_CyH). This suggests similar performances of
human physical activities identification regardless of the
penalty.

 

 

Figure 17 Physical activity recognition results by using kinect
one®+ IMUs+ EMGs

5. Conclusions and
recommendation

This research work carried out a comparative study
by articulating different learning models for primitive
movement identification. These models [16] were
compared against a punished paradigm that uses

161



L. E. Plamplona-Berón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 103, pp. 152-163, 2022

 

 

Figure 18 Physical activity detection results

penalized SVM. The research found out that either
of the two penalty methods increases the classifiers’
performance for the detection of primitive movements
[16]. For the Kinect One®, the best result is achieved
using the weighted binary SVM, which has an efficiency
of 95.15%. For the IMU sensor network, the weighted
binary SVM generates the best results with 96.86%
accuracy. This method generates these results for the
two sensor modalities due to the consideration of an
existing imbalance between the classes, which improves
the separation boundary. On the other hand, in the
activity detection stage using HMM, it is possible to show
that the Kinect One® sensor generates detections with
greater efficiency, with a 93.23% performance. It was also
found that merging different modalities does not always
improve detection performance. This can be observed in
Figures 15, 16, and 17, where these are reduced in the
combinations that add information from different sensory
sources. This data contradicts the results obtained in
the work by [16] because by extending the database, the
complexity of the data increases, and the sensors can
deliver information that biases the model.

It is important to highlight that in this work, the database
of physical activities developed by [16] was extended
in 10 activities with the synchronized recording of the
Kinect One®, IMUs, and EMGs, where more join points
of the human body and 16 primitive movements were
included. This finding means a significant contribution
to the study of these methodologies. Indeed, it evaluates
the performance based on the variations of activities and
sub-movements to be identified in order to determine the
scope or restrictions they present.
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