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ABSTRACT: The sum of lognormal variables has been a topic of interest in several fields
of research such as engineering, biology and finance, among others. For example, in
the field of telecommunications, the aggregate interference of radio frequency signals
is modeled as a sum of lognormal variables. To date, there is no closed expression for
the probability distribution function (PDF) of this sum. Several authors have proposed
approximations for this PDF, with which they calculate the mean and variance. However,
eachmethod has limitations in its range of parameters formean, variance and number of
random variables to be added. In other cases, long approximations as power series are
used, which makes the analytical treatment impractical and reduces the computational
performance of numerical operations. This paper shows an alternative method for
calculating the mean and variance of the sum of lognormal random variables from a
computational performance approach. Our method has been evaluated extensively by
Monte Carlo simulations. As a result, this method is computationally efficient and yields
a low approximation error computation for a wide range of mean values, variances and
number of random variables.

RESUMEN: La suma de las variables lognormal ha sido un tema de interés en varios
campos de investigación como ingeniería, biología y finanzas entre otros. Por ejemplo,
en el campo de las telecomunicaciones la interferencia agregada de señales de
radiofrecuencia se modela como una suma de variables lognormal. A la fecha, no existe
una expresión cerrada para la probabilidad función de distribución (PDF) de esta suma.
Varios autores han propuesto aproximaciones para esta PDF con el fin de calcular el
valor medio y varianza. Pero cada método tiene limitaciones en su rango de parámetros
para la media, la varianza y el número de variables que se suman. En otros casos,
existen aproximaciones con series de potencias muy largas, lo que hace que el análisis y
tratamiento analítico sea impráctico, además, reduce el rendimiento computacional de
operaciones numéricas. En este artículo, mostramos un nuevo método para calcular la
media y varianza de la suma de variables aleatorias de tipo lognormal y desarrollamos
todo el análisis desde un enfoque de eficiencia computacional. El desarrollo ha sido
evaluado extensamente por simulaciones de Monte Carlo. Como resultado, estemétodo
es computacionalmente eficiente y produce un cálculo de error de aproximación bajo
para una amplia gama de valores medios, varianzas y número de variables aleatorias.
Lo cual lo hace útil al momento de hacer simulaciones con este tipo de variables.

1. Introduction The normal distribution is the most common probability
distribution function (PDF) used in any scientific field if we
want to characterize a random variable (RV). This occurs
because many natural phenomena are modeled according
to the central limit theorem. Sometimes, random variable
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values are pretty small, and it is necessary to expand
those values through an exponential function, which
is also useful for analytic treatments. Due to this, the
lognormal random variable arises. It means that if we
characterize a RV asX ∼ Normal [m, s] with meanm and
standard deviation s, and then we calculate x = 10X , we
will yield x ∼ lognormal [µ, σ] with mean µ and standard
deviation σ, where: µ = κ ·m, σ = κ · s and κ = ln(10)

10 .

Several works shown in [1, 2] have suggested that
the sum of lognormal RVs can be approximated by a
lognormal distribution. It means that for:

xi ∼ lognormal [µi, σi] (1)

If we haveN RVs

y =
N∑
i=1

xi (2)

Then:

y ∼ lognormal [µ̃, σ̃] (3)

Now, through two examples, wewill showwhether or not in
a telecommunications scenario known as characterization
of the aggregate interference with N interferents, it is
possible to approximate the sum of lognormal variables
with a lognormal PDF.

Explanation of Monte Carlo simulations 1 and 2 We’ll
consider a scenario where N = 5 is the number
of random variables to sum. 104 samples are
generated for each of the five RVs Xi, i = [1, .., 5]
using a Normal distribution function with parameters
randomly selected within the range of an interference
signal where m = [−80,−60] , and s = [4, 12]. The
parameters selected for the mean value and variance were
m = {−63,−61,−78,−61,−67} , s = {4, 5, 7, 9, 9}
respectively. Then the following operation is performed:
y = 10

X1
10 + 10

X2
10 + 10

X3
10 + 10

X4
10 + 10

X5
10 and finally we

calculate Y = 10 · log10(y).

Since it has been said that y follows a lognormal PDF, then
Y should have a Normal PDF. Experimentally, the mean
value µ̃, variance σ̃2 and standard deviation σ̃ are obtained
using the mean, var and std commands of the software
Matlab. With these parameters, we generate a normal
analytical PDF to compare it against the histogram of the
simulation.

Simulation 2 used the following parameters
m = {−74− 60− 76− 69− 71} , s = {6, 6, 5, 7, 7}.
As a result of the simulations, Figure 1 shows that for
N = 5, sometimes this approximation could work, but
even with a small set of variables, this approximation fails.

In this way, we show two examples where there is not a
straightforward method to find an approximated PDF that
fits in all cases to the real PDF of the sum of lognormal
variables. This wide-used approximation must be carefully
handled because of the statement mentioned above;
although, it is frequently used in telecommunications [1].
Our work will focus only on an efficient method to find the
mean value and the variance of the sum of lognormal RV
within a wide range of parameters.

The rest of this paper is organized as follows. In section
II we give a background and show previous works about
the sum of lognormal variables, we review some of the
approximation methods and assess their accuracy. In
section III, we propose a new method for computing the
sum of lognormal random variables and provide equations
to calculate the mean value and variance of the sum. We
validate our method in section IV and finally, in section V
the conclusions are given.

2. Background and previous work

Some papers such as [1, 3, 4] show a summary of several
works that address the sum of lognormal variables. From
them, we can say that the main problem with this kind of
RV is due to the fact that it has neither a characteristic
function nor a moment-generating function. Some works
address this issue by approximating the characteristic
function and obtaining either the PDF or the cumulative
distribution function (CDF). However, the curve for the
experimental CDF or PDF does not completely match with
the analytical function [3], and their results are bounded by
asymptotic tail approximations for specific scenarios. For
example, in finance [5], there are simple approximations
when σ tends to 1.

The errors in the CDF or PDF approximations also depend
on the number of RV in the sum. On the other hand,
most of the analytical approximations must be solved
using numerical computation, Monte Carlo simulations,
recursive algorithms or other computational techniques.
So, this means that all traditional methods are inefficient
and impractical for problems where the lognormal
parameters change dynamically.

A paper from Wilkinson in 1934 is perhaps one of the
first works to approximate the sum of lognormal variables
with a PDF that is also lognormal. Although this work
was not published, it was first referenced in [6]. The
work of [7] approximates the sum of lognormal variables
to a lognormal PDF, but it is not always correct and is
only useful when σ < 4 for each RV. This approach is
also known as the Fenton-Wilkinson method, since both
use the same mechanism to approximate the first two
moments of the sum.
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(a) Simulation 1.
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(b) Simulation 2.

Figure 1 Comparison of the histogram of Y against an analytical Normal PDF with the parameters µ̃, σ̃

In [8], the sum is approximated with a lognormal PDF by
means of a recursive process for the calculation of the
moments, but the expressions are not in closed form.
In addition, it uses approximations by power series with
40 terms, which increases the computational cost. This
method is useful when both the mean value and the
variance of the sum are required. Then in [9] the mean
value and the variance are approximated in a similar way
to the work shown in [8], with the difference that the
approximation is developed by a Taylor series around 0.
This method is used in the area of finance. Work of [10]
is based on [8], and it assumes correlated variables. A
review of these approximation methods is shown in [11]. In
this work, a minmax optimization approach is proposed
to adjust the parameters of the lognormal PDF. This work
shows that these approximations do not provide a good fit
in the tails of the PDF.

A later work in [12], proposed a closed solution for
the CDF, but their most relevant contribution is that they
demonstrate through several results that according to the
parameters used, it is not correct always to approximate
the sum of lognormal variables with a lognormal PDF due
to the error on the tails of the PDF function.

The work in [13] develops a closed expression to adjust the
lower tail of a lognormal PDF. In [14], authors approximate
the moment-generating function with a Gauss Hermite
series for each variable and in [15] the authors propose
an approximation of the PDF with a Log-shifted-gamma
function.

[16] offers a review of related works with some focus on the
approximation of the CDF for the sum of independent and
correlated variables based on the characteristic function
given in [17] (quadrature rules). As a result, [16] also uses

the Log-shifted-gamma approximation, but it is only useful
for the calculation of the CDF of the sum of 6 variables or
less. Additionally, the authors propose a computational
method using the Epsilon algorithm to calculate a CDF
when 40 or more variables are added. In [18] the α − µ,
distribution is used for the PDF, and the adjustment of
parameters is done bymeans of a least squares regression
approach. Finally, [5] approximates the PDF with a
quasi-normal distribution, but this method is useful only
when µ, σ ≤ 1.

2.1 Review of the approximation methods

The Fenton-Wilkinson method

One of the most widely used works for the computation
of the sum of lognormal random variables is the
Fenton-Wilkinson method [7] due to its good results
and the simplicity of its formulas. This method
states the following: a random variable Xi follows a
Normal distribution with mean mi standard deviation
si. Xi ∼ Normal [mi, si], if xi = 10

Xi
10 ; then:

xi ∼ lognormal [µi, σi]. Where: µi = κ ·mi, σi = κ · si
and κ = ln(10)

10 . The 1st (n = 1) and 2nd (n = 2)
moments of xi are given as:

E [xn
i ] = en·ui+

(nσi)
2

2 (4)

Var [xi] = e2ui+σ2
i

(
eσ

2
i − 1

)
(5)

If we have:

y =
N∑
i=1

xi (6)

Assuming that y ∼ lognormal [µ̃, σ̃]. then:
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E [y] =
N∑
i=1

E [xi] (7)

Var [y] =
N∑
i=1

Var [xi] (8)

Finally:

σ̃ = κ2ln

(
Var [y]
E [y]

2 + 1

)
(9)

µ̃ = κ · ln

 E [y]√
Var[y]
E[y] + 1

 (10)

Now, if we do:

Z = 10 · log10 (y) (11)

Then:

Z ∼ Normal [µ̃, σ̃] (12)

Now, we assess whether this method works correctly for
the calculation of the mean value and variance through a
Monte Carlo simulation.

Explanation of Monte Carlo simulation 3 used to analyze
the Fenton-Wilkinson method As an example, we
will use three RV’s (N=3) with 107 samples for each.
Xi, i = [1, 2, 3] follows a Normal PDF. We calculate

xi = 10
Xi
10 to generate lognormal RV’s and y =

∑N
i=1 xi.

Then, we get the experimental µ̃, σ̃. Analytically Equations
7 and 8 are used to get E [y] and Var [y]. After that, we
use Equations 9 and 10 to find the theoretical µ̃ and σ̃. We
compare both experimental and analytical results with
different parameters mi, si. Those results are shown in
Table 1.

Note that experimental and analytical results begin to fail
when si > 4, even for only 3 RVs.

The Schwartz-Yeh method

This method was proposed by [8] in 1982, which calculates
the mean value E [Z] and variance Var [Z] within a set of
N lognormal random variables xi ∼ lognormal [µi, σi],
i ∈ {1, 2, ..., N}. When i = 1, we have Equation 13:

Z1 = X1 (13)

With: E [Z1] = m1; Var [Z1] = s1.
And for i > 1:

Zi = Zi−1 + 10log10

(
1 + 10

Wi
10

)
, ∀i ∈ {2, ..., N} (14)

With Equation 15 as :

Wi = Xi − Zi−1, ∀i ∈ {2, ..., N} (15)

Now, we focus on calculating the mean value.

E [Zi] = E [Zi−1] + E
[
10 · log10

(
1 + 10

Wi
10

)]
(16)

We will use the term:

ξ (Wi) = 10 · log10
(
1 + 10

Wi
10

)
(17)

Rewritten:

Zi = Zi−1 + ξ (Wi) (18)

E [Zi] = E [Zi−1] + E [ξ (Wi)] (19)

The term ξ (Wi) is originally expanded through a power
series with 40 terms. After that, we calculate E [ξ] and
Var [ξ]. Equation 14 shows that this method is recursive,
and we have to expand this term ξ (Wi) in each i iteration
which reduces the computational performance.

Observations: Wi ∼ Normal [ui, si], ui = mi − E [Zi−1],
si =

√
s2i + Var [Zi−1]

3. Proposed method

In order to improve the computational performance and
the analytical treatment of the method proposed by
Schwartz-Yeh, we need to find a function that approximates
ξ (·) (Equation 17) using a fewer number of terms. It
also must be easily integrable. Therefore, the proposed
solution in our work for ξ (·) is hereafter Equation 20 with
the parameters: an, bn, ln, where n only takes the value
1 or 2 to indicate the 1st and 2nd polynomial degree,
respectively. Figure 2 shows the comparison between
Equation 20 against Equation 17 which evidences such an
approach.

ξ (Wi)
n ∼=

{
en·

an+Wi
bn

Wn
i

−∞ < Wi < ln

Wi ≥ ln
(20)

Parameters an and bn were found through a nonlinear
regression. The parameter ln is the closest intersection
point of ξ (·) with the approximation given by Equation 20
(see Figure 2). To find this point, we define ln as:

min
ln∈R

∆(ln) (21)

Where∆(ln) is given as a Riemann integral.

∆(ln) =

∫ ∞

−∞
ξ (Wi)

n · dWi−

(∫ ln

−∞
e

an+Wi
bn · dWi +

40
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Table 1 Comparison of Monte Carlo simulations and analytical results using the Fenton-Wilkinson method. Expe=Experimental

{M}
{S} E [y] Expe. mean[y] Var [y] Expe. Var[y] µ̃ Expe. mean[Z] σ̃ Expe. Var[Z]

{M1}
{S1}

12.69 × 10−6 12.69 × 10−6 9.93 × 10−6 9.92 × 10−6 -49.46 -49.41 7.78 7.02

{M2}
{S2}

11.11 × 10−6 11.11 × 10−6 5.40 × 10−6 5.40 × 10−6 -49.47 -49.46 3.34 3.20

{M3}
{S3}

11.11 × 10−5 11.11 × 10−5 5.40 × 10−5 5.40 × 10−5 -39.94 -39.94 3.92 3.89

{M4}
{S4}

45.48 × 10−4 45.46 × 10−4 20.68 × 10−2 14.23 × 10−2 -39.99 -39.06 143.95 116.96

{M5}
{S5}

46.05 × 10−6 45.99 × 10−6 4.28 × 10−6 1.31 × 10−6 -59.89 -57.09 143.54 87.07

M1={m1,m2,m3}={−70,−60,−50} , S1 = {s1, s2, s3} = {1, 2, 3}

M2={m1,m2,m3}={−70,−60,−50} , S2 = {s1, s2, s3} = {1, 2, 2}

M3 = {m1,m2,m3} = {−70,−60,−40}, S3 = {s1, s2, s3} = {1, 2, 2}

M4 = {m1,m2,m3} = {−70,−60,−80}, S4 = {s1, s2, s3} = {4, 8, 12}

M5 = {m1,m2,m3} = {−70,−60,−80}, S5 = {s1, s2, s3} = {8, 12, 4}
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Figure 2 Comparison between ξ (ω) and its approximations, using the parameters in Table 2

∫ ∞

ln

Wn
i · dWi

)
(22)

Equation 22 seeks to approximate the areas of both
functions Equation 17 and Equation 20. The evaluation
of the minimization has been done through numerical
integration, and the exact parameters used with Equation
20 are listed in Table 2.

Next, we proceed to calculate the moments of the function
ξ (·). We have for any i > 1 that:

Wi ∼ N [ui, si] (23)

Then:

fWi
(Wi) =

e
− 1

2

(
Wi−ui

si

)2

√
2πsi

(24)

The first moment is:

E [ξ (Wi)] =

∫ ∞

−∞
ξ (Wi) · fWi (Wi) · dWi =

∫ l1

−∞
e

a1+Wi
b1 · fWi

(Wi) · dWi+

∫ ∞

l1

Wi · fWi
(Wi) · dWi

(25)

=
ui

2

[
erf
(
ui − l1√

2si

)
+ 1

]
+

si.e
− (ui−l1)2

2s2
i

√
2π

+

1

2
e

2b1(a1+ui)+s2i
2b21 erfc

[
b1(ui − l1) + s2i√

2b1.si

]
(26)
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Table 2 Parameters for the approximation given by Equation 20

n a b l ∆(l) (see equation 22)

1 7.78279 1/0.136807 10.8040 1.2197× 10−4

2 7.67784 1/0.13826 11.1620 5.6627× 10−4

And the second moment is:

E
[
ξ2 (Wi)

]
=

∫ ∞

−∞
ξ2 (Wi) · fWi

(Wi) · dWi (27)

=

∫ l2

−∞
e2·

a2+Wi
b2 · fWi

(Wi) · dWi+

∫ ∞

l2

W 2
i · fWi (Wi) · dWi (28)

=
1

2
e

2(b2(a2+ui)+s2i )
b22 erfc

[
b2(ui − l2) + 2s2i√

2.b2.si

]
+

1

2

(
s2i + u2

i

)(
erf
[
ui − l2√

2si

]
+ 1

)
+
si(l2 + ui)e

− (ui−l2)2

2s2
i

√
2π

(29)
We can use Equations 26 and 29 to calculate the variance:

Var[ξ(·)] = E
[
ξ2 (·)

]
− E [ξ (·)]2 (30)

Hereinafter, we must calculate the mean value and
variance in each i iteration as follows.

Calculating the mean value E [Zi] We have Equation 19
as:

E [Zi] = E [Zi−1] + E [ξ (Wi)]

Calculating the varianceVar [Zi] Due to

Var [Zi] ̸= Var [Zi−1] + Var [ξ (Wi)] (31)

because Wi and Zi−1 are correlated, we need to seek an
alternative way to give a solution. Then, calculating first
E
[
Z2
i

]
.

E
[
Z2
i

]
= E

[
{Zi−1 + ξ (Wi)}2

]
(32)

= E
[
Z2
i−1

]
+ 2E [Zi−1 · ξ (Wi)] + E

[
ξ (Wi)

2
]

(33)

Then

Var [Zi−1]+E [Zi−1]
2
+2E [Zi−1 · ξ (Wi)]+E

[
ξ (Wi)

2
]

(34)

The term 2E [Zi−1 · ξ (Wi)] must be treated carefully
because both variables are not independent. Based on [8],
we have that:

2E [Zi−1 · ξ (Wi)] = A− B (35)

Where:
A = 2 · Zi−1E [ξ (Wi)] (36)

B = 2ρ2E [(Wi −mwi
) ξ (Wi)] (37)

mwi
= E [ξ (Wi)] (38)

ρ = − si
swi

(39)

The term E [(Wi −mwi
) ξ (Wi)] is calculated using our

approximation proposed in Equation 20.

E [(Wi −mwi
) ξ (Wi)] = (40)

∫ l1

−∞
(Wi −mwi

) e
a1+Wi

b1 · fWi
(Wi) · dWi+∫ ∞

l1

(Wi −mwi
)Wi · fWi

(Wi) · dWi (41)

So:

E [(Wi −mwi) ξ (Wi)] = (42)

1

2
s2

A · erf
(√

B
)

|A|
+

 l1

√
2
π

s · eB
+ 1

+

1

2

(
s · e

a1
b1

+D
) s

b1
−

s |C| erf
(

|C|√
2b1.s

)
b1C

−
√

2

π
e

l1
b1

−B−D


(43)

Where:
A = ui − l1
B = A2

2s2i

C = s2i + b1 · A
D =

s2i+2b1·ui

2b21
And finally, we have:

Var [Zi] = E
[
Z2
i

]
− E [Zi]

2 (44)

= Var [Zi−1] + E [Zi−1]
2
+

2E [Zi−1 · ξ (Wi)] + E
[
ξ (Wi)

2
]
−

42
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{
E [Zi−1]

2
+ 2E [Zi−1]E [ξ (Wi)] + E [ξ (Wi)]

2
}

(45)

Var [Zi] = Var [Zi−1] + Var [ξ (Wi)]+

2E [Zi−1 · ξ (Wi)]−2E [Zi−1]E [ξ (Wi)] (46)

Now with E [ξ (Wi)] using Equation 26, Var [ξ (Wi)] using
Equation 30 and 2E [Zi−1 · ξ (Wi)] using Equation 35, we
have all equations to be used together with Equation 46,
which can also be rewritten as:

Var [Zi] = Var [Zi−1] + Var [ξ (Wi)]+

2 · Cov [Zi−1 · ξ (Wi)] (47)

Where: Cov means covariance. Finally in this section,
we have found all the formulations to evaluate E [ξ (Wi)],
Var [ξ(Wi)],E [Zi], andVar [Zi] through the Equations 26,
30, 3, and 46, respectively.

4. Validation and analysis

We are going to validate our formulas by comparing them
against the results of the Monte Carlo simulation. For this
aim, we sum different numbers of RV’s with a wide range
of parameters. The difference between the theoretical and
experimental results are shown in Tables 3, 4, and 5. In
this way, we can show that the approximation for ξ (·) let
us calculate the mean value and variance for Z with a low
error, even when the range of RVs are N = 20, and the
parameters arem ∈ [−80, 80] and s ∈ [6, 12].

Explanation of Monte Carlo simulations 4,5 and 6 used
to analyze Equations for E [Z] and Var [Z] We want
to assess Equations 3 and 46 through simulations.
Simulation number 4 analyzes the sum of only two
lognormal RVs, N = 2. Then, we generate 107 samples
forXi following a Normal PDF with parametersmi, si and
finally, we calculate Equation 49. From this result, we get
the experimental mean value and variance. We repeat this
procedure 4 times with different parameters mi and si.
Simulation 5 and 6 follow the previous procedure, using
N = 10 andN = 20 RVs, respectively.

Zi = 10 · log10
(
10

Xi−1
10

[
1 + 10

Xi−Xi−1
10

])
(48)

∀i = [1, 2, .., N ] (49)

The 3rd result in Table 4 and the 4th result in Table 5 show
the maximum variance difference between the theoretical
and the experimental. On the other hand, this method
is based on the work of Schwartz-Yeh, but with a lower
number of terms. To validate the performance of the
method, two metrics are taken into account: error of the
mean value and error of the variance.

• The perceptual error of the mean value: It is the
difference between the experimental (by means of
Monte Carlo simulation) and the theoretical result.
This error will be percentual using as a reference the
experimental result. The way to calculate this value
is:

[%]mean error =
100 · ∥Expe.E [Z]− TheoreticalE [Z]∥

Expe.E [Z]
(50)

• Percentual error of the variance: It is the difference
between the experimental and the theoretical result
of the variance. This error will be percentual using as
a reference the experimental result, and the way to
calculate this value is:

[%] var error =
100 · ∥Expe.Var [Z]− TheoricalVar [Z]∥

Expe.Var [Z]
(51)

The proposed method has no restrictions with respect to
m values and s values of each RV. However, the numerical
evaluation must take into account the quantization error.
That is why we must look for methods to reduce the
error with respect to the analytical model proposed. Our
initial approach was aimed at characterizing the sum of
lognormal variables in a telecommunications scenario
(where it is usual to take values for m = [−80,−60]);
however, in our assessment, a greater range for the mean
value was usedm = [−80, 80].

When we evaluate 10
Xi
10 , very small or large numerical

values can be generated which leads to errors due to
rounding. To reduce the rounding error, it is important
that when we calculate Equation 15, the order of the
variables is chosen in such a way as to guarantee that
Wi ≥ 0. Another important aspect is to analyze how the
value of µ̃, σ̃ changes in each iteration. The order of a
set of N lognormal RVs does not affect the result of µ̃, σ̃
analytically. But in the numerical evaluation, it is observed
that for the same set of random variables, the result can
change according to its order. The results of simulation
6 show that the error of the mean value is usually below
0.5 %, whereas that the error of σ̃ can change drastically
from 20 to 0.1 % just with an adequate ordering of random
variables. Through experimental processes, it was found
that σ̃ is more sensitive to the values ofmi instead of si.

Hence, the ordering of random variables is made simply
with respect to the value of mi using the command sort
of Matlab. To validate which ordering is appropriate, the
following experiment was carried out.

Explanation of simulation 7 used to determine the effect
of ordering For different orderings, we are going to
calculate the error metrics of our method using as a
reference Monte Carlo simulation. In this case, we use
10 Normal RV’s Xi, i = {1, ..., 10} with parameters
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Table 3 Assessment withN = 2, samples for each RV =106

{m1,m2} {s1, s2} Theo. E [Z] Expe. E [Z] Mean Error Theo. Var [Z] Expe Var [Z] Var Error

51, 65 5, 12 66.44 66.47 0.03 104.41 103.38 1,03

-71, 10 5, 8 10.00 10.02 0.02 64 64.04 0.04

27, 24 9, 10 31.84 31.84 0.00 57.16 56.44 0.72

-33, 80 11, 7 80 79.97 0.03 49 48.83 0.17

Theo.=theoretical, Expe.=experimental, Mean error=∥ Theo. E [Z]− Expe. E [Z] ∥,
Var. error=∥ Theo. Var [Z]− Expe. Var [Z] ∥

Table 4 Assessments withN = 10, samples for each RV =106

{m1,m10} {s1, s10} Theo. E [Z] Expe. E [Z] Mean Error Theo. Var [Z] Expe Var [Z] Var Error

M1 S1 71.75 72.19 0.44 45.79 47.41 1.62

M2 S2 82.79 82.64 0.15 63.96 65.54 1.58

M3 S3 73.13 73.61 0.48 94.62 101.71 7.09

M4 S4 63.02 62.82 0.20 24.89 24.94 0.05

M1={−50, 68,−43,−19, 6, 64, 20,−25, 20,−20} , S1 = {9, 9, 11, 7, 4, 7, 4, 10, 11, 10}

M2={70,−56, 35,−37,−48, 6, 80,−65, 47, 58} , S2 = {9, 10, 10, 7, 9, 6, 10, 11, 7, 10}

M3 = {56, 72,−30,−11,−10, 23, 7,−72,−19, 3}, S3 = {7, 11, 9, 8, 6, 4, 11, 8, 9, 11}

M4 = {−27,−47,−38,−37, 63, 15, 31,−76,−19, 37}, S4 = {5, 11, 8, 10, 5, 6, 5, 4, 4, 4}
Theo.=theoretical, Expe.=experimental, Mean error=∥ Theo. E [Z]− Expe. E [Z] ∥,

Var. error=∥ Theo. Var [Z]− Expe. Var [Z] ∥
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(a) Random ordering
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(b) Ascendant ordering
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(c) Descendant ordering

Figure 3 Tracking the evolution of µ̃, σ̃2 for different ordering
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Figure 4 Histogram: Sorting method to get the smallest error
of σ̃2

randomly selected for the mean value and standard
deviation from m = [−80, 80] , s = [4, 20] respectively.
For each RV 106 samples are generated. After that, the

following operation is performed: y =
∑10

i=1 10
Xi
10 ; and

we calculate Y = 10 · log10(y).

For each set of m and s, we sort lognormal RVs according
to m in three different ways: random, ascendant and
descendant. We calculate the theoretical mean value
and variance of Y in each order, and these results are
compared against the experimental results given by Monte
Carlo .

Finally, we choose the ordering with the smallest error.
This procedure is done 106 times to know which ordering
gives the smallest average error for the variance. To
understand this phenomenon even better, as an example,
we plot the evolution of µ̃ and σ̃2 in each iteration for
each kind of ordering (Figure 3a-3c). The overall result is
shown in Figure 4 as a histogram, where we can see that
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Table 5 Assessment withN = 20, samples for each RV =106

{m1,m20} {s1, s20} Theo. E [Z] Expe. E [Z] Mean Error Theo. Var [Z] Expe Var [Z] Var Error

M1 S1 84.55 84.78 0.23 28.96 32.53 3.57

M2 S2 80.11 80.25 0.14 34.83 32.32 2.51

M3 S3 77.95 77.90 0.05 102.78 103.45 0.67

M4 S4 85.42 85.15 0.27 65.11 69.10 3.99

M1 = {54, 3, 25,−17,−59, 28, 55, 37, 78, 77, 70, 56,−18, 57,−74, 60, 8, 51,−37,−22},

S1 = {5, 5, 6, 4, 10, 4, 5, 5, 8, 5, 12, 7, 7, 8, 9, 10, 7, 10, 5, 6}

M2 = {70, 31,−16,−21,−6, 23, 0,−66, 76,−19,−32, 40, 62, 6,−66, 4,−66,−12,−39,−37},

S2 = {12, 6, 9, 10, 9, 7, 8, 12, 5, 4, 4, 10, 9, 8, 12, 9, 5, 5, 8, 11}

M3 = {1,−62, 19, 33, 76,−1,−57, 32, 52, 21,−8,−48, 9,−66,−58, 33, 55, 18, 37, 37},

S3 = {7, 12, 10, 11, 12, 4, 7, 8, 12, 4, 8, 7, 7, 12, 6, 12, 12, 8, 8, 6}

M4 = {−39, 43, 8, 28, 74,−9, 3,−5,−44, 68,−70,−37, 80,−7, 17, 19, 42,−68,−20,−64},

S4 = {6, 11, 11, 4, 12, 4, 7, 5, 9, 7, 9, 4, 11, 7, 5, 9, 4, 5, 6, 11}
Theo.=theoretical, Expe.=experimental, Mean error=∥ Theo. E [Z]− Expe. E [Z] ∥,

Var. error=∥ Theo. Var [Z]− Expe. Var [Z] ∥
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(a) [%]mean error
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(b) [%] variance error

Figure 5 Comparison of the error of the variance for different orderings

the smallest error occurs when the order is descending
(with a probability of 47%). Note that the smaller error
is reached with a descending order because the values
converge asymptotically in each iteration. Meanwhile, in
random and ascending ordering, abrupt changes of these
metrics in each iteration are observed. (see Figure 3a-3c)

In order to give conclusions, we characterize statistically
the behavior of the error metrics through their CDF. Figure
5 shows the CDF of the error for both metrics: the error
of the mean value and the error of the variance for each
ordering. It is noted that the error in the mean value µ̃
is below of 0.2% (with a probability of 90% of the time)
in all orderings, while the error in σ̃ is below 3% (with a
probability of 90% of the time) for descending order.

5. Conclusions

In this paper, we have proposed an efficient method based
on the Schwartz-Yeh’s work for calculating the mean value

and variance of the sum of lognormal variables. We use
Equation 17 as a recursive process in conjunction with our
Equations 3 and 46 to find the mean value and variance.
When compared to other methods in the literature, the
benefits of our method are: 1) Computational efficiency
because Equation 17 was expanded in 40 terms in previous
works, now we use only two terms. 2) Low error and
useful in many fields because it can be used with a wide
range of parameters. Take into account that the order of
the terms of the sum does matter due to the numerical
evaluation (the rounding errors). Therefore, we want to
highlight that the best results are obtained when (a) the
variables are processed in descending order with respect
to their mean, and (b)Wi ≥ 0 is guaranteed.

The validation of the proposed method has considered
ranges for random variables with parameters m ∈
[−80, 80] and s ∈ [6, 12], and the descending ordering
showed that the error for µ̃ is below 0.2% and the error
for σ̃ is below 3%, both cases with a probability of 90% of
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the time.
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