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ABSTRACT: In civil engineering, structural optimization seeks an efficient use of material
resources and the automatization of the design process of a wide range of structures
such as frames, bridges, and other systems. This work develops a novel multiobjective
topology optimization process to minimize planar trusses’ weight and strain energy. In
the initial stage, an optimized discrete geometry of the ground structure is generated
from a continuum design space with general boundary conditions (loads and supports)
using the stress trajectories theory. In the final stage, size optimization is performed
using the concept of Envelope Pareto Front (EVP), which is obtained from the best
solutions provided by three efficient multiobjective metaheuristic algorithms (NSGA-II,
MOPSO and AMOSA). The results obtained on a large-scale truss (200m span continuous
bridge) showed that innovative geometries could be found (new connectivity patterns).
The generation of an EVP allows getting a more significant number of non-dominated
solutions, exploring a broader region of the Pareto front and the two objective
functions, achieving greater convergence and diversity than the algorithms’ individual
performance. The computation cost of the optimization strategy was satisfactory, which
allows its potential implementation in actual large-scale trusses, discovering optimized,
innovative solutions for this type of structures.

RESUMEN: En ingeniería civil, la optimización estructural busca un uso eficiente de
recursos materiales y la automatización del proceso de diseño de un amplio rango
de estructuras como pórticos y puentes, entre otros sistemas. En este trabajo se
desarrolla un novedoso proceso de optimización topológicamultiobjetivo paraminimizar
el peso y la energía de deformación de armaduras planas. En una fase inicial, una
geometría discreta optimizada de la estructura base es generada a partir de un espacio
de diseño continuo con condiciones de borde conocidas (cargas y apoyos) usando la
teoría de las trayectorias de esfuerzo. En la fase final, se ejecuta optimización de
tamaño usando el concepto de frente de Pareto Envolvente (EVP), que se obtiene
de las mejores soluciones proporcionadas por tres algoritmos metaheurísticos de
optimización multiobjetivo (NSGA-II, MOPSO y AMOSA) eficientes. Los resultados
obtenidos en una estructura de gran escala (Puente continuo de 200m de luz) mostraron
que, usando el proceso propuesto, pueden encontrarse geometrías innovadoras (nuevos
patrones de conectividad), y la generación de un EVP que permite obtener un mayor
número de soluciones no dominadas a lo largo de las dos funciones objetivo, logrando
una mayor convergencia y diversidad en comparación con el desempeño individual de
los algoritmos.

El costo computacional de la estrategia de optimización
fue satisfactorio, lo cual permite una aplicación potencial
en armaduras reales de gran escala, descubriendo
soluciones innovadoras optimizadas para este tipo de
estructuras.

9

* Corresponding author: Luis Humberto Niño-Álvarez

E-mail: luis2188256@correo.uis.edu.co

ISSN 0120-6230

e-ISSN 2422-2844

 

 

 

 

DOI: 10.17533/udea.redin.20220576 9

https://orcid.org/0000-0001-9753-9958
https://orcid.org/0000-0002-2895-9374
http://crossmark.crossref.org/dialog/?doi=10.17533/udea.redin.20220576
https://www.doi.org/10.17533/udea.redin.20220576
https://www.doi.org/10.17533/udea.redin.20220576
https://www.doi.org/10.17533/udea.redin.20220576
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://www.doi.org/10.17533/udea.redin.20220576


L. H. Niño-Álvarez and et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 107, pp. 9-25, 2023

1. Introduction

Structural optimization is a relevant research topic in civil
engineering, allowing the structural design process to be
formulated as a mathematical programming problem that
can be solved by applying optimization algorithms. With its
use, better performance and efficiency of the structures
[1], savings in the use of resources (e.g., materials) [2],
and faster and automatic implementation of the design
(in comparison with the traditional design process) can be
obtained in reasonable computational times [3].

Trusses are widely used in civil engineering (e.g.,
roofs, sports stadiums, bridges, and power transmission
towers) [4, 5]; they are versatile, light, simple installation,
and adaptable to diverse geometrical configurations
[6–8]. Recent single objective structural optimization
studies (power transmission towers) report material
savings ranging from 6% to 12% [6, 9, 10] less than the
initial design. Many structural optimization problems
of trusses have been solved based on a single objective
function, usually structural weight [11, 12]. However, in
practical situations, the designer must identify several
objective functions (the most convenient) to measure
economy, strength, serviceability and other factors
affecting the structure’s performance [1]. In the design
of a structure, the goal is generally to obtain minimum
cost and higher safety or minimum weight and higher
stiffness. These objectives are opposed and generate
conflict since improving one implies damaging the
other. Multiobjective optimization techniques based
on metaheuristic algorithms are a suitable tool for the
solution of this type of problem [13, 14] and are extensively
employed in this work.

In this context, three types of optimization can be
applied to trusses: size, shape and discrete topology. Size
optimization finds the value of the cross-sectional areas;
shape optimization searches the nodal positions.; discrete
topology optimization searches the connectivity pattern
of the nodes for a defined ground structure (a structure
that contains all possible geometrical configurations),
allowing the presence or removal of elements and nodes.
Topology optimization is the most general problem since it
deals with all the possible configurations, instead of one in
particular (for size and shape optimization). Its application
in real scale structures can result in greater material
savings by potentially searching for the best topology [12].

Many truss topology optimization studies reported
are single objective function (mainly minimizing weight)
small-scale benchmark problems (SOSS problems)
and are based on applying metaheuristic algorithms as
optimization methods. In order to solve SOSS problems,
Hybrid Genetic Programming (HGP) [11], Heat Transfer

Search (HTS) [12], Firefly Algorithm (FA) [15], Search
Group Algorithm (SGA) [16] and Passing Vehicle Search
Simulated Annealing (PVS-SA) [17] have been used.
For multiobjective topology optimization small scale
problems (MOSS problems), the studies mainly consider
the simultaneous minimization of the structural weight
and the maximum displacement of the nodes as objective
functions: Multiobjective Genetic Algorithm (MOGA) [18],
Multiobjective Adaptive Symbiotic Organisms Search
(MOASOS) [19] and Multiobjective Uniform Genetic
Programming (MUGP) [20].

On the other hand, large-scale (hundreds of elements [5])
truss topology optimization applications are limited.
In [9, 21, 22], modules (groups of elements with
predetermined topologies) are used during the topology
optimization process to minimize the weight. In [23], the
AMOSA, SPEA and PBIL algorithms were applied to the
3D tower topology optimization problem for multiobjective
problems. Additionally, many of the large-scale studies
have been addressed with only a size optimization
approach and a single objective [5, 6, 24] and few with
multiobjective [25–28].

Truss topology optimization problems have been
approached mainly with the ground structure approach
(see [15, 17]), based on a reduction process where
elements and nodes are removed of an initial structure
(with several possible initial elements, defined ccording to
the potential connections between the nodes that make
up the search space) until the best possible solution is
found [29]. As the ground structure influences the final
topology, the method used to generate it is very important.
If a method can generate a well-defined ground structure
with only a few nodes (in key positions) and a moderate
number of bars, this can help obtain a good topology and
decrease the computational cost, which is very significant
in large-scale problems [30]. Among the methods used
to generate the ground structure are: the classical
connectivity level method [29], the macro-element method
[31], and the stress trajectories method [30, 32].

The general purpose of topology optimization is to
find the optimal load paths to the supports (i.e., the best
nodes and bar connections) [32]. In this context, the use
of optimization strategies based on stress trajectories [30]
to generate the ground structure may be helpful since,
for equivalent load and support conditions, the trusses
obtained with topology optimization coincide (in a discrete
way) with the principal stress trajectories of an optimal
continuum structure [33]. In [34], they presented the
constructive topology optimization method PSL (Principal
Stress Lines) based on stress trajectories to locate the
material and define the geometry and topology of the
structure. In [35], they proposed an approach to optimize
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lattice-core structures using stress trajectories. In [36],
they presented a methodology for 2D and 3D topology
optimization of lattice structures using the principal
deformation trajectories to define the orientation of
structural elements.

Considering the discussion above, this work presents
a novel large-scale truss multiobjective topology
optimization process and its results when applied to
planar trusses. The optimization is implemented in two
stages: (1) For a continuum planar design space and
boundary conditions known, the ground structure topology
is generated using the concept of stress trajectories.
(2) Using size optimization, the topology generated in
the initial stage is optimized by applying three efficient
and popular multiobjective metaheuristic algorithms
(in terms of their citations); these are: Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [37], Multiobjective
Particle Swarm Optimization (MOPSO) [38] and Archived
Multiobjective Simulated Annealing (AMOSA) [39].
Applying the idea of selecting the best non-dominated
solutions provided by each of the three algorithms, a single
Envelope Pareto Front (EVP) is found (making an analogy
to the design envelope), achieving a greater convergence
and diversity compared to the individual performance of
the algorithms. The individual performance of the three
optimization algorithms (NSGA-II, MOPSO, AMOSA) was
evaluated using the Hypervolume metric [40]. The stress
trajectories were calculated with the method proposed by
Beyer [41].

The outline of thiswork is as follows: a detailed explanation
of the multiobjective optimization problem is presented in
Section 2. In Section 3, the stress trajectories are studied
and defined. In Section 4, the proposed multiobjective
topology optimization algorithm is introduced and, in
Section 5, a large-scale truss design example that proves
the proposed algorithm’s effectiveness is offered. Finally,
in Section 6, the conclusions are presented.

2. Multiobjective optimization and
multiobjective metaheuristic
algorithms

The optimal solution of a multiobjective problem (MOP)
is not a single, but a set of solutions considered equally
important and defined as Pareto-optimal solutions. This
set of solutions represents the compromise solutions
between the different conflicting objectives. The main goal
of the resolution of a MOP is to obtain the Pareto optimal
set and, consequently, the Pareto front. Using the Pareto
front the preferred solution is selected according to the
priority of the objective functions, the experience of the
decision-maker, and (or) other criteria [42]. A MOP is

formulated according to Equation (1) [40].

Min: F (x) = [f1(x), f2(x), . . . , fM (x)]

Subject to: hk(x) k = 1, 2, . . .K

gj(x) j = 1, 2, . . . J

xi
(L) ≤ xi ≤ xi

(U) i = 1, 2, . . . n

(1)

where, F (x) represents the vector of the M objective
functions to be optimized. x = (x1, X1, . . . xn) is a
solution with n design variables. hk(x) and gj(x) are

the equality and inequality constraints. x
(L)
i and x

(U)
j

are the boundary limits of the decision variable xi . In
the following, the fundamental concepts in multiobjective
optimization are addressed.

2.1 Pareto dominance and Pareto
optimality, Pareto optimal set and
Pareto front

Pareto dominance is used to compare and sort the solution
vectors x in a MOP. One vector solution x1 dominates
another vector solution x2 (denoted as x1 ≺ x2) if and only
if (in the context of a minimization problem) Equation (2) is
satisfied [40].

F (x1) ≤ F (x2) for allm

F (x1) < F (x2) for at least onem

m = 1, 2, . . .M

(2)

A solution x, is said to be Pareto optimal (not dominated),
if and only if there is no other solution X* that dominates
it [13]. The Pareto optimal set refers to the values of the
decision variables x for the non-dominated solutions (not
dominated for anymember of the set) in the decision space
[40]. Finally, Pareto front is the image of the Pareto optimal
set in the objective space [42].

2.2 Goals of a multiobjective optimization
problem

Getting the Pareto front is the primary goal of a MOP.
A good approximation of the Pareto front must contain
a limited number of solutions that meet the following
conditions: (i) convergence: be as close as possible to
the true Pareto front, and (ii) diversity: find solutions
as diverse as possible, i.e., evenly distributed along the
non-dominated Pareto front [42]. When the actual Pareto
front is unknown, the Hypervolume (HV) metric can be
used [40]. The hypervolume measures the volume (in the
objective space) covered by the calculated Pareto front
solutions, in problems where all objectives are minimized.
Its use is recommended using a normalized scale for the
objective function values.
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2.3 Multiobjective metaheuristics
algorithms (MOMAs)

MOMAs are multiobjective optimization techniques
oriented towards the direct computation of the Pareto
front in a single run, simultaneously optimizing the
individual objectives. However, the main disadvantage of
these algorithms is the setting of additional parameters
related to their functioning and a decrease in the resulting
quality in the optimization process when the number of
objectives increases. They are beneficial in problems
with no information about preferences or priority of
objectives [40]. Generally, they have adapted versions
of the single-objective metaheuristic algorithms (e.g.,
Genetic Algorithm (GA), Evolution Strategy (ES), Simulated
Annealing (SA), Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Harmony Search (HS) among
others). These techniques have been established as
efficient optimization techniques to solve multiobjective
problems. Because of their reliability, free derivative
nature and wide use, in this work, the following three
multiobjective metaheuristic algorithms were used:
Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[37], Multiobjective Particle Swarm Optimization (MOPSO)
[38] and Archived Multiobjective Simulated Annealing
(AMOSA) [39]. The parameters used for each algorithm
are presented in Section 5.2.

3. Definition of stress trajectories

Stress trajectories are tangential lines in the direction
defined by the principal stresses at each point of the
design domain. For plane stress case (σx, σy and τxy),
the principal stresses σ1 and σ2 produce two stress
trajectories that form an orthogonal network composed
of shear-free lines. These trajectories are very useful
to understand the load paths (how external loads move
through the structure to the supports), provide information
related to how the flow of the principal stresses occurs
in the plane of analysis, and are related to structural
optimization [43, 44]. The direction of the principal stresses
can be obtained by applying the stress transformation
equations at each point of the design domain, given the
numerical information of the plane stress state (for a
continuous arbitrary design domain, it can be determined
using the finite element method). Figure 1 schematically
shows the stress trajectories distribution for a cantilever
beam with a point load at the free end.

Equation (3) gives the differential equation for a stress
trajectory in the xy plane (3):

dy

dx
= −σx − σy

2τxy
±

√
1 +

(
σx − σy

2τxy

)2

(3)

 

 

Figure 1 Representation of stress trajectories for a cantilever
beam

For some special cases, Equation (3) can be solved
analytically. However, most stress distributions have
complicated shapes requiring numerical methods to
approximate the solution [43]. This last option was taken
in this work.

4. The proposed multiobjective
topology optimization process

The multiobjective topology optimization process
presented in this paper applies to planar trusses. It
was performed in two stages: An initial stage where, using
the stress trajectories, the ground structure’s optimized
geometry (topology) is generated from a continuum
design space with known boundary conditions. In the
second stage, applying size optimization, the ground
structure generated in the initial stage is optimized to
simultaneously minimize weight and strain energy. The
multiobjective metaheuristic algorithms NSGA II, MOPSO
and AMOSA are used as optimization methods. The
general strategy proposed in this paper aims to generate a
ground structure with a reduced number of nodes (located
at key points) and elements (in the directions defined by
the stress trajectories), which is optimized by combining
the capabilities of the three MOMAs algorithms (see
Section 2.3) to improve the results of convergence and
diversity using the EVP concept. The following section
presents a detailed description of this process.

4.1 Description of the strategy to generate
the ground structure

The strategy to generate the ground structure requires
user interaction in some key steps of its generation. It
consists of 5 steps, one step implemented in ANSYS® [45]
(Step 1) and four steps in MATLAB® [46] (Steps 2 to 5). The
steps are shown schematically in Figure 2, and a detailed
description of the steps is presented subsequently.

Step 1: Computing the plane stress state

For a continuum design domain, the plane stress state with
defined boundary conditions (external loads and supports)
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(a) Initial continuum plane problem
 

 

(b) Continuum static problem model

 

 

(c)Model discretization of the static problem
 

 

(d) Text file with the plane stress state

 

 

(e) Stress trajectories representation
 

 

(f) Representation of priority stress trajectories

 

 

(g) Representation of the preliminary ground structure
 

 

(h) Representation of the definitive ground structure

Figure 2 Steps to generate the ground structure
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is calculated (see Figure 2a). The static problem is solved
using ANSYS® considering a homogeneous, isotropic
material with elastic properties (see Figure 2b). A text file
(.txt) (see Figure 2d) with the numerical information of the
plane stress state (σx , σy and τxy) associated with the
design domain discretization in Figure 2c is obtained.

Step 2: Detailed calculation of stress trajectories

Implementing the method developed by Beyer [41], the
numerical information of the plane stress state (text file
of Figure 2d) is used to interpolate and approximately
calculate (using discrete points) the two families of stress
trajectories σ1 (red color) and σ2 (blue color), as shown in
Figure 2e. The application of the numerical method [41]
requires the setting of the following parameters:

• Defining an interpolation technique to determine the
stress state in an arbitrary point in the continuum
design domain, using the discrete information in the
text file. The Inverse Distance Weighting method
(IDW) [47] was used in this work.

• Defining an iteration point (IP ), where the
computation of the stress trajectories starts.
The designer arbitrarily defines its location (within
the limits of the design domain); however, it is
recommended that this point be located far from
the points where the loads and supports are placed,
in which the stress trajectories tend to lose their
regularity and present sudden changes in their
direction because they are singular points (σx = σy

and τxy = 0) [44].

• Step size r, to calculate the discrete points of each
stress trajectory. The recommended value for r is
L/100, whereL is the smallest edge dimension in the
design domain [41]. For Figure 2e, the value ofL isL2.

• Separation value among stress trajectories a. The
user defines an arbitrary value depending on the
required resolution.

The total number of calculated stress trajectories depends
mainly on problem boundary conditions and the separation
value among trajectories a. Initially, a high number of
trajectories is required to know how they are distributed
in the design domain, so a relatively small value of a is
assumed. Moreover, the quality of the results and the
computational cost of the numerical method [41] depend
on:

• Details of the discretization in ANSYS®. More detail
implies more data in the text file with the stress
state, improving the interpolation quality of the stress
trajectories; however, the computational cost can
significantly increase, since there is more processing
information for the IDW interpolation method.

• Separation among trajectories a. A smaller
separation value implies an increase in the number
of trajectories, a better resolution, and a higher
computational cost.

• Step size r. A smaller value of r means a
better resolution of the trajectories and a higher
computational cost.

• The processing specifications of the computer.

• The problem scale, i.e., the size of the design domain.

In order to reduce the computational cost of the numerical
method, the symmetry properties of the structure can be
used, and the detail of the numerical model in ANSYS®
can be reduced (applying meshing techniques to calculate
the representative information for the stress state with the
least possible discretization).

At this point, the goal is to obtain a representative
number of trajectories with reasonable computational
costs, to observe in detail the orientation of the principal
stresses in the entire design domain, to identify the
priority stress trajectories (the most important of all the
calculated trajectories, representing the principal stress
paths) used to construct the ground structure.

Step 3: Selection of the priority stress trajectories

The ground structure is generated with the priority
stress trajectories, since using all the calculated stress
trajectories σ2 (see Figure 2e) may be impractical,
considering that a high number of nodes and elements are
generated. Accordingly, a strategy to generate the ground
structure using a reduced number of stress trajectories
is used. The strategy consists of selecting the priority
trajectories, which transmit a higher value of stress or
are more expensive (which means higher loads) [32]. The
cost concept is directly related to the general objective of
topology optimization, which is to determine the optimal
material distribution in a design domain, prioritizing areas
where the loads are transmitted and the largest stresses
occur [30, 33]. The sub-steps for selecting the most
expensive trajectories are:

• Measuring the cost of each trajectory: for each of the
stress trajectories σ1 and σ2 in Figure 2e, the average
principal stress value of the trajectory is calculated
(σ̄1 or σ̄2, respectively). Since each trajectory is a set
of discrete points in space along the direction of the
principal stress (σ1 or σ2), the cost of the trajectory is
the result of computing the average principal stress
value of the points that compose it. As a result, the
transmission load cost along the trajectory can be
approximately measured.
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• Trajectories classification record: a record is created
to classify the trajectories of each family (σ1 and
σ2), according to the cost value. The trajectories
σ1 are classified in descending order since they are
maximum principal stress (or tension) trajectories.
Trajectories σ2 are classified in ascending order since
they are minimum principal stress (or compression)
trajectories.

• Identifying the most expensive priority trajectories:
for each of the essential nodes (where loads
and supports are located), the derived trajectory
(σ1 or σ2) that has the highest cost is identified,
according to the classification record. Following
the consulted literature [32] and preliminary
computations performed in this work, the most
expensive trajectories are usually derived from the
essential nodes. These trajectories must always be
present to construct the definitive ground structure.

• Identifying additional priority trajectories: to
construct the definitive ground structure, it is
necessary to include some stress trajectories that
are not derived from the essential nodes, to maintain
the geometry defined by the stress trajectories.
Their assignment can be done in two ways: (1)
The user indicates the percentage of the original
trajectories in Figure 2e (from each family σ1 and σ2

) to include in the final ground structure, following
the classification order of the record. (2) arbitrarily,
the user defines the additional trajectories to be
included, according to the record. Thus, it is possible
to get a reduced number of stress trajectories (see
Figure 2f), representing the highest cost.

Step 4: Calculation of the preliminary ground
structure

The nodes of the preliminary ground structure are located
at the points of intersection between the priority stress
trajectories and the boundaries of the design domain
in Figure 2f. To avoid manufacturing and construction
problems (e.g., very short elements), nodes that are very
close to each other are adjusted in a single common
node. In addition, the designer can manually remove
nodes that are not considered necessary. The straight
lines among the intersection nodes form a polygonal
elements mesh (called macroelements [31]), keeping a
geometry that resembles the priority stress trajectories
(with a minimum number of trajectories, the aim is to
maintain their original shape when they are converted
to macroelements), representing the preliminary ground
structure, as shown in Figure 2g.

Step 5: Calculation of the definitive ground structure

The preliminary ground structure shown in Figure 2g is
used to create additional connections within each polygon
with more than three sides to generate a triangular stable
ground structure (see Figure 2h). These elements are
randomly generated in each polygon. In this way, the
definitive ground structure with an optimized geometry
(topology) is generated. By applying the strategy proposed
in [48], the elements are organized in groups (user-defined
value) to reduce the number of variables. The elements
are grouped depending on the axial loads obtained in a
preliminary analysis, where they are all assigned the same
cross-sectional area.

4.2 Mathematical formulation applied to the
multiobjective optimization problem

Following the strategy described in Section 4.1, the ground
structure (see Figure 2g) is composed of a small number
of strategically located nodes in the design domain.
These nodes are connected by elements oriented in the
directions defined by the stress trajectories (except for
the additional connections that stabilize the structure and
the initial search space boundaries) and are organized
into n groups of variables. Thus, the optimized geometry
(topology) of the ground structure is initially known, so
the elimination of nodes and elements is not considered
during the optimization process, and the mathematical
formulation of size optimization is applied as follows:

Finding the value of design variables (cross-sectional
areas of the elements) x = (A1, A2, . . . An) that
simultaneously minimize the weight (W) and strain energy
(Es) of a planar truss (as shown in Figure 2g), generated
with the procedure in Section 4.1. The mathematical
formulation is given by Equation (4)

Minimize: F (x) = [W (x), Es(x)]

W (x) =

n∑
i=1

ρiAiLi Es(x) =
1

2

n∑
i=1

N2
i Li

AiEi

Subject to: h1(X): Static equilibrim, ku = f
g1(X): ANSI/AISC 360-16 Standard (tension and
compression)
g2(X) : Vertical displacement of the nodes, δj ≤ δmax

j

Cross-sectional area:
Continuos variables

Ai
min ≤ Ai ≤ Amax

i i = 1, 2, . . . n (4)

where Ai, ρi, Ni, Li and Ei represent the design variable
area, material density, axial force, length, and elasticity
modulus for the i element, respectively. Ku and f are
the global stiffness matrix, the nodal displacements vector
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and the external nodal forces vector over the structure.
δj is the calculated displacement for node j and δmax

j

is the maximum allowable displacement. Amin
i and

Amax
i are the design variable Ai limits in the continuous

interval. ANSI/AISC 360-16 Standard [49] requirements
for the design of tension and compression elements
(without considering connection design and using the
LRFDmethod) were used in thiswork and for further detail,
the reader could refer to this Standard.

Description of the strategy for handling constraints

The constraint h1(X) is satisfied by applying the
direct stiffness method (implemented by the authors
in MATLAB®). The cross-sectional area constraint is
satisfied during the optimization process because the
search space limits the design variables. g1(X) and
g2(X) constraints are handled using the constrained
tournament technique [40], adapted to multiobjective
optimization problems. This technique does not require
penalty parameters and can be used especially with
population-based optimization algorithms (e.g., NSGA-II).

4.3 Description of the strategy to solve the
multiobjective optimization problem

Following the mathematical problem presented in Section
4.2, the ground structure represented in Figure 2h
is optimized using the multiobjective metaheuristic
algorithms NSGA-II, MOPSO and AMOSA. The best result
obtained with each one of the algorithms is a Pareto front
with non-dominated solutions distributed along with the
two objectives (weight and strain energy), as illustrated in
Figure 3.

Applying the idea of combining the NSGA-II, MOPSO and
AMOSA Pareto fronts, a single non-dominated Pareto
front with the best solutions of the optimization process is
calculated (see Figure 4a). In this work, this is called an
Envelope Pareto Front-EVP (in analogy to the structural
design concept of the envelope), as shown in Figure 4b.

A pseudocode summarizing the proposed multiobjective
topology optimization process is presented in Table 1.

5. Numerical example and results

This section shows the validation results of the
optimization process presented in Section 4. Its
performance is assessed by the solution of a large-scale
structure. This structure is a continuous bridge truss (see
Figure 5), studied by [50]. The truss has a span L=200
m and a height h=10 m is assumed (the original study
applies shape optimization and a minimum value of h=5

 

 

(a)

 

 

(b)

 

 

(c)

Figure 3 Representation of Pareto fronts for the multiobjective
topology optimization problem calculated with NSGA-II (left),

MOPSO (center) and AMOSA (right) algorithms

m is established for the upper nodes due to operation
and construction limitations). The structure is subject to
vertical loads P acting on the lower unsupported nodes
with a dead load value DL=-120 kN and live load LL =-80
kN. The material is assumed to be steel (Fy=240 MPa and
E=200 GPa). There is a displacement constraint of L/240 in
the vertical direction for all nodes. The load combination
1.2DL+1.6LL is considered for designing the structural
elements. The displacement constraint is evaluated with
the service loads. The problem is solved using continuous
variables (as studied initially by [50]) in the interval [500,
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Table 1 Pseudocode for the proposed multiobjective topology optimization process

Multiobjective topology optimization process in two stages
1 START
2 Stage 1: Generation of the ground structure according to the strategy described in Section 4.1
3 Computation the plane stress state //Step 1 in Section 4.1
4 Detailed calculation of stress trajectories //Step 2 in Section 4.1
5 Selection of the priority stress trajectories //Step 3 in Section 4.1
6 Calculation of the preliminary ground structure //Step 4 in Section 4.1
7 Calculation of the definitive ground structure // Step 5 in Section 4.1
8 //Stage 2: Apply size optimization to optimize the ground structure generated in Stage 1
9 Run algorithms NSGA-II, MOPSO and AMOSA to solve the multiobjective optimization problem described in Section 4.2
10 Obtain Pareto fronts for NSGA-II, MPSO and AMOSA //See Figure 3 in Section 4.3
11 Combine NSGA-II, MPSO and AMOSA Pareto fronts to generate the envelope Pareto front
EVP with best non-dominated solutions //See Figure 4 in Section 4.3
12 END

 

 

(a)

 

 

(b)

Figure 4 Representation of the envelope Pareto front (EVP)
calculation

60000]mm2. Tubular section elements with a radius of
gyration calculated with the expression r = 0.4993A0.6777

were assumed.

A personal computer with the following features was
used in all tests presented here: Operating system
Windows 10, Processor Intel ® Core ™ i5-3230M CPU
@2.60GHz and RAM: 8.0 GB.

5.1 Generating the ground structure

From the initial discrete structure shown in Figure 5 and
according to the strategy presented in Section 4.1, the
continuum model used to generate the ground structure
is shown in Figure 6.

The continuummodel in Figure 6 was analyzed in ANSYS®
(see Figure 7), to obtain the numerical information on
the plane stress state. A 200 mm quadrilateral element
discretization mesh was used.

From the stress state numerical information, the stress
trajectories σ1 (red) and σ2 (blue) were calculated in
MATLAB®, as shown in Figure 8. The parameters used
to calibrate the numerical method [41] were: IDW method
as stress state interpolation technique, initial iteration
point IP = (10.0)m, step size r = 100mm and trajectory
separation value a=1m.

According to Figure 8, an approximate solution that allows
seeing how the distribution of the stress trajectories is in
the whole design domain was obtained. The computational
time spent on the calculation was 67 hours and 45minutes.
The numerical method may seem expensive; however,
considering the scale of the problem, the calibration
parameters and the features of the computer used, the
calculation time is reasonable. The recommendations
described in Section 4.1.2 were implemented to reduce
the computational cost significantly.

After calculating the stress trajectories in detail, following
the steps in Section 4.1.3, Section 4.1.4, and Section 4.1.5,
the priority stress trajectories were identified (see Figure
9), the preliminary ground structure (see Figure 10) and
the final ground structure (Figure 11) were constructed.
The generated ground structure has 240 nodes and 651
elements clustered into 26 design variables (a number
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Figure 5 Geometry of the original 200 m span continuous bridge truss (adapted from [50])

 

 

Figure 6 Geometry of the 200 m span continuous bridge, assuming a continuum model

 

 

Figure 7 Continuum model in ANSYS for the 200 m span continuous bridgel

 

 

Figure 8 Stress trajectories for the 200 m span continuous bridge

 

 

Figure 9 Priority stress trajectories for the 200 m span continuous bridge

defined from the preliminary structural analysis).

The data supporting the results reported in Figure
8 to Figure 11 are available in Zenodo repository:

https://doi.org/10.5281/zenodo.4304951
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Figure 10 Preliminary ground structure for the 200 m span continuous bridge

 

 

Figure 11 Definitive ground structure for the 200 m span continuous bridge

5.2 Optimization results of the ground
structure

The ground structure in Figure 11 was optimized according
to the strategy described in Section 4.3. The parameters
used to implement each metaheuristic algorithm are
shown in Tables 2, 3 and 4, and were adapted from
[37–39]. Each algorithm was run five times using these
parameters.

Table 2 Parameters used in the NSGA-II algorithm

Parameter Value
Population size (PopSize) 100
Nº of generations (NumGen) 100, 200, 400, 1000
Distribution index for SBX (ηc) 20
Distribution index for PBMO (ηm) 20
Crossover probability (pc) 0.9
Mutation probability (pm) 1/ Nº of variables
Nº of evaluations of the objective

PopSize* NumGen
function vector (for each run)

Table 3 Parameters used in the MOPSO algorithm

Parameter Value
Nº of particles (PartSize) 100
Nº of iterations (NumIte) 100, 200, 400, 1000
Repository size 100
Repository division-size 7
Cognitive acceleration factor (c1) 2
Social acceleration factor (c2) 2
Mutation operator 0.1
Linear decreasing inertia wmax=0.9, wmin=0.4
Nº of evaluations of the objective

PartSize* NumIte
function vector (for each run)

Next, in Figure 12, graphic performance results (Pareto

Table 4 Parameters used in the AMOSA algorithm

Parameter Value
Nº of iterations (NumIte) 100, 200, 400, 1000
Nº of iterations for each temperature

100
(NIteTemp)
Nº of iterations Hill-Climbing 10
Maximum temperature 200
Minimum temperature 1E-06
Hard Limit size HL 100
Soft Limit size SL 150
Gamma parameter γ 2
Temperatura decrease T = αT α = 0.8
Nº of evaluations of the objective function

NIteTemp* NumIte
vector (for each run)

fronts) for NSGA-II, MOPSO and AMOSA are presented.
The simultaneous representation of the Pareto fronts for
the five runs (for each algorithm) is included, showing
their evolution in four control points: 100 iterations in row
1: (a), (b) and (c). 200 iterations in row 2: (d), (e) and (f).
400 iterations in row 3: (g), (h) and (i). 1000 iterations in
row 4: (j), (k) and (l).

The quantitative performance results of the NSGA-II,
MOPSO and AMOSA algorithms using the HV metric
are presented in Figure 13a (using boxplots). The
computational cost in seconds is shown in graphically in
Figure 13b (using boxplots). The results were calculated
for each of the five runs for iteration 1000, where the best
solutions were obtained.

According to Figure 12, the best performing algorithm
was NSGA-II, followed by AMOSA and MOPSO. The
NSGA-II algorithm presents a Pareto front (for each of
the five runs) with better convergence and diversity as
generations (iterations) advance. The main variation in
results is presented until iteration 400, where solutions
are closer to the objective function minimum weight and
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(i)

Figure 12 Optimization algorithms performance

are distributed over a wider region of the Pareto front,
since from generation 400 to 1000, the new solutions are
concentrated in the region of minimum strain energy and
their generation in the region of minimum weight is more
limited. AMOSA presents the main variation of results
until iteration 400, in which a set of solutions similar to the
NSGA-II Pareto fronts is obtained, and from this iteration,
there is a slight variation of results, and the response
obtained in iteration 1000 is very similar to iteration
400. Moreover, MOPSO presented convergence and

diversity difficulties in this problem (both for continuous
and discrete variables), being trapped since the initial
iterations in the intermediate region and in the minimum
strain energy region of the Pareto front, and it was not
possible to obtain solutions close to NSGA-II and AMOSA
in the minimum weight region.

Quantitatively, with the results of Figure 13a, (for the
iteration 1000), it is shown that they correspond to the
graphical results since the best algorithm was NSGA-II,
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(a) HV

 

 

(b) Computational time

Figure 13 Boxplots for Hypervolume (HV) and computational
time

with an HV value closer to 1 (ideal value) and presented
little variation between runs (good consistency). AMOSA
presented HV values similar to each other (for each run)
and close to NSGA-II. MOPSO presented HV values lower
than NSGA-II and AMOSA, and more far from 1. Regarding
the computational cost, the time spent by each algorithm
per run (see Figure 13b), using the parameters in Table 2,
ranged from 21600 s (6 h) to 28800 s (8 h). The mean cost
per run for both continuous and discrete variables was 7 h
for NSGA-II and AMOSA, and 7 h 50 minutes for MOPSO.
The computational costs were relatively high, considering
a large number of iterations (1000) and the scale of the
problem.

Moreover, Figure 14 shows the convergence of the
extreme values (minimum weight and minimum strain
energy) of the Pareto front during the 1000 iterations for
each of the algorithms (NSGA-II, MOPSO and AMOSA) in
each of the five runs.

 

 

(a)Weight

 

 

(b) Strain energy

Figure 14 Convergence of the objective functions weight and
strain energy

Figure 14 confirms the results shown in Figure 12, where
the NSGA-II and AMOSA algorithms tend to stabilize in
iteration 400, and MOPSO presents a lower convergence.
For the weight objective function (see Figure 14a), the
best algorithm was NSGA-II, since compared to AMOSA,
from iteration 400, although the convergence rate is lower
than in the previous iterations, it continues to find lighter
solutions until iteration 1000. MOPSO slowly converges
from the initial iterations. The objective function strain
energy behavior in Figure 14b is opposed to the weight
function since as the iterations advance, its value increases
(more strains) as lighter structures are found. Moreover,
to validate the strategy for generating the ground structure
and its optimization, the minimum weight solutions of
the Pareto fronts (see Figure 12) were compared with the
optimization results reported in reference [50], as shown
in Table 5.
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Table 5 Comparison of minimum weight solutions

Algorithm Weight (kg)

Reference [50]
HS 261680
PSO 292770
RPO 208400

This work
NSGA-II 256431.18
MOPSO 662584.12
AMOSA 288816.88

According to Table 5, NSGA-II performed better than HS
and PSO. MOPSO did not improve the reference results,
considering the convergence problems in this case.
AMOSA obtained better results than PSO. Even though
none of the three multiobjective algorithms NSGA-II,
MOPSO and AMOSA improved the Ranked Particles
Optimization (RPO) results, it was possible to obtain
results close to those specialized in a single objective
function (PSO, HS, RPO). Similarly, these results show
that the strategy implemented to generate the ground
structure (using the concept of stress trajectories) has a
potential for application since the unknown and optimized
discrete geometry of a truss can be obtained from a
continuous initial space.

Following the strategy described in Section 4.3, Figure 15
shows the calculation results of the envelope Pareto front
(EVP). Figure 15a shows the Pareto fronts obtained by the
three algorithms (in a single graph) for iteration 1000 (see
Figure 12). From this information, the EVP was calculated,
and it contains the best solutions for the optimization
problem (see Figure 15b, respectively).

To construct the EVP (see Figure 15b), NSGA-II and AMOSA
provided the largest number of non-dominated solutions
in the minimum weight region and the Pareto front’s
intermediate region. MOPSO provided solutions in the
minimum strain energy region. Thus, by combining the
best solutions of the three algorithms, a broader set of
non-dominated solutions can be obtained (compared to
the individual results of a single algorithm). Calculating
the HV metric of this EVP, a value of HV=0.8252 was
obtained, showing a better convergence and diversity than
the algorithms’ individual results in Figure 13.

Finally, once the EVP with the best non-dominated
solutions is found, the designer chooses the most suitable
one based on the availability of previous information
related to the priority of objectives, environmental and
construction criteria, and experience and preferences. If
lightweight solutions are required, these are selected from
the minimum weight region. If low deformation solutions
are required, they are chosen from the minimum strain
energy region. When both objectives are equally important,
the solutions are selected from the intermediate region of

 

 

(a) Pareto fronts

 

 

(b) EVP

Figure 15 Generation of envelope Pareto front in iteration 1000

the Pareto front. The data supporting the results reported
in Figure 12 to Figure 15 are also available in Zenodo
repository: https://doi.org/10.5281/zenodo.4304951.

6. Conclusions

The multiobjective topology optimization process
presented in this paper is suitable for planar trusses
and was developed in two stages. An initial stage in
which, for a continuum design space, the optimized
topology of the ground structure is generated using the
concept of stress trajectories. In the final stage, using
size optimization, the ground structure generated in
the initial stage is optimized using the NSGA-II, MOPSO
and AMOSA multiobjective metaheuristic algorithms to
generate a single envelope Pareto front EVP with the best
non-dominated solutions.
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The strategy to generate the ground structure can be
applied to optimization problems that involve a continuum
plane design domain. In this process, the designer
significantly influences the detailed numerical calculation
of the stress trajectories and selects the most important
or priority ones (from which the ground structure is
generated). Moreover, while the computational cost
of the numerical method [41] required to generate the
stress trajectories can be high, especially for large-scale
structures (see the results in Section 5.1), its use can be
beneficial. In this context, a discrete ground structure
with an optimized geometry (topology) containing a limited
number of nodes and elements located at central sites
in the design domain can be generated following the
stress trajectories, which provide a guide for the optimal
load paths and the locations where the material must be
allocated.

The optimization algorithms (NSGA-II, MOPSO and
AMOSA) were able to solve the large-scale problem with
reasonable computation times, obtaining solutions (Pareto
fronts) that satisfy the mathematical formulation. This
shows their ability to solve complex optimization problems
involving a large number of variables and constraints
defined by the design specifications. The obtained
solutions were compared with the consulted reference
(with only a single objective function, the weight),
showing results close to the specialized algorithms in
single-objective problems, even when starting (in this
study) from an unknown geometry.

Concerning the individual performance of the algorithms
in the large-scale problem, both qualitatively (Pareto
fronts graphs) and quantitatively (using HV), NSGA-II
was the best, followed by AMOSA and MOPSO, for both
continuous and discrete variables. NSGA-II obtained a
Pareto front that reached the largest convergence and
diversity along with the two objectives. AMOSA had similar
convergence and diversity as NSGA-II. Moreover, MOPSO
had convergence and diversity issues since the initial
iterations, providing solutions only in the intermediate
region and the region of minimum strain energy. However,
by combining the best solutions provided by the three
algorithms, a single envelope Pareto front was found, with
the largest convergence and diversity (compared to the
individual algorithms) and many non-dominated solutions.
This suggests that, instead of focusing efforts on finding
the most suitable algorithm for a given problem, some
of them can be applied simultaneously, exploiting their
individual strengths to explore a wider region of the Pareto
front along with the two objectives and obtain the best
possible optimization results.

Although this work’s multiobjective topology optimization

process was applied to planar trusses and continuous
variables, it is possible to extend its application to
three-dimensional trusses with discrete variables by
adjusting some of their internal functions (especially the
numerical method that calculates stress trajectories).
In addition, other types of objective functions and
design constraints can be included in the mathematical
formulation.

The use of stress trajectories can be extended in additive
manufacturing since aesthetically innovative structures
(new shapes and connectivity patterns, as in (Figure 8)
with good structural performance (elements oriented in
the direction defined by the principal stresses) can be
obtained using 3D printers and could be very useful in
different areas of the industry.
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