
 

 

Revista Facultad de Ingeniería, Universidad de Antioquia, No.109, pp. 35-47, Oct-Dec 2023

Search-based reduction model for unit testing
Modelo de reducción basado en búsqueda para pruebas unitarias

 

 

Perla Beatriz Fernández-Oliva1, Alejandro Miguel Güemes-Esperón1*, Martha Dunia Delgado-Dapena1,
Alejandro Rosete1

1Facultad de Ingeniería Informática, Universidad Tecnológica de La Habana “José Antonio Echeverría”, CUJAE. Calle 114 # 11901, Ciclovía
y Rotonda, Marianao. C. P. 19390. La Habana, Cuba.

CITE THIS ARTICLE AS:
P. B. Fernández-Oliva, A. M.
Güemes-Esperón, M. D.
Delgado-Dapena and A.
Rosete. ”Search-based
reduction model for unit
testing”, Revista Facultad de
Ingeniería Universidad de
Antioquia, no. 109, pp. 35-47,
Oct-Dec 2023. [Online].
Available: https:
//www.doi.org/10.17533/
udea.redin.20221098

ARTICLE INFO:
Received: March 02, 2022
Accepted: October 18, 2022
Available online: October 18,
2022

KEYWORDS:
Automatic test generation;
unit tests; search based tests;
software testing

Generación automática de
pruebas; pruebas unitarias;
pruebas basadas en búsqueda;
pruebas de software

ABSTRACT: Software tests are fundamental in the reliability and quality of systems,
contributing to their positioning in the market. Generating test data is a critical task,
as exhaustive testing is costly in time and effort. An adequate design of the test cases,
which contemplates a selection of adequate values, can detect a high number of defects.
The effectiveness of the test cases is measured according to the number of errors they
managed to detect. However, the proposals that address these issues with the use of
heuristic algorithms focus on the reduction of generation time and different coverage
criteria. This article presents a search-based optimization model for the generation
of unit test suites that integrates different test case design techniques considering
the significance of the values generated in the detection of errors. The significance
of the paths is also taken into account, with the aim of obtaining test cases with
greater potential to detect errors. The optimizationmodel uses heuristic algorithms that
maximize the coverage of the paths. The results of the experimentation are presented,
which show that the proposal presented generates test suits with a high capacity to
detect errors. For this, the effectiveness of the generated test suits to detect errors
in the mutated code was evaluated.

RESUMEN: Las pruebas de software son fundamentales en la confiabilidad y calidad de los
sistemas, contribuyendo a su posicionamiento en el mercado. La generación de datos
de prueba es una tarea crítica, ya que las pruebas exhaustivas son costosas en tiempo
y esfuerzo. Un adecuado diseño de los casos de prueba, que contemple una selección
de valores adecuados, puede detectar un elevado número de defectos. La significación
de los casos de prueba se mide en función del número de errores que consiguen
detectar. Sin embargo, las propuestas que abordan estos temas con el uso de algoritmos
heurísticos se enfocan en la reducción del tiempo de generación y diferentes criterios
de cobertura. Este artículo presenta un modelo de optimización basado en búsqueda
para la generación de conjuntos de pruebas unitarias que integra diferentes técnicas
de diseño de casos de prueba considerando la significación de los valores generados
en la detección de errores. También se tiene en cuenta la significación de los caminos,
con el objetivo de obtener casos de prueba con mayor potencial para detectar errores.
El modelo de optimización utiliza algoritmos heurísticos que maximizan la cobertura
de los caminos. Se presentan los resultados de la experimentación, que muestran que
la propuesta presentada genera suit de prueba con una alta capacidad para detectar
errores. Para ello se evaluó la efectividad de las suits de prueba generadas para detectar
errores en el código mutado.

1. Introduction At present, it is necessary for software products to obtain a
quality certification in order to compete in an increasingly
demanding market [1, 2]. Software testing is one of
the activities that contributes to quality in the software
development process [3]. They allow detecting defects

35

* Corresponding author: Alejandro Miguel Güemes-Esperón

E-mail: aguemes@tesla.cujae.edu.cu

ISSN 0120-6230

e-ISSN 2422-2844

 

 

 

 

DOI: 10.17533/udea.redin.20221098 35

https://orcid.org/0000-0002-3360-4447
https://orcid.org/0000-0001-9704-9449
https://orcid.org/0000-0002-2601-3462
https://orcid.org/0000-0002-4579-3556
https://www.doi.org/10.17533/udea.redin.20221098
https://www.doi.org/10.17533/udea.redin.20221098
https://www.doi.org/10.17533/udea.redin.20221098
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://www.doi.org/10.17533/udea.redin.20221098


A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

in the source code during the development of a software
product [4, 5]. The tests are left for the last stages of the
project and are not carried out with the necessary quality.
Due to this, it is necessary and it is of great benefit, the
automation of the testing process in order to reduce its
costs and increase its effectiveness [6–9].

One of the main tasks related to the design of the
test cases is the creation of test data, which represents
approximately 40% of the total test costs [10, 11].
Generating test data is a crucial task, as extensive testing
is very costly in time and effort [12]. In this context, the
appropriate design of the test suit is important, including
a selection of the appropriate values, to detect a large
number of defects [13], which is the objective of the
software test.

Software testing continues to occupy space in the
scientific papers of multiple researchers. In particular,
the generation of test paths and values to support the
design of test cases [14–16], as well as the processes
related to software testing [17–19].

There are some proposals that focus on planning and
calculating the indispensable means to carry out the tests
[20], as well as on the automatic generation of scenarios
[21] and test values [11] in addition to other proposals that
introduce metaheuristics for the automated generation
of tests that address their solution as an optimization
problem [22–24]. The main objectives of these proposals
are the reduction of the time associated with this process,
the simplification of its execution by developers and
testers, and the obtaining of wide degrees of coverage,
reducing the time used to carry it out. An exception is the
mutation test because the test cases are selected from the
defects they detect, but for this, the test suit is run on the
mutated code. This requires additional effort in running
the mutant tests.

Therefore, it is necessary to work on proposals that
consider those values that can identify a greater number
of defects, as well as the paths that have the greatest
significance. The integration of different test case design
techniques [25] can allow the generation of values that
can determine a greater number of defects. The values
that respond to different techniques must have a greater
capacity to detect errors. Then, with these values,
combinations of values are generated in reduced form.
One way to consider the effectiveness of the tests is to
introduce in the heuristics and in the objective function,
some criteria of the significance of the values in terms of
the number of errors that they can detect.

This work presents an optimization model focused
on error detection, to achieve a reduction of the unit test

suite from the moment of its generation, using heuristic
algorithms. The proposal has been implemented in a tool
that allows the generation of a unit test suite in production
environments, considering the significance of values and
paths for error detection.

2. Related work

There are different works that apply metaheuristic
algorithms for the generation of test values. In [26],
it is provided a comparative analysis investigating
the impact of four common constraint handling
techniques (Check, Solve, Tolerate, and Replace) on
six widely used combinatorial test set (coverage matrix)
generation algorithms: The Automatic Efficient Test
Generator (AETG), Deterministic Density Algorithm (DDA),
In-Parameter-Order (IPO), Particle swarm optimization
(PSO), Simulated annealing (SA) and Tabu search (TS).
They posit that the constraint controller is a crucial
factor influencing the performance of the test suite
generation algorithms on which it is developed. The
Verify technique implemented with the Minimal Forbidden
Tuple (MFT) approach is the fastest option for handling
constraints. The replacement technique that resolves
constraints as a post-processing phase tends to produce
smaller constrained coverage matrices than the currently
widely used Verify and Solver techniques, especially
for one-test-at-a-time framework test suite generation
algorithms. They also show that it is important to choose a
constraint controller specifically suitable for the algorithm
and the specific goal (size of the test suite, computational
cost, or fault-revealing ability). For example, to generate
the smallest constrained coverage matrices, Replace is the
best choice for AETG, DDA, and PSO; while Tolerate might
be more promising for SA and TS. This study only provides
information for the choice of constraint controller, so that
the performance of existing and newly designed test suite
generation algorithms can be improved. It also offers a
better understanding of the strengths and weaknesses of
constraint management techniques.

In [27], two metaheuristic algorithms are merged to
improve the efficiency of the generated test cases. It
uses a genetic algorithm to generate good test data from
previously generated candidates and the tabu search is
added to the mutation step of the genetic algorithm to
reduce search time.

In [28], it is introduced a Particle Swarm Optimization
(PSO) based test data generationmethod that can generate
a test data set to cover multiple target paths in a single
run. In the work, a new training function is designed
that can guide the data collection to achieve multipath
coverage and avoid premature convergence. For the
multipath coverage problem, different fitness functions

36



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

are applied to evaluate the best individual position and
the best overall position. There are several concepts
covered in the proposal. Route fitness: the sum of the
weighted branches, distance function. Fitness for the best
individual position: it is the minimum of the single-path
fitness functions; it guides the particles so that they do
not converge on a specific path. Fitness function for the
best global position: the sum of those single-route fitness
functions guides the population to achieve multi-route
coverage and avoid premature convergence.

In [29], genetic algorithms that start from the domain are
used to generate suitable values that satisfy previously
defined test criteria. The established criteria are:
obtaining complete coverage of the branch, controlling the
number of iterations, and obtaining a set of test data for
structural tests. It is applied to several problems whose
complexity varies, from a solver of quadratic equations to a
generic orderingmodule that includes several procedures.
In these cases, full branch coverage was obtained. To
obtain better quality in the generated test data, they design
a fitness function that generates data near to subdomain
boundary.

In [30], an alternative based on the combination of
population metaheuristics with a Tabu List for the
generation of test cases is presented. The performance
of the solution is tested with a set of programs of varying
complexity. It takes into account the coverage in the
function by using the particle swarm algorithm to compare
the value it gets with a pre-established coverage criterion.

However, there are still some limitations in these
proposals. For example: algorithm parameters may
affect the efficiency of test data generation, and manual
construction and instrumentation of training functions are
time-consuming, especially for complicated programs.
Furthermore, these proposals do not take into account the
criterion of the significance of the values they generate
in terms of the number of errors that they can detect. Its
validations include comparisons of generation time and a
number of combinations of values generated, but do not
analyze the effectiveness of the combinations of values
generated.

3. Background of this work

The fundamental objective of the previous proposals is to
reduce the time associated with this process, to simplify
its execution by developers and testers, and to obtain wide
degrees of coverage by reducing the time used to carry it
out. Although coverage criteria associated with Software
Engineering techniques are used, there is no emphasis
on the use of Software Engineering (IS) design techniques
that can provide additional information to generate test

suites with high levels of error detection. This model is
part of the framework, MTest.search. This framework
integrates test execution workflows, optimization models
for test case reduction, and integrated software tools
that support workflow execution [31]. In this paper, the
proposed heuristic function fh (γ̄j) is expressed in terms
of knowing how much the new combination contributes to
the equivalence partitions that were already identified in
the combinations of previous values generated. Therefore,
this is valid only for functional tests and does not consider
the significance of input values, scenarios, or paths.

The software tools that support MTest.search have been
developed following a component-based architecture
shown in Figure 1. They are organized in three layers: test
suite generation, extension, and user environment. ”User
environment” layer: It contains the tools customized
to the specific production environments of the user.
There is currently a plugin for the Eclipse development
environment (IDE), starting with version 3.5. It contains
the client application that captures the input domain
information and displays the reduced language test suite
or corresponding output artifact.

”Extension” layer: It contains the extensions developed
for various input domains and output formats. This layer
provides mechanisms to extend to other input domains
and output formats. It contains the extensions of the
CFG_ANTLRGeneration component of the ”Test suite
generation” layer:

• CFG_ReqExt for descriptions of requirements such as
input domain and

• CFG_ANTLRGenerationExt for source code in Java
language.

• GeCodP that allows advanced users to use the
extension mechanisms provided for the domain
model, the test model and the execution model. It is
the one in charge of communication with the rest of
the components and the user environment.

• TestCodeGeneration is an extension of the ”Test suite
generation” layer component that incorporates the
generation of test code in new output formats.

”Test suite generation” layer: It is responsible for
generating unit test cases regardless of input domain and
output format. Contains the components:

• CFG_ANTLRGeneration for the generation of the
control flow graph from the input domain.

• GeCaP for the generation of the reduced test suite
using the GeVaUn, GeVaF and GeVaU components.

• TestCodeGeneration for the transformation of the test
suite in the different output codes.

Algorithms for generating independent paths from Java
source code and for generating JUnit code from test cases
were developed in [32]. These algorithms are included
in the CFG_ANTLRGeneration and TestCodeGeneration

37



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

 

 

Figure 1 Architecture of the model support tools. Modified from [30]

components, respectively. GeCaP encapsulates the
interaction with the other components of the extension
layer. The user environment layer integrates through
interaction with GeCaP all the functionalities contemplated
in the developed components. In this paper, it can be
seen that the proposal implemented in the support tool
generates a reduced set of values and, in addition, obtains
the results in less time than the proposals consulted in
the previous bibliographies.

The reduction model is in the central core, but connected
to source code translators that allow transforming it to the
reduction model, and the inputs of the reduction model
can also be arranged for the generation of test code. This
tool focuses on productive environments through client
applications that can be developed. In particular, [33]
presents a tool developed for the Eclipse environment that
generates code in JUnit from source code in Java language
and that contains translators to analyze this language.

MTest.search includes a specific optimization model
for functional test reduction (MOPF) presented in [31]
and extension mechanisms to incorporate new reduction
models. In [34], an optimization model for unit test
reduction (MOPU) is defined that includes only path
coverage, without taking into account the importance of
values and paths. The extension mechanisms to add new
input and output languages are detailed in [33].

4. Materials and methods.
Search-based reduction model
for unit tests

The fundamental contribution of this work is the definition
of an optimization model that allows generating reduced
unit test suites, incorporating in [34] the significance of
paths and input values. The GeVaU component presented
in [35] implements the model proposed in this paper. This
component was developed to generate combinations of
values to perform unit tests (GeVaU) where the generated
combinations take into account the independent paths of
the unit to be tested.

The search process was defined, which is the generation
of the initial solution, the operators, and the stop criterion.
To generate the initial solution, it was decided to use
a random construction of the initial state. Therefore, a
vector of length equal to the number of variables in the
problem is generated. The new solutions to the problem
are generated from the use of operators. The mutation
operator is used at one point. This operator consists
of randomly selecting one, or two or three positions of
the coded solution and changing its value for another
randomly within the possible values that this variable can
take. Unlike other proposals, this one takes into account
white box design techniques.

38



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

The unit test search-based reduction model (MOPU)
assumes the hypothesis that, if combinations of values
are selected that have been chosen from the application of
test case design techniques considering the significance of
paths and input values, then the test suite will detect more
errors. Therefore, a model is proposed that maximizes
path coverage with a reduced number of combinations of
test values, considering the significance of the values in
terms of error detection. The optimization aims to find
a reduced set of test values that maximize the coverage
of the route and thus provide a possible solution to the
combinatorial explosion problem. From the search-based
reduction model for tests in the article [31], the variables
described below are maintained starting from:

• ᾱ = (X1, X2, . . . Xn), vector containing the input
variables or attributes but for the code to be tested;

• β̄ = (y1, y2, . . . yn), vector containing the domain
description of each attribute that belongs to ᾱ;

• C, level of coverage to be achieved;
• n, number of input variables but for the code to test;

But since the proposal of this article works for unit tests
with white box techniques, it is generated from the source
code. Therefore, it is necessary to define the model with
the incorporation of variables, functions, and a penalty
mechanism as shown below:

• ρ̄ = (l1, l2, . . . lm), vector containing the conditional
statements present in the code to be tested;

• Npxn, matrix with the truth values of each conditional
for each independent path of the code to be tested;

• m, number of conditionals of the code to be tested;
• p, number of independent paths of the code to be

tested;

Then Equation (1) is redefined to add the significance of
input values and paths:

MOPU
((
ᾱ, β̄, c, fo(ε̄, γ̄, ω̄)

))
→ Mlxn (1)

as the model by which the matrix is obtained M1xn

containing a test suite that satisfies the independent paths,
with coverage criterion C.

• l : is the number of combinations to obtain in
the generation of the test suit that satisfies the
independent paths, with coverage criteria C.

• M1xn, is the matrix that contains the generated value
combinations and where each row j corresponds to a
vector γ̄.

To include the path and input value significance criteria, the
objective function was defined in Equation (2):

fo(ε̄, γ̄, ω̄) = Max

cs ∗
∑l

j=1 f ′h(γ̄j)

l +
∑l

j=1 f ′′h(γ̄j)

l

2


(2)

Where:

• l: is the number of test cases of the suit.

• ω̄ = (w1, w2, . . . , wp): is the vector with the
significance of p independent paths.

• γ̄ = (φ1, φ2, . . . , φj): is the vector containing the test
suit.

• cs: is the path coverage of the test suite.

This function evaluates the test suite considering two
heuristics: f ′h (γ̄j) shown in Equation (3) y f ′′h (γ̄j)
shown in Equation (4), for the significance of the paths and
the input values respectively such that 0 ≤ fh′ ≤ 1 .

fh′(γ̄j) =

∑p
s=1 Ws ∗ δ (γ̄j)

p
(3)

fh′′(γ̄j) =

∑CT
n=1

potential variable value h
maximum power to detect errors

CT
(4)

Where:

• p: Total number of independent paths.
• Ws: Path significance s, value between 0 and 1 such

that
∑p

s=1 Ws = 1,Ws =
number of conditions

total number of conditions
• CT : Total number of variables in the problem.

Equation (5) represents the number of conditionals within
the path that are satisfied by combining values j , which
was just generated.

δ (γ̄ji) =

∑m
i=1 Cji

m

Cij =

{
1, if the combination of the value j satisfies
0, i.a.c the condition i

(5)
To generate the initial test suite, a penalty mechanism is
used that guarantees that in this first suit all paths are
satisfied with at least one test case. To do this, a penalty
mechanism has been incorporated as part of the model,
which is shown in Equation (6). If the new combination of
values is such that:

fh (γ̄j) =

S∑
s=1

δs (γ̄ji)

p
= 1 (6)

then p = p − 1. The proposal presented in this paper
reduces the input domains to discrete values using the
transformation vector ε̄ = (e1, e2, . . . ek), similarly
to [31]. The difference is that the transformation vector
adds the condition and loop techniques to the existing ones.

In addition to the existing components, a new GeVaUExt
component was implemented that incorporates these
new elements and extends GeVaU. In this new method,
the change between the method that only considers
the coverage of paths and the one that includes the
significance of input values and paths can be observed.

39



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

5. Results. Application of the model
by using the tools developed

The validation of the proposal is aimed at showing that
the generated test suite has high levels of path coverage,
that the test cases included in the generated suite contain
the input values and paths with the highest levels of
significance, and that the generated test suite is effective
in detecting errors.

Two case studies and one experiment were designed.
In the case studies, the quality of the generated test suite
is evaluated in terms of the importance of the input values
and paths in two applications of different complexity.
The experiment evaluates the effectiveness in error
detection of the proposal made in this article. The case
studies that were selected have different complexities
and functionalities, in which an analysis is carried
out considering the effectiveness of the implemented
algorithms and the quality of the test set. For each
case study, several suites are generated with GeVaUExt.
In the first case, the inclusion of the most significant
values is analyzed and in the second case, mutants are
implemented that are executed with the generated suite
to know the effectiveness in detecting errors. The results
of the extension are compared against the results of the
previous component.

Case study 1: Buy online

The case study is based on the fact that several customers
can make purchases in online stores where they must
register on the platform and then place several orders
according to the quantity that exists in the store. For
this case study, two functionalities were chosen. The
description of each of the functionalities is as follows:

• Reserving product request quantity, where the user
may or may not successfully reserve a requested
quantity depending on the actual quantity in the store.

• Reporting the products in stock limits according to the
minimum and maximum quantities.

The system generates significant values for each value
of the variables by applying test case design techniques,
depending on the equivalence class, according to the
domain it belongs to. Some generated values are in the
numeric domain and others are of type string.

Tables 1 and 2 show the conditions that describe the
scenarios in the functionalities of reserving the number of
products and reporting the products, respectively. Table
3 and 4 show the paths for each of the functionalities with
their respective values (T, F, -) by condition, tsignificance
and expected result for each of the paths.

Table 1 Conditions to reserve the number of products requested
by the user

Id Conditions Conditions
1 RequestQuantity < 0
2 RequestQuantity > 99999
3 RealQuantity < 0
4 RealQuantity > 99999

The case study has the following objectives:
1. To determine the effectiveness of the implemented

algorithms to select the test cases with the most
significant input values. For this, the following
question is proposed. Do the generated test suites
contain the test cases with the most significant
values?

2. To determine the effectiveness of the implemented
algorithms to select the test cases for the most
significant paths. For this, the following question
is proposed: Do the generated test suites contain
a greater number of test cases associated with the
most significant paths?

Case study 2: Classification of triangles

The functionality of the case study consists basically in
classifying a triangle as scalene, isosceles, or equilateral,
in addition to verifying whether or not the sides form a
triangle. Tables 5 and 6 show the conditions and the paths
with their values per condition. The case study has the
following objectives:

1. To determine the quality of the test suites generated
by the implemented algorithms, in terms of the number
of errors detected. For this, the following question is
proposed: What percentage of mutants are killed by
each suite generated by the implemented algorithms?
Five test suites were generated in five executions and
with 2000 iterations for both functionalities using the
implementations

To answer the first question of the buy online case
study: do the generated test suites contain the test cases
with the most significant values?

The significant values of the paths were fixed with a
value equal to 1.0 for both functionalities. Table 7 shows
the number of times the values of the variables are
repeated in each of the generated suits. In this case, the
values of greatest significance are 0 and 99999 with a
significance of 1.0 for both variables that have a numerical
domain. These values are contained in each of the test
suites, having a higher frequency in most of the suits, and
being very useful for error detection.

40



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

Table 2 Conditions for reporting products in stock limits

Id Conditions Conditions
1 MinimumQuantity < 0
2 MinimumQuantity > 10000
3 MaximumQuantity < 0
4 MaximumQuantity > 10000
5 RealQuantity < 0
6 RealQuantity > 10000
7 QuantityCompared < 0
8 QuantityCompared > 10000
9 Product != “”
10 Product = “”
11 MaximumQuantity + QuantityCompared >= RealQuantity
12 MaximumQuantity - QuantityCompared >= RealQuantity
13 MaximumQuantity + QuantityCompared <= RealQuantity
14 MaximumQuantity - QuantityCompared <= RealQuantity

Table 3 Paths to reserve the quantity of products requested by the user

Id Paths Conditions/Paths Significance Expected result
1 T - - - - - - 0.1429 Quantity of requests out of range
2 F T - - - - - 0.2857 Quantity of requests out of range
3 F F T - - - - 0.4286 Real quantity out of range
4 F F F T - - - 0.5714 Real quantity out of range
5 F F F F T - - 0.7143 The quantity is reserved satisfactorily

6 F F F F - T - 0.7143
The quantity is not reserved
satisfactorily

7 F F F F - - T 0.7143
The quantity is not reserved
satisfactorily

Table 4 Paths to report the products in limits of existence

Id Paths Conditions/Paths Significance Expected result
1 T - - - - - - - - - - - - - 0.0714 Minimum quantity out of range
2 F T - - - - - - - - - - - - 0.1429 Minimum quantity out of range
3 F F T - - - - - - - - - - - 0.2143 Maximum quantity out of range
4 F F F T - - - - - - - - - - 0.2857 Maximum quantity out of range
5 F F F F T - - - - - - - - - 0.3571 Real quantity out of range
6 F F F F F T - - - - - - - - 0.4286 Real quantity out of range
7 F F F F F F T - - - - - - - 0.5 Quantity to compare out of range
8 F F F F F F F T - - - - - - 0.5714 Quantity to compare out of range

9 F F F F F F F F T T - - - - 0.7143
Is displayed the stock limit report
satisfactorily

10 F F F F F F F F - - T - - - 0.6429
Is displayed the stock limit report
satisfactorily

11 F F F F F F F F - - - T T - 0.7143
Is not displayed the stock limit report
satisfactorily

12 F F F F F F F F - - - - - T 0.6429
Is not displayed the stock limit report
satisfactorily

The values 99998 and 1 tend to be repeated more in
the first and fourth suit, respectively; however, their
significance is high with a value of 0.8 so it can also detect
errors.

The value 49999.5, which has less significance, tends to
have a higher frequency than -1 and 100,000 since both
values can only be contained in test cases that cover the
first four paths or scenarios because they are outside

41



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

Table 5 Conditions for classifying a triangle

Id Conditions Conditions
1 SideA>0&&sideB>0&& sideC>0

2
SideA<(sideA+sideB+sideC)/2 && SideB<(sideA+sideB+sideC)/2
SideC<(sideA+sideB+sideC)/2

3 sideA==sideB
4 sideB==sideC
5 sideA==sideC
6 sideB==sideC

Table 6 Paths for the classification of a triangle

Id Paths Conditions/Paths Significance Expected result

1 F - - - - - 0.1667
The sides do not form a triangle. Sides less
than or equal to 0

2 T F - - - - 0.1250
The sides do not form a triangle. Sides with a
wrong sum

3 T T F – F F 0.8333 Scalene triangle
4 T T F – F T 0.8333 Isosceles triangle
5 T T F – T - 0.6667 Isosceles triangle
6 T T T F - - 0.6667 Isosceles triangle
7 T T T T - - 0.6667 Scalene triangle

Table 7 Number of times the values are repeated in each test suit, setting a single significance value of the paths

Test suit
Value Value Value Value Value Value Value
0 99999 -1 100000 1 99998 49999.5

SP1 6 6 2 2 6 7 4
SP2 6 6 3 2 6 4 5
SP3 5 8 2 2 5 6 4
SP4 4 6 2 2 7 5 5
SP5 7 5 3 3 5 6 3

the range of 0 and 99999 by what the significant value
of these values is not the correct one to obtain the test suit.

Table 8 shows the number of times the values of the
variables are repeated in each test case. The values of the
variables with the numerical domain are shown, where
the 0 and 10,000 that have the highest significant value
equal to 1.0 are contained in the test cases of each of the
test sets, with the highest number of repetitions. While
the values of the string domain variable with a significant
value equal to 1.0 are also contained in the test cases
more frequently than the value with a significance equal to
0.7.

Answering the second question of the online purchase
case study: Do the generated test suites contain a greater
number of test cases associated with the most significant
paths?

The significant values of all the values of variables
with a value equal to 1.0 for the two functionalities were

set. In the Figure 2 shows the number of test cases
covering each of the paths to reserve the number of
products.

 

 

Figure 2 Number of test cases covered by each path to reserve
the number of products by setting a single significance value of

the input values

The most significant paths are 5, 6, and 7 whereas paths
5 and 6 are the ones that contain the most test cases.

42



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

Table 8 Number of times that the values are repeated to report the products in limits of existence, setting a single significance
value of the paths

Test suit
Value Value Value Value Value Value Value
0 10000 -1 10001 1 9999 5000

SP1 49 47 14 19 5 11 10
SP2 51 54 17 16 12 13 5
SP3 54 47 16 14 11 11 6
SP4 53 52 19 16 11 7 6
SP5 52 54 15 16 10 13 10

However, in path 7 it can only be covered by a single test
case since the request quantity variable has to have a
value less than or equal to 0, and in this case, the value it
can always take is 0, otherwise, it is -1 so this is not in the
range of 0 and 99999.

Figure 3 shows the number of test cases that cover
each of the paths to report products at stock limits. In
the graph, it can be seen that the number of test cases in
each path varies in each of the test suites. Path 9, which
is more significant, contains more test cases in each of
the generated suits. However, path 11, which also has the
highest significant value, is one of the paths that contain
the fewest test cases. This is because it is a path that can
be covered by a few combinations given the conditions it
must satisfy.

The experiment was designed, with five executions
of the triangle classification algorithm, to answer the
following question: What percentage of mutants kills each
suite generated by the implemented algorithms?

The effectiveness of each test case was measured by
applying the mutation technique. For this, 65 mutants
were designed with the aim of executing the test suite
generated with the proposed algorithms and determining
their effectiveness in detecting errors in the mutated code.

The mutation operators used were: AOR (Substitution of
an Arithmetic Operator) 27 mutants, LCR (Replacement
of a Logical Connector) 4 mutants, UOI (Unique Operator
Insertion) 23 mutants, ROR (Replacement of a Relational
Operator) 10 mutants and SDL 1 mutant [36].

Subsequently, the test cases were generated, and
coded in Junit and the tests were run on each of the
mutants to analyze the number of dead mutants. When
carrying out the analysis, it was found that all the test
cases generated in the mutation kill at least one mutant.
Therefore, it was considered to make a modification in
the proposed algorithm by introducing other elements
of coverage such as coverage of conditions, loops, and
equivalence partition. After including the new coverage
criteria with the extension, test suits were generated using

the hill climber and genetic algorithms. The comparison
gave the result that with the first proposal effectiveness
greater than 80% was obtained and with the other two
algorithms the effectiveness is greater than 95%. Table 9
shows the number of test values generated under different
criteria.

Table 9 Number of different values generated by the component
with the three implementations

Variables C1 C2 C3 C4 C5 C6
Side 1 13 6 6 12 11 13
Side 2 13 5 11 9 11 12
Side 3 15 6 9 11 12 14

Being:

C1: Total entry of values.
C2: Number of different values generated
by the previous implementation.
C3: Number of different values with the hill
climber with 20 test cases.
C4: Number of different values with the genetic
algorithm with 20 test cases.
C5: Number of different values with the hill
climber with 60 test cases.
C6: Number of different values with the genetic
algorithm with 60 test cases.

As can be seen in Table 9, the improvements generatemore
combinations of test values than the previous version. This
is due to the inclusion of coverage techniques that contain
values contributed from the application of test case design
techniques that had not been taken into account and
are more effective for detecting errors. Therefore, it
would be coherent to think about improving the proposed
optimization model to include the significance of values
in the detection of errors. More than one test case is
generated for each path as the coverage criterion is
expanded.

Figure 4 shows the original code that implements
the triangle classification algorithm.

Figure 5 shows the mutated code, from the original
code of the triangle classification algorithm, for the AOR

43



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

 

 

Figure 3 Number of test cases covered by each path to report products at limits of existence by setting a single significance value of
the input values

 

 

Figure 4 Original code implementing the triangle classification algorithm

operator. Where it can be seen that the mutation is a
change of the arithmetic operator of addition by division
indicated in a circle.

Figure 6 shows the last mutant. Test cases from each of
the suites were then run on the mutants. Table 10 shows
the effectiveness of each of the suits.

The results show that the last test suit is better compared
to the rest, with 100% effectiveness. However, despite
the fact that the others are not 100% effective, they are
still good at detecting errors since they managed to cover

Table 10 Result of the execution of the test suites on the
mutants with the implemented algorithms

ID SP Dead mutants Effectiveness
SP_1 64 98.46
SP_2 63 96.92
SP_3 63 96.92
SP_4 64 98.46
SP_5 65 100

more than 95% of the errors inserted by the mutants.

44



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

 

 

Figure 5 Mutated code using the AOR operator

 

 

Figure 6 Mutated code removing code snippets related to error messages

The above results were compared with the execution of
the GeVaU shown in Table 11.

As can be seen, the test suites generated by GeVaUExt
are much more effective than those generated by GeVaU.

45



A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

Table 11 Comparison of the effectiveness of the test suites
generated with GeVaUExt and GeVaU

ID SP GeVaU (%) GeVaUExt (%)
SP_1 75.38 98.46
SP_2 78.46 96.92
SP_3 78.46 96.92
SP_4 78.46 98.46
SP_5 76.92 100

Having the highest percentage of effectiveness, it allows
detecting a greater number of errors.

With the incorporation of the significance of the input
values and the paths proposed in this work, it can be seen
that the error coverage of the test cases of each of the
suits is effective. This reveals a high ability to find errors.
A suit of tests is obtained with the most significant values
of the variables and a greater number of test cases are
generated for the paths with the greatest significance.

6. Conclusions

This work presents a search-based optimization model for
the generation of unit tests integrating different test case
design techniques. The transformations of the test model
to the extended model are exposed. The optimization
model maximizes the coverage of the path with a reduced
number of combinations of test values, considering the
importance of the values in terms of error detection.
Regarding coverage, compared to the results presented
in the other bibliographies, this proposal improves the
previous proposals since it guarantees that at least one
test case is generated for each path. Better results are
obtained in effectiveness, compared to this same proposal
since therewere no data fromother bibliographies because
the significance of the values is not taken into account.
By including more test cases, a better chance of detecting
more errors is guaranteed. If combinations of values are
selected that have been chosen from the application of test
case design techniques considering the significance of the
input values and the paths, the test suite will detect more
errors. For future work, it is recommended to continue
evaluating the effectiveness of the generated suites and to
make adjustments to the significance of the input values
and the significance of the paths.

7. Declaration of competing interest

Wedeclare that we have no significant competing interests,
including financial or non-financial, professional, or
personal interests interfering with the full and objective
presentation of the work described in this manuscript.

8. Acknowledgments

We thank the referees for their comments to improve this
work.

9. Funding

The author(s) received no financial support for the
research, authorship, and/or publication of this article.

10. Author contributions

Perla Beatriz Fernández Oliva: Proposal of the model,
experimental design and analysis of results. Alejandro
Miguel Güemes Esperón: Implementation of the model.
Martha Dunia Delgado Dapena: Experimental design and
project coordination. Alejandro Rosete: Contribution of the
heuristics model.

11. Data availability statement

The authors confirm that the data supporting the findings
of this study are available within the article and its
supplementary materials.

References

[1] M. Chaudhary and A. Chopra, CMMI for Development: Implementation
Guide. New York, NY: Apress, 2016.

[2] B. Castro and S. Javier, “Paradigmas en la construcción de
software,” Ingeniería, vol. 6, no. 1, 2001. [Online]. Available:
https://dialnet.unirioja.es/servlet/articulo?codigo=4797401

[3] L. M. J. M. Zhang, M. Harman and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, vol. 48, no. 1, Jan. 01, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2962027

[4] D. Spinellis, “State-of-the-art software testing,” IEEE Software,
vol. 34, no. 5, Sep. 22, 2017. [Online]. Available: https://doi.org/10.
1109/MS.2017.3571564

[5] J. M. Belman-Flores, J. M. Barroso-Maldonado, S. Méndez-Díaz,
and S. Martínez-Martínez, “Virtual test bench as a complement to
study thermal area: application in vapor compression systems,”
Revista Facultad de Ingeniería, Universidad de Antioquia, vol. 77,
Oct-Dec 2015. [Online]. Available: https://doi.org/10.17533/udea.
redin.n77a08

[6] S. M. Edgar, M. M. Raquel, and T. O. Paula, “A review of reality
of software test automation,” Computación y Sistemas, vol. 23,
no. 1, Feb. 26, 2021. [Online]. Available: https://doi.org/10.13053/
cys-23-1-2782

[7] B. Oliinyk and V. Oleksiuk, “Automation in software testing, can we
automate anything we want?” in Proceedings of the 2nd Student
Workshop on Computer Science & Software Engineering, Kryvyi Rih,
Ukraine, 2019, pp. 224–234.

[8] D. Atesogullari and A. Mishra, “Automation testing tools: a
comparative view,” International Journal on Information Technologies
& Security, vol. 12, no. 4, 2020. [Online]. Available: http://ijits-bg.
com/contents/IJITS-N4-2020/2020-N4-06.pdf

46

https://dialnet.unirioja.es/servlet/articulo?codigo=4797401
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1109/MS.2017.3571564
https://doi.org/10.1109/MS.2017.3571564
https://doi.org/10.17533/udea.redin.n77a08
https://doi.org/10.17533/udea.redin.n77a08
https://doi.org/10.13053/cys-23-1-2782
https://doi.org/10.13053/cys-23-1-2782
http://ijits-bg.com/contents/IJITS-N4-2020/2020-N4-06.pdf
http://ijits-bg.com/contents/IJITS-N4-2020/2020-N4-06.pdf


A. M. Güemes-Esperón et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 109, pp. 35-47, 2023

[9] G. Alor-Hernández, V. Y. Rosales-Morales, J. L. G. Alcaráz,
R. Z. cabada, and M. L. B. Estrada, “An analysis of tools for
automatic software development and automatic code generation,”
Revista Facultad de Ingeniería, Universidad de Antioquia, vol. 77,
Oct-Dec 2015. [Online]. Available: https://doi.org/10.17533/udea.
redin.n77a10

[10] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, “Empirical
evaluation of optimization algorithms when used in goal-oriented
automated test data generation techniques,” Empirical Software
Engineering, vol. 12, Nov. 08, 2006. [Online]. Available: https:
//doi.org/10.1007/s10664-006-9026-0

[11] H. Felbinger, F. Wotawa, and M. Nica, “Adapting unit tests by
generating combinatorial test data,” in 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Vasteras, Sweden, 2018, pp. 352–355.

[12] A. Spillner and T. Linz, Software Testing Foundations: A Study Guide
for the Certified Tester Exam-Foundation Level-ISTQB® Compliant.
Heidelberg, DEU: dpunkt.verlag, 2021.

[13] P. R. S, Software engineering: a practitioner’s approach. New york,
NY: McGraw-Hill Education, 2015.

[14] R. Sharma and A. Sahar, “Optimal test sequence generation in state
based testing using moth flame optimization algorithm,” Journal of
Intelligent & Fuzzy Systems, vol. 35, no. 5, 2018. [Online]. Available:
https://doi.org/10.3233/JIFS-169804

[15] B. C. F. Silva, G. Carvalho, and A. Sampaio, “Cpn simulation-based
test case generation from controlled natural-language
requirements,” Science of Computer Programming, vol. 181, Jul.
15, 2019. [Online]. Available: https://doi.org/10.1016/j.scico.2019.
04.001

[16] D. B. Mishra, R. Mishra, K. N. Das, and A. A. Acharya, “Test
case generation and optimization for critical path testing using
genetic algorithm,” in Soft Computing for Problem Solving. Advances
in Intelligent Systems and Computing, J. Bansal, K. Das, A. Nagar,
K. Deep, and A. Ojha, Eds. Singapore: Springer, 2018, pp. 67–80.

[17] C. V. Jordan, F. Maurer, S. Lowenberg, and J. Provost, “Framework
for flexible, adaptive support of test management by means of
software agents,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, Jul. 2019. [Online]. Available: https://doi.org/10.1109/LRA.
2019.2918486

[18] S. Ashritha and T. Padmashree, “Machine learning for
automation software testing challenges, use cases advantages
& disadvantages,” International Journal of Innovative Science and
Research Technology, vol. 5, no. 9, Sep. 2020. [Online]. Available:
https://ijisrt.com/assets/upload/files/IJISRT20SEP344.pdf

[19] A. Pandey and S. Banerjee, “Test suite optimization using chaotic
firefly algorithm in software testing,” International Journal of Applied
Metaheuristic Computing, vol. 8, no. 4, 2017. [Online]. Available:
https://doi.org/10.4018/IJAMC.2017100103

[20] I. A. Qureshi and A. Nadeem, “Gui testing techniques: A survey,”
International Journal of Future Computer and Communication, vol. 2,
no. 2, Apr. 2013. [Online]. Available: http://www.ijfcc.org/papers/
139-B077.pdf

[21] F. Din and K. Z. Zamli, “Pairwise test suite generation using adaptive
teaching learning-based optimization algorithm with remedial
operator,” in Recent Trends in Data Science and Soft Computing.
IRICT 2018. Advances in Intelligent Systems and Computing, F. Saeed,
N. Gazem, F. Mohammed, and A. Busalim, Eds. Switzerland, A. G:
Springer Cham., 2019, pp. 187–195.

[22] S. K. Harikarthik, V. Palanisamy, and P. Ramanathan, “Optimal test
suite selection in regression testing with test case prioritization
using modified ann and whale optimization algorithm,” Cluster
Computing, vol. 21, Nov. 30, 2017. [Online]. Available: https:
//doi.org/10.1007/s10586-017-1401-7

[23] H. N. N. Al-Sammarraie and D. N. Jawawi, “Multiple black hole
inspired meta-heuristic searching optimization for combinatorial

testing,” IEEE Access, vol. 8, Feb. 03, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.2973696

[24] M. Khari, A. Sinha, E. Herrerra-Viedma, and R. G. Crespo, “On
the use of meta-heuristic algorithms for automated test suite
generation in software testing,” in TowardHumanoid Robots: The Role
of Fuzzy Sets. Studies in Systems, Decision and Control, C. Kahraman
and E. Bolturk, Eds. Switzerland, A. G: Springer Cham., 2021, pp.
149–197.

[25] E. Serna and F. Arango, “Desafíos y estrategias prácticas de los
estudios empíricos sobre las técnicas de prueba del software,”
Ingeniería y Competitividad, vol. 13, no. 1, Jun. 14, 2011. [Online].
Available: https://www.redalyc.org/pdf/2913/291323660007.pdf

[26] S. Ruland, M. Lochau, O. Fehse, and A. Schurr, “Cpa/tiger-mgp:
test-goal set partitioning for efficient multi-goal test-suite
generation,” International Journal on Software Tools for Technology
Transfer, vol. 23, Jun. 03, 2020. [Online]. Available: https:
//doi.org/10.1007/s10009-020-00574-z

[27] T. B. Miranda, M. Dhinya, and K. Sathyamoorthy, “Test-case
optimization using genetic and tabu search algorithm in structural
testing,” International Journal of Computer Applications Technology
and Research, vol. 4, no. 5, 2015. [Online]. Available: http:
//ijcatr.com/archives/volume4/issue5/ijcatr04051005.pdf

[28] X. Han, H. Lei, and Y. S. Wang, “Multiple paths test data generation
based on particle swarm optimisation,” IET Software, vol. 11, no. 2,
Apr. 2017. [Online]. Available: https://doi.org/10.1049/iet-sen.2016.
0066

[29] B. F. Jones, H. H. Sthamer, and D. E, “Automatic structural testing
using genetic algorithms,” Software Engineering Journal, vol. 11,
no. 5, Sep. 1996. [Online]. Available: https://doi.org/10.1049/sej.
1996.0040

[30] L. Lanzarini and J. P. L. Battaglia, “Dynamic generation of
test cases with metaheuristics,” Journal of Computer Science
and Technology, vol. 10, no. 2, Jun. 2010. [Online]. Available:
https://www.redalyc.org/pdf/6380/638067314004.pdf

[31] M. D. D. Dapena, A. M. Rojas, D. L. Uribazo, S. V. Marcos, and P. B. F.
Oliva, “Modelo para la generación automática de pruebas tempranas
basadas en búsquedas,” Computación y Sistemas, vol. 21, no. 3,
2017. [Online]. Available: https://doi.org/10.13053/CyS-21-3-2716

[32] A. M. Güemes-Esperón, M. D. Delgado-Dapena, and
D. Larrosa-Uribazo, “Patrones de implementación para extender la
genración de código de pruebas a nuevos lenguajes en gecodp,”
Revista Cubana de Ciencias Informáticas, vol. 15, Oct. 01, 2021.
[Online]. Available: https://rcci.uci.cu/?journal=rcci&page=article&
op=view&path%5B%5D=2240&path%5B%5D=935

[33] A. M. Güemes-Esperón, M. D. Delgado-Dapena, P. B.
Fernández-Oliva, and H. M. Henry-Chibas, “Extensiones
de mtest.search para la generación de código de
prueba,” Ingeniería Industrial, vol. 43, no. 1, Feb. 17,
2022. [Online]. Available: http://scielo.sld.cu/scielo.php?pid=
S1815-59362022000100049&script=sci_arttext&tlng=pt

[34] P. Fernández, “Modelo para la generación automática de
combinaciones de valores de pruebas unitarias,” M.S. thesis,
Instituto Superior Politécnico José Antonio Echeverría, La Habana,
Cuba, 2016.

[35] P. F. Oliva, W. Cantillo-Terrero, M. D. D. Dapena, A. R. Suárez,
and C. Y. Márquez, “Generación de combinaciones de valores de
pruebas utilizando metaheurística,” Ingeniería Industrial, vol. 37,
no. 2, May-Aug. 2016. [Online]. Available: https://dialnet.unirioja.
es/servlet/articulo?codigo=5560665

[36] J. M. Loor-Intriago, M. D. Delgado-Dapena, and P. B.
Fernández-Oliva, “Priorización de casos de prueba en entornos
de desarrollo ágil,” Ingeniería Industrial, vol. 41, no. 2, Aug. 01,
2020. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_
arttext&pid=S1815-59362020000200009

47

https://doi.org/10.17533/udea.redin.n77a10
https://doi.org/10.17533/udea.redin.n77a10
https://doi.org/10.1007/s10664-006-9026-0
https://doi.org/10.1007/s10664-006-9026-0
https://doi.org/10.3233/JIFS-169804
https://doi.org/10.1016/j.scico.2019.04.001
https://doi.org/10.1016/j.scico.2019.04.001
https://doi.org/10.1109/LRA.2019.2918486
https://doi.org/10.1109/LRA.2019.2918486
https://ijisrt.com/assets/upload/files/IJISRT20SEP344.pdf
https://doi.org/10.4018/IJAMC.2017100103
http://www.ijfcc.org/papers/139-B077.pdf
http://www.ijfcc.org/papers/139-B077.pdf
https://doi.org/10.1007/s10586-017-1401-7
https://doi.org/10.1007/s10586-017-1401-7
https://doi.org/10.1109/ACCESS.2020.2973696
https://www.redalyc.org/pdf/2913/291323660007.pdf
https://doi.org/10.1007/s10009-020-00574-z
https://doi.org/10.1007/s10009-020-00574-z
http://ijcatr.com/archives/volume4/issue5/ijcatr04051005.pdf
http://ijcatr.com/archives/volume4/issue5/ijcatr04051005.pdf
https://doi.org/10.1049/iet-sen.2016.0066
https://doi.org/10.1049/iet-sen.2016.0066
https://doi.org/10.1049/sej.1996.0040
https://doi.org/10.1049/sej.1996.0040
https://www.redalyc.org/pdf/6380/638067314004.pdf
https://doi.org/10.13053/CyS-21-3-2716
https://rcci.uci.cu/?journal=rcci&page=article&op=view&path%5B%5D=2240&path%5B%5D=935
https://rcci.uci.cu/?journal=rcci&page=article&op=view&path%5B%5D=2240&path%5B%5D=935
http://scielo.sld.cu/scielo.php?pid=S1815-59362022000100049&script=sci_arttext&tlng=pt
http://scielo.sld.cu/scielo.php?pid=S1815-59362022000100049&script=sci_arttext&tlng=pt
https://dialnet.unirioja.es/servlet/articulo?codigo=5560665
https://dialnet.unirioja.es/servlet/articulo?codigo=5560665
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59362020000200009
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59362020000200009

	Introduction
	Related work
	Background of this work
	Materials and methods. Search-based reduction model for unit tests
	Results. Application of the model by using the tools developed
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Funding
	Author contributions
	Data availability statement

