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ABSTRACT: Landslides triggered by rainfall are among themost frequent causes of natural
disasters in mountainous terrains. However, landslide susceptibility assessments are
often limited due to the scarcity of reliable observations. Due to this lack of data,
especially in developing countries, remote sensing is used for landslide susceptibility
analysis. This study presents the application of remote sensing data and a logistic
regression model to assess landslide susceptibility in a basin on a remote terrain in the
northernColombianAndes, where a rainstormonMay 18th, 2015, triggeredmore than 40
landslides and an associated debris flow afterwards. The methodology applied is based
on free access remote sensing tools, since the study area is considered a scarce-data
zone. The results show that free remote sensing tools provide enough information to run
a model as logistic regression and achieve a successful first approach to the landslide
susceptibilitymap of complex terrains as the study area. This suggests that the proposed
methodology could be implemented in several regions with similar characteristics based
only on free access information.

RESUMEN: Los movimientos en masa provocados por lluvias son una de las causas
más frecuentes de desastres naturales en terrenos montañosos. Sin embargo, las
evaluaciones de susceptibilidad demovimientos enmasa amenudo son limitadas debido
a la escasez de observaciones confiables. Debido a esta falta de datos, especialmente
en los países en desarrollo, los sensores remotos pueden ser usados para el análisis
de la susceptibilidad de movimientos en masa. Este estudio presenta la aplicación
de un modelo de regresión logística con datos de sensores remotos para evaluar
la susceptibilidad a movimientos en masa en una cuenca en un territorio apartado
en el norte de los Andes colombianos; donde el 18 de mayo de 2015 una tormenta
desencadenó más de 40 movimientos en masa y un flujo de escombros asociado
posteriormente. Lametodología aplicada se basa en herramientas de sensores remotos
de libre acceso, ya que el área de estudio se considera una zona de escasez de
datos. Los resultados muestran que las herramientas gratuitas de sensores remotos
proporcionan suficiente información para ejecutar un modelo como regresión logística
y lograr un primer acercamiento exitoso al mapa de susceptibilidad a movimientos
en masa para territorios complejos como el área de estudio. Esto sugiere que la
metodología propuesta podría implementarse en varias regiones con características
similares basadas únicamente en información de libre acceso.

1. Introduction Landslides are among the most deadly natural hazards
and cause large economic losses all over the world each
year [1–4]. Approximately 5% of the total global population
lives in landslide-prone areas [5], and in countries such as
the United States, Japan, Italy, and India, economic losses
are estimated to be over $ 1 billion per year [6]. Between
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2004 and 2010, an estimated 32,322 people lost their lives
due to non-seismic landslides [7].

Rainfall is the most common cause of landslides [8–10]
and is responsible for the highest number of casualties.
Landslides triggered by rainfall account for 89.6% of
landslide fatalities worldwide [11]. Based on the EM-DAT
database from OFDA/CRED, a world annual average of
914 deaths were reported between 2005 and 2014 due to
rainfall-related landslides [12].

One of the most frequent causes of natural disasters in the
tropical and mountainous countries of the Circum-Pacific
region are landslides triggered by rainfall [13–15].
Colombia, located in the northern corner of South
America, is characterized by tropical conditions and
mountainous terrain [16]. The most important urban
centers are located in the highlands and valleys of the
Andes Mountains. Due to these natural conditions,
Colombia has a long history of landslide disasters [17]. A
debris flow on November 13, 1985 devastated the city of
Armero, killing approximately 22,000 people and causing
economic losses totaling over $339 million [18–20]. In the
city of Medellin on September 27, 1987, a mudslide with
a volume of 20,000 m3 destroyed more than 80 houses
and killed approximately 500 people [21]. More recently,
on April 1, 2017, a total of 130 mm of torrential rains
triggered several landslides in the mountainous terrains
of the southern Colombian Andes, causing a flash flood
and debris flow along the Mocoa, Sangoyaco, and Mulato
rivers that destroyed 17 neighborhoods in the city of Mocoa
that were built along the riverbanks. At least 314 people
were killed, and an additional 106 peopleweremissing [22].

However, landslide impact assessments are often
limited due to the scarcity of reliable observations,
particularly in remote high-mountain regions such as the
Colombian mountains. Data availability is one of the most
important factors for analysis, assessment, and modeling
of landslides triggered by rainfall. The areas affected
by landslides are often remote and difficult to access.
For this reason, the development of regional landslide
susceptibility analysis has proven difficult in the locations
where it is most needed [23]. Due to this lack of data
in many regions, remote sensing data may be used for
landslide susceptibility analysis, especially in developing
countries [24].

A landslide susceptibility assessment is critical for
planning, sustainable development, and risk mitigation
because it provides information on the likelihood of
landslides occurring in an area given the local terrain
conditions [25]. There are several methodologies to assess
landslide susceptibility [26].

They are divided into qualitative or knowledge-driven
methods and quantitative or data-driven methods.
Knowledge-driven methods are based entirely on the
judgment of the earth scientist, and the zoning baseline
data is sourced directly from field visits [26–29]. The
primary limitation of the qualitative method is that
the accuracy depends on the knowledge of the experts.
Data-drivenmethods are subdivided into deterministic and
statistically based methods [30–32]. While deterministic
methods assess slope failures using the factor of safety
at large scales [33] and require detailed information and
parameters, statistical methods evaluate the relationship
between landslides and causative factors to predict the
occurrence probability through the use of GIS tools that
reduce the subjectivity and biases in the process of
weighting landslide causative factors. The widely used
statistical methods are bivariate [34–36], multivariate
[16, 37–40], and neural networks [41–43]. Logistic
regression (LR) is the most widely used multivariate
statistical analysis method [39, 44–48]. LR is independent
of the data distribution and can be incorporated into the
analysis of a variety of data sets, such as continuous,
categorical, and binary data. However, the selection of
landslide causative factors is significant for LR methods
[49, 50]. Irrelevant independent variables should be
removed, and only optimal causative factors should be
included in the analysis [50, 51].

This case study assesses the landslide susceptibility
of a data-scarce study area in the Colombian Andes where,
on May 18th, 2015, dozens of landslides were triggered
by a rainstorm that caused a major debris flow and flash
flood resulting in 104 deaths and economic losses not yet
estimated. The study uses DEM, Google Earth images,
orthophotos and aerial photography. To select the positive
causative factors related to landslide occurrence and
the model validation, the area under the ROC curve was
applied.

2. Study area

The Liboriana catchment is located on the northern
side of the Western Cordillera in the Colombian Andes,
approximately 500 km northwest of Bogota City (Figure
1). It lies between latitudes 5º55’30”N - 6º1’0”N and
longitudes 75º58’W - 76º6’W, and covers an area of
approximately 59 km2. Two populated areas, La Margarita
village, and Salgar town, extend along the central and
lower portion of the river valley and have a population of
approximately 8,820 inhabitants.

The catchment has a tropical humid climate with a
mean annual temperature of 22 °C. The maximum
temperature occurs between February and April, while
the minimum occurs between October and November.
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The precipitation regime is dominated by high variability
at both inter-annual and inter-seasonal scales. The mean
annual rainfall is 3,073 mm, and the monthly rainfall
distributions show evident seasonal patterns with two
rainy seasons, with rainfall peaks in May and October
[52, 53].

 

 

Figure 1 Location of the Liboriana catchment in the Western
Cordillera of the Colombian Andes.

The geomorphology of the upper catchment consists of a
mountainous region with a rugged morphology, narrow
valleys, and very steep forested hillslopes. The elevation
varies from 1233 to 3741 m a.s.l. with a mean of 2487
m a.s.l. The zones with slope gradients exceeding 30°
account for 67% of the total area. The upper part of the
catchment consists of deep forests, while the middle and
lower zones contain grasslands and coffee plantations
that have replaced the forest.

The Liboriana catchment is composed predominantly
of a Cretaceous sedimentary rock formation (shales,
limolites, sandstones, cherts, and conglomerates with
some intercalations) and an intrusive Miocene body
[54, 55]. These rocks have been severely weathered in situ
under the humid tropical climate, forming residual soils
and saprolite.

3. The may 18th, 2015 rainstorm

On May 18th, 2015, heavy rains in the northern
Colombian Andes caused a MORLE-type landslide
(multiple-occurrence regional landslide event) [56] in the
Liboriana catchment. Most of the individual landslides
constituting this MORLE call event displaced all the
regolith and left exposed rock. Due to the steep slope
of the terrain, surficial rockslides also occurred. Large
amounts of water and solid material were transported

down to the primary river channel, causing a flash flood
and a debris flow that swept away everything in its path,
including La Margarita village and the lowest areas of
Salgar Town. Authorities confirmed 104 deaths, 62 injured,
and 1440 directly affected people. The flash flood and
debris flow destroyed at least 66 houses and 6 local
bridges . This is the fourth deadliest weather-related
disaster in Colombia’s recorded history.

Reports from the SIATA weather radar (early warning
system of the city of Medellin and the Aburrá Valley, in
Spanish) indicate that between 10 pm on May 17th and
2 am on May 18th, a rain cell on the west side of the
catchment at Cerro Plateado caused intense precipitation
in approximately 30% of the total basin area (∼ 20 km2).
During this four-hour period, the total accumulated
rainfall was 100 mm. Other minor rainfalls occurred until
7 pm on May 18th, for a total of 160 mm of rain that fell in
the upper part of the basin in a 20-hour period.

Google Earth provided free and open post-event satellite
imagery to obtain the event landslide inventory and
the flash flood path and area occupied by the debris
flow (Figure 2). A total of 160 shallow landslides were
triggered during the MORLE event from the May 18th, 2015
rainstorm; however, in the Liboriana catchment, a total of
50 associated landslides were identified.

 

 

Figure 2 Landslide inventory map.

4. Methodology

A wide range of quantitative methodologies are used
for landslide susceptibility assessments [34, 57–60].
Statistical methods estimate landslide probabilities based
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Table 1 Combinations of the causative factors for the five
different susceptibility models to apply LR

Models Included factors Missing
factors

M1
Aspect, land cover,
curvature, slope,
TWI

M2
Land cover,

Aspectcurvature, slope,
TWI

M3
Aspect, land cover,

Curvature
slope, TWI

M4
Aspect, land cover,

TWI
curvature, slope

M5
Aspect,

Curvature, TWI
land cover, slope

on the correlation analysis between causative factors and
historical landslide occurrences. LR is one of the most
frequently used multivariate statistical analysis models
to predict landslide occurrence at medium and regional
scales [39, 46, 61]. LR estimates the relationship between
a dependent variable, measured with dichotomous values
such as 0 and 1, and a set of independent terrain variables.
The advantage of LR is that the prediction factors do
not require normal distribution data and may be either
categorical, non-categorical, or any combination of both
types [62]. The dependency relationship between the
landslide occurrence and the independent variables can be
quantitatively expressed as:

P (y) =
1

(1 + e−z)
(1)

where P (y) is the estimated spatial probability of the
landslide occurrence and ranges from 0 to 1. z is the
following linear combination of the independent factors:

z = b0 + b1x1 + b2x2 + b3x3 + bnxn (2)

where b0 is the intercept of the model given in the LR
output, the bi values (i=1, 2, 3, …, n) are the regression
coefficients, i.e., variable weights, and the xi values (i=1,
2, 3, …, n) are the independent factors. The final model is
a LR based on the independent variables of the landslide
occurrences (presence or absence).

The LR algorithm was applied to the landslide
susceptibility assessment of the Liboriana catchment
using the IBM Statistical Package for Social Science
(SPSS) for five different causative factor combinations
(Table 1).

To validate the accuracy and prediction capability of
the models and to select the best susceptibility model,
different validation methods were applied. The most
common validation methods in landslide studies are
threshold-independent approaches, especially the

Receiver Operating Characteristic (ROC) analysis [63, 64].
ROC analysis is based on the confusion matrix in which
actual classes, called positive and negative class labels
according to landslide inventory databases, are compared
with the predictive classes, called true and false class
labels, produced by themodel [63]. Figure 3 shows the four
possible outcomes of the confusion matrix. An advantage
of ROC analysis is that several statistics have been defined
for evaluating model performance and prediction, such as
precision (PR) and accuracy (AR), among others. During
the performance and prediction evaluation, the hit rate
(TPR), false alarm rate (FPR), and odds ratio (OR) were
calculated and used for a quantitative comparison.

The area under the ROC curve (AUC) is a useful indicator to
validate the success rate when the landslide susceptibility
map is tested against the landslide database used to train
the model, and the prediction performance of the model
when the landslide susceptibility map is tested against
future landslides or a landslide database not used to train
the model. The AUC value is between 0 and 1, and a higher
value indicates a higher prediction success or prediction
rate, whereas a value of 0.5 indicates that the prediction is
no better than a random guess [64].

In addition to this analysis, the distance to perfect
classification (r) [65, 66] and the degree of fit (D.F.) [67]
were applied using the following equations:

r =
√

(FPR2 + (1− TPR)2) (3)

D.F. =
Zi/Si∑
Zi/Si

(4)

where Zi is the area occupied by the rupture zones in the
i class of susceptibility, and Si is the area of the i class of
susceptibility.

4.1 Landslide inventory

Landslide inventories are the first and most important
step in landslide susceptibility analysis using statistical
methods [23, 64, 68–70]. In this study, landslide locations
were determined using the 2015-updated Google Earth
imagery, an open access 1:10,000 scale orthophoto from
the period 2010-2012, and aerial photography from 1998
and 1999. As a result, a total of 259 landslides were
collected (Figure 2). All the landslides cover an area
of 0.56 km2 and account for approximately 0.95% of
the catchment, of which 33% correspond to landslides
triggered by the May 18th, 2015 rainstorm, and 67%
correspond to multitemporal landslides with no time
occurrence specification that occurred prior to the May
18th, 2015 event.
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Figure 3 ROC analysis confusion matrix

Table 2 Results of the different validation methods including the AUC-ROC model values for the success and prediction rate, the
distance to perfect classification (r), and the ROC metrics hit rate, false alarm rate, and odds ratio.

Models
AUC ROC AUC Prediction Distance Hit rate False alarm Odds ratio

success rate rate (%) to perfect (TPR)(%) rate (OR)
classification (r) (%)

M1 68.1 67.3 0.521 0.619 0.356 2.94
M2 65.0 64.9 0.574 0.554 0.361 2.19
M3 68.2 67.3 0.518 0.611 0.342 3.02
M4 68.8 69.5 0.520 0.606 0.339 2.99
M5 68.7 69.4 0.517 0.613 0.343 3.03

Considering the cross-validation method proposed by
Chung & Fabbri [64], the landslide inventory data was
split into three groups: (i) the event-based landslide
inventory of 50 landslides associated with the May 18th,
2015 rainstorm, which were used to perform a temporal
validation of the landslide susceptibility map; (ii) the
training dataset that corresponds to 80% of the randomly
selected landslides.

of the multitemporal past landslide inventory to be
used for building the LR model (167 landslides); and
(iii) the spatial validation dataset that corresponds to
the remaining 20% of the multitemporal past landslide
inventory to be used for the spatial validation process (42
landslides).

In addition to the landslide areas, non-landslide areas are
required to form the dichotomous variable to apply the
LR method [69]. In this study, non-landslide points were
determined by randomly selecting the same number of
pixels from the areas with no record of landslides.

Several mapping strategies are used to develop a
landslide inventory map [26, 29, 71]. The spatial location
of landslides can be represented by points in raster-based
maps that correspond to the centroid of the entire landslide
or the scarp area [46, 72–74], polygons that correspond
to all the pixels within the entire landslide body or the
scarp area [28, 44, 64], and lines that correspond to
the pixels of the upper edge of the landslide scarp area
[75, 76]. Several studies have indicated that the scarp is

the best sampling strategy for the landslide susceptibility
assessment [77–79]. In this study, the landslide scarp
was used to represent pre-failure conditions, excluding
both the transport and the deposition zones of existing
landslides.

4.2 Landslide causative factors

The selection of the relevant causative factors is a
fundamental step in the landslide susceptibility analysis
because it improves the prediction accuracy [28, 50, 69,
80]. In general, they must have a certain affinity with
the dependent variable, they must be represented across
the study area, and they have to be measurable and
non-redundant [44]. In this study, based on data availability
and topographical, hydrological, and geological catchment
conditions, a total of 5 landslide predictor variables were
initially used. They were divided into morphometric and
environmental factors.

4.3 Morphometric factors

Morphometric attributes derived from digital elevation
models (DEM) are increasingly used in landslide
susceptibility assessments [81]. The available
topographic maps (1:25,000 and 1:10.000 scales) only
cover approximately 25% of the easternmost part of the
study area. To obtain the morphometric attributes, a
free access DEM was obtained from the Alaska Satellite
Facility program [82] with a spatial resolution of 12.5
m. This DEM was used to derive the aspect, curvature,
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Table 3 Coefficient values of the logistic regression for each model

Model Factor Class Pixel Percentage Coefficient
percentage (%) of pixel of logistic

showing landslide regression
occurrence (%)

M5 Aspect (AS) 0-360 degrees 100 100 0.004
Land cover Agricultural land (AL) 20.8 8.6 -0.226

Bare land (BL) 0.7 0.3 0.933
Forest (F) 54.8 66.3 0.000

Grassland (GL) 22.7 24.8 0.456
Urban area (UA) 0.7 0 -20.141
Water body (WB) 0.3 0 -19.306

Slope (SL) 0-78.5 degrees 100 100 0.040
Intercept -2.075

slope gradient, and topographic wetness index (TWI)
using ArcGIS 10.2 software (Figure 4). All these factors are
related to landslides to a different degree. The relationship
between the aspect and landslide occurrence has been
widely studied [45, 61, 83]. The slope aspect is related
to the sunlight exposure and soil moisture conditions
of the hillslopes [48] (Figure 4a). The down-slope and
across-slope curvature values were calculated and
crossed to determine the total curvature according to
Ayalew & Yamagishi [44] (Figure 4b). The profile curvature
influences the driving and resisting stresses within a
landslide in the direction of motion. It controls the change
of velocity of a landslide flowing down the slope. In
contrast, the plan curvature controls the convergence
of landslide materials and water in the direction of the
landslide motion. The slope angle is typically defined
as the crucial landslide-conditioning factor because
it controls the shear forces acting on the hillslopes.
However, its relationship is not always proportional, and
the maximum relative frequency of landslides typically
corresponds to medium slope angles (Figure 4c) [48].
Finally, TWI is a hydrological factor frequently used in
landslide studies [83–85] (Figure 4d). It is a function of the
slope and the upstream contributing area per unit width
orthogonal to the flow direction.

Environmental factors

In a tropical landslide-dominated zone such as the
Liboriana River basin, land use is typically associated
with landslide occurrence [85, 86]. The available land use
data consisted of only a 1:100,000 map, which is a very
small scale for the purposes of this study. Thus, the data
used were obtained primarily from Google Earth imagery
and supported by the 2010-2012 orthophoto to produce
a detailed map. The resulting layer in GIS includes six
categorical values (Figure 4e): agricultural land, bare
land, forest, grassland, urban area, and water body.

Although lithology is one of the essential conditioning
factors in most of the landslide susceptibility analysis,
approximately 90% of the total area in the Liboriana

catchment corresponds to undifferentiated sedimentary
rocks [54, 55]. This geological homogeneity indicates that
lithology does not explain the landslide distribution and
spatial location.

5. Results

The pre-event landslide inventory was divided into a
landslide and non-landslide group for each terrain and
classified into intervals to plot the frequency distributions
for the different causative factors (Figure 5). The slope,
aspect, and land cover factors have a closer relationship
with landslide occurrence because there is a significant
difference between the landslide and non-landslide
curves.

According to the slope aspect, the landslide frequency
increases on east-facing and north-facing slopes. The
correlation analysis between slope angle and landslide
occurrence has a normal distribution. Gentle slopes have
a low landslide frequency that increases with the slope
gradient to reach a maximum value at approximately 40°,
followed by a decrease in landslide frequency. Steep
natural slopes resulting from outcropped bedrock are
not typically susceptible to shallow landslides. Regarding
the land cover, the results show that most landslides fall
into the category of forest and grassland-covered areas.
For the TWI and curvature, a difference is not observed
between the landslide and non-landslide groups. For
curvature, landslides typically occurred on horizontal
and vertical concave or convex slopes. For the TWI
factor, landslide frequency typically occurred at values of
approximately 8.

LR was applied to the five susceptibility models shown
in Table 1. The regression coefficients of the prediction
factorswere used to create the landslide susceptibilitymap
for the five susceptibility models. Quantitative validation
was conducted by comparing the five susceptibility maps
with the landslide spatial distribution inventory. The
training dataset was used for the success rate, and the
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Figure 4 The Liboriana catchment causative factors.

 

 

Figure 5 Frequency distribution of landslide and non-landslide groups in each variable

spatial validation dataset was used for the prediction rate.
The results were plotted in the ROC space with the ROC
plots (Figure 6). The ROC curves show similar success and
predictive capabilities for all the susceptibility models;
only model 2 has a slightly lower value.

The distance to perfect classification (r) was determined

for every model with the TPR and FPR values using
Equation 3.

Table 2 defines the statistics used in this study.
The AUC-ROC values for all the models indicate an
acceptable ability to distinguish between susceptible and
non-susceptible landslide areas. The hit rate, also referred
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Figure 6 FROC success and prediction rate curves for each model, and distance to perfect classification (r). The dotted line shows
the shortest r-value, which corresponds to M5.

to as the sensitivity or positive accuracy, expresses the
proportion of positive cases predicted correctly. The false
alarm rate, also called the negative error, is the ratio
between false positives and actual negatives. The odds
ratio uses all the values in the confusion matrix because
it shows the ratio between correctly and incorrectly
classified observations.

According to the results, both M4 and M5 have an adequate
and similar trend for the success and prediction rate. M4
is slightly better on the ROC plot (68.8% AUC). However,
M5 has a shorter distance to perfect classification (0.517),
and a slightly better value for the hit rate, false alarm rate,
odd ratio, and frequency distribution curves (Figure 5).

Table 3 shows the LR coefficients of the susceptibility
model M5 that correlate each factor to the landslide
occurrence. LR determines a coefficient for every
non-categorical variable and a coefficient for every class
of the categorical variables.

The probability of landslide occurrence was calculated
by applying Equation 1 and Equation 2, which use the
LR coefficient data in Table 3 and each variable raster.
Equation 5 shows how Equation 2 was formulated for the
M5 model.

z = (−2.075) + (0.004×AS)+

(−0.226×AL) + (0.933×BL)+

(0.456×GL) + (−20.141× UA)+

(−19.306×WB) + (0.040× SL)

(5)

After building the model and determining a continuous
response variable expressing the degree of susceptibility,
a decision threshold (cutoff value) of P(y) = 50% was
selected to classify the continuous response dependent
variable as landslide (yes) or non-landslide (no). This
value corresponds to the same inflection point of the ROC
plot and the point with the lowest value for the distance
to the perfect classification. Then, the confusion matrix

was performed by comparing these predictions with the
observations in the validation landslide inventory dataset.
The results presented in Table 4 show the number
of correctly and incorrectly predicted observations
for both the positive and negative cases. The false
positives, or error type I, correspond to 34.3%; conversely,
38.7% represents the false negatives, or error type II.
The susceptibility model is more efficient at correctly
classifying slopes absent of landslides and less efficient at
classifying slopes that contain landslides.

The susceptibility map of the M5 model is presented in
Figure 8. The probability histogram was divided into the
three susceptibility classes (Table 5).

The upper limit of the medium class is the inflexion
point of the ROC curve, which is the same point as the
distance to the perfect classification (0.5). Additionally, the
lower limit of the medium class is a subtle change in slope
at 0.3 (Figure 7b). Figure 7 shows the primary graphical
output and results determined from the validation phase
for the M5 model. It includes the ROC plot success and
prediction rates with the AUC value (Figures 7c and 7d)
and a fourfold representation of the confusion matrix
(Figure 7a).

According to the landslide susceptibility map acquired
from the LR (Figure 8), 34.4% (20.1 km2) of the entire area
was classified as highly susceptible, while approximately
48.4% (28.3 km2) was classified as a medium landslide
susceptibility zone. The low susceptible zone contained
17.2% (10.0 km2) of the entire area.

High susceptibility zones have a landslide density of
25.7 landslides/km2, and 64.7% of the landslides triggered
on May 18th, 2015 were in this susceptibility class. A total
of 35.3% of the May 18th, 2015 landslides occurred in the
medium susceptibility zone. Additionally, there are 4.9
landslides/km2 for the low susceptibility zone, and none
were associated with the May 18th, 2015 event.
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Table 4 Confusion matrix for M5; inventory positives are cells with landslides, negatives otherwise. These values are compared to
P(y) (probability estimated by LR). The total correct and incorrect predicted cells are shown on the right

Model Inventory Inventory Total
probability positives negatives

n % n % n %
M5

P(y)>50% Yes 511 61.3 127914 34.3 Correct 245299 65.7
P(y)<50% No 323 38.7 244788 65.7 Incorrect 128237 34.3
Total (Σ) 834 100.0 372702 100.0 373691 100.0

 

 

Figure 7 Graphical output summary for model M5

6. Discussion

During the last century in Colombia, the settlement
expansions along the inter-Andean valleys have increased
the risk to human lives and infrastructures and,
consequently, the number of disasters with significant
human loss. To identify the risk caused by landslides to
human settlements and to minimize the loss of lives, it is
fundamental to identify the areas susceptible to landslide
occurrences. However landslide susceptibility mapping
in tropical mountainous areas is typically difficult due to
complex terrain, dense vegetation, weather conditions,
and data scarcity. A large region of the Colombian complex
and tropical Andes terrains have these conditions where
landslide disasters are very common. This is the case of

the Liboriana catchment and the Salgar disaster on May
18th, 2015.

Free and open remote sensing tools, such as Google
Earth and the Alaska Satellite Facility program, may be
used for landslide susceptibility assessment in scarce data
zones. They are not only useful for the elaboration of the
inventory map but also for obtaining morphometric factors
associated with landslide occurrence or for completing
the missing data for environmental causative factors. They
can be supported and complemented by traditional tools
such as aerial photography and satellite imagery.

Based on the availability and accessibility of information,
the causative factors used for the analysis correspond
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Table 5 Landslide susceptibility class descriptions

Probability Susceptibility Area Area Landslide Landslide Landslide
range class name covered (km2) covered (%) area (m2) area (%) density

(landslides/km2)
0.0-0.3 Low 10.0 17.2 7056 5.8 4.9
0.3-0.5 Medium 28.3 48.4 42656 32.6 9.7
0.5-1.0 High 20.1 34.4 80625 61.6 25.7

 

 

Figure 8 Landslide susceptibility map of the study area

to the most common prediction variables for landslide
occurrence: aspect, land use, curvature, slope gradient,
and TWI. Many other DEM-derived variables can be
determined and could be included in the analysis;
however, the correlation and redundancy among the
variables increase, which reduces the prediction capability
of the model. Several studies have demonstrated that
there is not a number or standard for landslide causative
factors [35]. In this study, the spatial validation process,
using the multitemporal landslide inventory, defined
the most effective causative factors for the Liboriana
catchment as aspect, land cover, and slope gradient.
Curvature and TWI were less effective factors, and neither
were included in the final model.

The most effective variables vary from one case study to
another; therefore, which variables to include to obtain a
proper model should always be determined. Lithology,
which was relevant in several case studies [44, 62, 69, 87],
was determined to be irrelevant, and it was excluded from
the analysis. Although the simulations performed in this
study did not incorporate local lithology, the results show
good success and prediction rates for unstable sites in
tropical mountainous terrains. This may suggest that
landslide susceptibility in such environments is driven
by topographic and DEM-derived variables. It indicates
that using remote sensing tools, a GIS-based analysis,
and multivariate statistical methods makes it possible to
simulate landslide susceptibility.

Although the success and prediction rate obtained
for the model using the multitemporal landslide inventory
provided satisfactory results, the prediction rate curve
of the model for the May 18th, 2015 event was just
over for random prediction (AUC=0.55). The lower
prediction rate is inferred to be a result of the landslide
inventory map accuracy, which is particularly related
to the completeness of the map. The completeness of
a landslide inventory map is defined as the proportion
of landslides shown in the inventory compared to the
actual number of landslides in the study area [68]. In
many situations, it is related to the size of the landslides.
Landslide scarps associated with small and shallow
landslides, such as the May 18th, 2015 MORLE-type event,
do not contain discernible morphological signs. These
types of scarps and deposits are difficult to identify in
tropical environments. Any physical evidence of landslide
occurrences and their morphometric features are lost
due to erosion or vegetation cover from accelerated forest
regeneration in rainy and mountainous terrains. It makes
it more difficult, and in many cases impossible, to detect
any landslide attributes using photo interpretation and
other remote sensing tools.

Statistical models run assuming that landslides will occur
under the same conditions that caused them in the past
[59]. They assume that the information in the landslide
inventory is representative of the typical conditions in
which landslides occurred [64]. This means that landslide
features included in the landslide inventory determine
the conditions under which landslides will occur in the
future on the landslide susceptibility map. Considering
this limitation, the distribution of the multi-temporal
landslide inventory used in the calibration process is not
adequate to predict landslides for the event on May 18th,
2015. The pre-event landslides incorporated into the
multitemporal landslide inventory correspond to recent or
depth-seated landslides. The ancient shallow landslides
are not preserved, and it is not possible to include those
in the inventories. Although the results of this work
demonstrate that remote sensing is a proper tool for
landslide susceptibility assessment, it is important to
consider whether the distribution of the multi-temporal
landslide inventory is accurate and complete. For tropical
and complex terrains, landslide inventories are unreliable
for incorporating ancient shallow landslides, affecting the
results of the susceptibility model and prediction capacity
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Figure 9 ROC plot and prediction rate curves comparison for the models. May 18th, 2015 and pre-event landslides included (black);
only pre-event landslides included (grey)

for this type of landslide. Landslides are not identified by
the interpreter because landslide features were lost due
to erosion or vegetation cover.

Considering this scenario, the LR method was also
applied using the entire landslide inventory (the
multi-temporal and May 18th, 2015 MORLE-type event
landslide inventories). In this case, the cross validation
was performed by splitting the data into groups of 75%
and 25% to train and validate each group. Figure 9
shows the ROC plot for the success and prediction rates
compared to the model using only the multitemporal
landslide inventory. Using the entire landslide inventory,
the determined success rate was 0.65, and the prediction
rate was 0.67. The results show that the final success and
prediction rates do not improve, and the values slightly
decrease.

According to these results, multi-temporal landslide
inventories are more suitable for training and calibrating
the landslide susceptibility assessment models, and
MORLE-type events should be used carefully. To correctly
determine the occurrence of landslides, it is necessary
to include a past distribution of known landslides,
including shallow and deep-seated landslides, related to
different triggers, intense or prolonged rainfall events, or
earthquakes [59]. Event landslide inventories should be
used for temporal landslide validations; however, when
using statistical methodologies, it is important to consider
whether the landslide inventory used includes landslides
with similar characteristics. In the case of tropical
terrains, small shallow landslides are not preserved, and
the landslide susceptibility assessment should only be
considered for deep-seated landslides.

Finally, it is important to include all the causative factors,

especially environmental variables, obtained directly from
existing thematic maps or fieldwork. However, these
variables are not available in regions with scarce data,
such as tropical and mountainous terrains. This limitation
indicates that the procedure proposed in this work is a
preliminary approach to assess landslide susceptibility
to guide the decision makers for land use planning.
Detailed information and fieldwork are always required to
determine the actual susceptibility conditions and reduce
uncertainty.

7. Conclusions

Because areas affected by landslides are often remote and
difficult to access, the landslide susceptibility assessment
is often limited by the scarcity of reliable observations
and available information. Hence, preliminary approaches
are needed to identify landslide-prone areas. In this
work, we consider a useful approach to assess landslide
susceptibility in mountainous and tropical scarce-data
regions using remote sensing data. Data availability
is challenging for many researchers, especially in
developing countries where many catchments remain
remote and difficult to access. Google Earth satellite
images and morphometric attributes derived from a
DEM are increasingly available and used in landslide
susceptibility assessments.

The Colombian Andes is a tropical and complex terrain
that is periodically affected by landslides triggered by
rainfall; however, large areas within this region lack
essential data for landslide susceptibility and hazard
analyses. The results of the Liboriana catchment, where
on May 18th, 2015 104 people died, indicate that based
on freely available DEM data and Google Earth satellite
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imagery, it is possible to obtain a landslide inventory
and determine prediction factors to build an adequate
landslide susceptibility model. Several strategies, such as
the area under the ROC curve, the confusion matrix, the
distance to the prefect classification, and the degree of fit,
were implemented to validate the fit of the model and the
prediction capability. In addition, the results showed that
a large number of causative factors do not necessarily
produce a better landslide susceptibility assessment.

Another important outcome is related to the completeness
of the landslide inventory map using only remote sensing
tools in tropical environments. Morphometric features
of landslides are lost due to erosion or vegetation
cover. Consequently, ancient shallow landslides are
not included in landslide inventories, which reduces the
prediction capacity of the statistical models to shallow
landslides triggered by rainfall. To correctly determine
the occurrence of landslides related to different triggers,
it is necessary to include a complete past distribution of
landslides.
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