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ABSTRACT: One-dimensional maps showing chaotic intermittency with discontinuous
reinjection probability density functions are studied. For these maps, the reinjection
mechanism possesses two different processes.The M function methodology is applied
to analyze the complete reinjection mechanism and to determine the discontinuous
reinjection probability density function. In these maps the functionM(x) is continuous
and non-differentiable. Theoretical equations are found for the function M(x) and for
the reinjection probability density function. Finally, the theoretical results are compared
with numerical data finding high accuracy.

RESUMEN: En este trabajo se estudian mapas unidimensionales que muestran
intermitencia caótica con funciones de densidad de probabilidad de reinyección
discontinuas. Para estos mapas, el mecanismo de reinyección posee dos procesos
diferentes. Para analizar el mecanismo de reinyección completo y determinar la función
de densidad de probabilidad de reinyección discontinua, se aplica la metodología de la
funciónM . Dicha función es continua y no derivable. Se encuentran ecuaciones teóricas
para la función M(x) y para la función de densidad de probabilidad de reinyección.
Finalmente, los resultados teóricos se comparan con datos numéricos encontrándose
una alta precisión entre ambos.

1. Introduction

Non-linear behavior is a ubiquitous feature in natural
phenomena and human-made mechanisms. Several of
these non-linear behaviors are described by dynamical
systems displaying chaos. A route bywhich the solutions of
the non-linear dynamical systems can evolve from regular

to chaotic behavior is chaotic intermittency [1]. The system
solutions are composed of laminar and chaotic phases.
The laminar or regular phases are pseudo-equilibrium or
pseudo-periodic solutions, while the bursts correspond to
chaotic evolution [1–3].

The phenomenon of chaotic intermittency has been
found in different fields of science as physics, chemistry,
medicine, engineering, and economics [4–16]. Therefore,
a better description and understanding of chaotic
intermittency phenomenon would contribute to several
fields of knowledge.
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Chaotic intermittency was classified into three types
named I, II, and III, following the loss of stability for maps
[17]. Type I intermittency happens if there is a tangent
bifurcation and an eigenvalue leaves the unit circle across
+1. Type II intermittency occurs by a Hopf bifurcation, and
two complex-conjugate eigenvalues move away from the
unit circle. Finally, type III takes place during a subcritical
period-doubling bifurcation, and an eigenvalue escapes
the unit circle by -1 [1, 3]. Posterior research detected
other intermittency types, such as X, on-off, V, eyelet, and
ring [18–27].

In one-dimensional maps, intermittency is produced by
a specific local map and a reinjection mechanism [1, 2].
The local map defines the type of intermittency, and the
reinjection process returns the trajectories to the laminar
zone. The reinjection probability density function (RPD
function) determines the trajectories’ probability of being
reinjected in the laminar zone or interval [1–3].

The correct description of the RPD function is essential
for understanding of intermittency phenomenon. Several
approaches were utilized to calculate the RPD function,
being the uniform reinjection (a constant RPD) the
most implemented [2, 3, 17, 28]. Recently, a more
general methodology to evaluate the RPD function has
been introduced [1], which is called the M function
methodology. This methodology has accurately worked
for types I, II, III, and V intermittencies with and without
noise [29–35].

This paper extends the M function methodology to
evaluate discontinuous RPD functions. These RPDs are
related to two o more overlapping reinjection mechanisms
[1, 29, 36]. The paper shows that discontinuous RPD
functions correspond to non-differentiable M(x)
functions.

The paper is organized into five sections. The second
section briefly describes the M function methodology.
Section 3 extends theM function methodology to evaluate
discontinuous RPD functions. In Section 4, numerical tests
are presented. Finally, in Section 5 there are the main
conclusions.

2. TheM(x) function

The RPD function determines the statistical distribution
of trajectories leaving the chaotic region and going back
into the laminar region. The RPD is the more significant
function in describing chaotic intermittency behavior.
Once the RPD function is known, the other statistical
properties can be determined [1, 2].

To evaluate the RPD function, here also called ϕ(x), we
introduce the following function (see Equation (1)) [1]: x̂
is the lower boundary of reinjection, and x̂ ≤ x ≤ x0 + c.
Where x0 is the vanished or unstable fixed point and the
laminar interval is L = [x̂, x0 + c]. In addition, ϕ(x) is
a C1 function in L, where a Cq is a q times continuously
differentiable function.

TheM(x) function has been extensively used to determine
the statistical properties in chaotic intermittency (see
[1][29–35] and references indicated in these manuscripts).

In several maps showing intermittency, theM(x) function
showed in Equation (2) is a linear function [1] where
m ∈ (0, 1) is a free parameter. Note, the M(x) function
is defined in the laminar interval [x̂, x0 + c].

Theorem. Let M(x) be a function defined by Equation (1)
and ϕ(x) is a C1 function. If M(x) is the linear function
given by Equation (2). Then, the reinjection probability
density function results in Equation (3).

Proof. For
∫ x

x̂
ϕ(y)dy ̸= 0 the Equation (1) can be written

as expressed in Equation (4). If we differentiate this
equation twice with x, we get the Equation (5). Assuming

thatM(x) is given by Equation (2), we obtain d2M(x)
dx2 = 0,

and dM(x)
dx = m, hence the Equation (5) results in Equation

(6). The RPD function (see Equation (7)) is calculated by
integration of the last equation where b is the integration
constant.

Therefore, the RPD function can be written as expressed in
Equation (8), b(α) is a normalization parameter selected
to verify

∫
L
ϕ(x) dx = 1, where L is the laminar interval.

To approximate numerically the M(x) function, we notice
that it is an average over reinjection points in the interval
[x̂, x]. Then, we can write the Equation (9) where the data
set (N reinjection points) {xj}Nj=1 has been previously
ordered, i.e., xj ≤ xj+1. Therefore, x̂ can be approximated
by x̂ ≈ inf{xj}.

We highlight the M(x) function is a useful mathematical
tool to calculate x̂ and α determining the RPD function
and other statistical properties in chaotic intermittency.
Several papers have verified thatM(x) is a linear function,
and the RPD function is given by Equation (8) (see [1, 29, 31,
32] and references indicated in these manuscripts).

3. Non-differentiableM(x) function

In this section, we analyze the reinjectionmechanisms that
display non-differentiable functions M(x). These cases
happen when there are two o more reinjection processes
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M(x) =

{ ∫ x
x̂

y ϕ(y) dy∫ x
x̂

ϕ(y) dy
if

∫ x

x̂
ϕ(y)dy ̸= 0

0 otherwise
(1)

M(x) =

{
m(x− x̂) + x̂ if x ≥ x̂
0 otherwise

(2)

ϕ(x) = b (x− x̂)
1−2m
m−1 (3)

M(x)

∫ x

x̂

ϕ(y) dy =

∫ x

x̂

y ϕ(y) dy (4)

d2M(x)

dx2

∫ x

x̂

ϕ(y) dy + 2

(
dM(x)

dx
− 1

)
ϕ(x) + (M(x)− x)

dϕ(x)

dx
= 0 (5)

dϕ(x)

dx
(x− x̂) (m− 1) + ϕ(x)(2m− 1) = 0 (6)

ϕ(x) = b (x− x̂)
1−2m
m−1 (7)

ϕ(x) = b(α) (x− x̂)α where α =
1− 2m

m− 1
(8)

M(x) = Mj ≡
1

j

j∑
k=1

xk, xj−1 < x ≤ xj (9)

generating discontinuous RPD functions. Accordingly,
ϕ(x) is not C1 as in the previous section.

Here we introduce a general methodology to describe the
M(x) function and to obtain the RPD function when there
are two different reinjection processes.

Let us consider a generic one-dimensional map
xn+1 = F (xn), which has two reinjection processes,
called here a and b, respectively. Each reinjection process
verifies a linear M(x) function (see Equation (2)). We call
Ma(x) and Mb(x) these functions for each reinjection
process, and they verify the Equation (10), where x̂a and
x̂b are the lower boundary of reinjection for the reinjection
processes a and b respectively.

From Equation (10) and using the theory described in
Section 2, we get two independent RPD functions as
expressed in Equation (11). We analyze two general cases.
The first one assumes that the overlap of the reinjection
processes occurs in the lower part of the laminar interval.
On the other hand, the second case considers that the
reinjection processes superposition happens in the upper
part of the laminar interval.

3.1 Case 1. Reinjection overlapping in the
lower part of the laminar interval

First, we study the case with reinjection overlap or
superposition in the lower part of the laminar interval.
Then, the complete RPD function results in Equation (12),
where xs is the non-differentiable point for the global
M(x) function.

Since ba(αa) and bb(αb) are real numbers, we can write
ba(αa) = b, and bb(αb) = k b. Where k is a real number,
and b is evaluated from the normalization condition, which
is (see [1, 2]) If we introduce Equations (11) and (12) in
Equation (13), we get Equation (14) where x0 + c is the
upper limit of the laminar interval, L = [x̂b, x0 + c],
and we have assumed x̂b = x̂a (see Equation (12)).
We emphasize, without loss of generality, that x̂b could
coincide with x0 − c. Note that k and b, are always real
numbers (see Equation (14)) because of Equation (15).

In Equation (12), we have considered that ϕ1(x) is
determined by two reinjection mechanisms represented
by ϕa(x) and ϕb(x), while ϕ2(x) is calculated by only one
reinjection mechanism given by ϕb(x).
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Ma(x) = ma(x− x̂a) + x̂a

Mb(x) = mb(x− x̂b) + x̂b

(10)

ϕa(x) = ba(αa) (x− x̂a)
αa , αa = 1−2ma

ma−1

ϕb(x) = bb(αb) (x− x̂b)
αb , αb =

1−2mb

mb−1

(11)

ϕ(x) =

 ϕ1(x) = ϕa(x) + ϕb(x), x̂b ≤ x ≤ xs

ϕ2(x) = ϕb(x), xs < x ≤ x0 + c
(12)

∫ x0+c

x̂b

ϕ(x) dx = 1 (13)

k b

∫ x0+c

x̂b

(x− x̂b)
αbdx+ b

∫ xs

x̂a

(x− x̂a)
αadx = 1 (14)

(x− x̂b)
αb ≥ 0 if x̂b ≤ x ≤ x0 + c

(x− x̂a)
αa ≥ 0 if x̂a ≤ x ≤ xs

(15)

Note ϕb(x) is defined in the complete laminar interval L.
However, ϕa(x) acts only in the sub-interval [x̂b, xs].

To calculate the global M(x) function, we implement
the M function methodology introduced in the previous
section. For x ≤ xs, the functionM(x) result in Equation
(16) and, for x > xs we get the Equation (17). Therefore,
the completeM(x) function is given for these equations.

We notice the complete M(x) function has a
non-differentiable point at x = xs. Also, note the
M(x) function does not depend on the normalization
factor b. However, it depends on k. The parameter k is
calculated from Equation (17), and it is given by Equation
(18). In Equation (17), M(x) and x are considered for all
reinjected points verifying x > xs, and k is calculated as
the average of them.

3.2 Case 2. Reinjection overlapping in the
upper part of the laminar interval

Now, we study the second case, where the reinjection
processes overlapping happens in the upper part of the
laminar interval. Therefore, the RPD function can be
written as expressed in Equation (19), where ϕa(x) and
ϕb(x) are obtained as shown in Equation (20), where x0

is the fixed point of the map, and the laminar interval is

L = [x0 − c, x0 + c]. Note that x̂a = x0 − c is the lower
limit of the laminar interval, L, and x̂b = xs.

Then, theM functions are obtained in Equation (21), where
Ma(x) is defined inside the complete laminar interval
L = [x0−c, x0+c]. However,Mb(x) is given in [xs, x0+c].

We calculate the parameters ma and mb, for each
reinjection process individually. We apply the M function
methodology previously explained. Then, αa and αb are
obtained in Equation (22). The factor b verifies the Equation
(23).

Therefore, the global M function is given by Equation (24)
for x < xs and by Equation (25) for x ≥ xs. From Equation
(25), we obtain k which is given by Equation (26).

In Equation (26), M(x) and x are considered for all
reinjected points verifying xs ≤ x ≤ x0 − c. We calculate
k as an average of Equation (26) evaluated for all these
values.

4. Applications. Numerical results

In this section, we present two numerical examples of
the theoretical cases described in the previous section.
To verify the generality of the methodology, the first one
uses type V intermittency, and the second analyzes type I
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M(x) =

∫ x
x̂a

y ϕa(y) dy+
∫ x
x̂b

y ϕb(y) dy∫ x
x̂a

ϕa(y) dy+
∫ x
x̂b

ϕb(y) dy
=

∫ x
x̂a

y b (y−x̂a)
αa dy+

∫ x
x̂b

y b k (y−x̂b)
αb dy∫ x

x̂a
b (y−x̂a)αa dy+

∫ x
x̂b

b k (y−x̂b)
αb dy

= (−x̂a+x)1+αa (x̂a+x(1+αa)) (1+αb)(2+αb)+k(x−x̂b)
1+αb (x̂b+x(1+αb)) (1+αa)(2+αa)

(2+αa)(2+αb) ((−x̂a+x)1+αa (1+αb)+k(x−x̂b)
1+αb (1+αa))

(16)

M(x) =

∫ xs
x̂a

y ϕa(y) dy+
∫ x
x̂b

y ϕb(y) dy∫ xs
x̂a

ϕa(y) dy+
∫ x
x̂b

ϕb(y) dy
=

∫ xs
x̂a

y b (y−x̂a)
αa dy+

∫ x
x̂b

y b k (y−x̂b)
αb dy∫ xs

x̂a
b (y−x̂a)αa dy+

∫ x
x̂b

b k (y−x̂b)
αb dy

= (xs−x̂a)
1+αa (x̂a+xs(1+αa)) (1+αb)(2+αb)+k(x−x̂b)

1+αb (x̂b+x(1+αb)) (1+αa)(2+αa)

(2+αa)(2+αb) ((xs−x̂a)1+αa (1+αb)+k(x−x̂b)
1+αb (1+αa))

(17)

k = M(x) (2+αa)(2+αb) ((xs−x̂a)
1+αa (1+αb)−(xs−x̂a)

1+αa (x̂a+xs(1+αa)) (1+αb)(2+αb)

(x−x̂b)
1+αb (x̂b+x(1+αb)) (1+αa)(2+αa)−M(x) (2+αa)(2+αb)(1+αa)(x−x̂b)

1+αb
(18)

ϕ(x) =

 ϕ1(x) = ϕa(x), x0 − c ≤ x < xs

ϕ2(x) = ϕa(x) + ϕb(x), xs ≤ x ≤ x0 + c
(19)

ϕa(x) = b (x− x̂a)
αa = b (x− x0 + c)

αa

ϕb(x) = b k (x− x̂b)
αb = b k (x− xs)

αb

(20)

Ma(x) = ma (x− x0 + c) + x0 − c

Mb(x) = mb(x− xs) + xs

(21)

αa =
2ma − 1

1−ma
, αb =

2mb − 1

1−mb
(22)

∫ x0+c

x0−c

b (x− x0 + c)αadx+

∫ x0+c

x̂s

b k (x− xs)
αbdx = 1 (23)

M(x) =

∫ x

x0−c
y ϕa(y) dy∫ x

x0−c
ϕa(y) dy

=
x(1 + αa) + x0 − c

2 + αa
(24)

M(x) =

∫ x
x0−c

y ϕa(y) dy+
∫ x
xs

y ϕb(y) dy∫ x
x0−c

ϕa(y) dy+
∫ x
xs

ϕb(y) dy

= (x−x0+c)1+αa (x0−c+x(1+αa)) (1+αb)(2+αb)+k (x−xs)
1+αb (xs+x(1+αb)) (1+αa)(2+αa)

(2+αb)(2+αa) ((x−x0+c)1+αa (1+αb)+k (x−xs)1+αa (1+αa))

(25)

k = (x−x0+c)1+αa (x0−c+x(1+αa)) (1+αb) (2+αb)−M(x) (2+αb) (2+αa) (x−x0+c)1+αa (1+αb)

M(x) (2+αb) (2+αa) (1+αa) (x−xs)1+αa−(x−xs)
1+αb (xs+x(1+αb)) (1+αa) (2+αa)

(26)

intermittency.

To accomplish the numerical tests, we make an iterative
process using the corresponding map. Later, we divide
the laminar interval L into Ns sub-intervals, and finally,
we estimate the reinjection’s histogram and the numerical

RPD function. To do it, we utilize N reinjected points
inside the laminar interval. Typically, millions of iterations
are required. This procedure has been applied previously
[1, 29, 37].

60



S. Elaskar et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 110, pp. 56-64, 2024

4.1 Case 1. Type V intermittency with
overlapping in the lower part of the
laminar interval

Let us introduce the following map [38] in Equation (27)
(see below), where F (xm) = ym = 1, x̂ is the lower
boundary of reinjection, and ε is the control parameter.
This map has a fixed point x = 0 for ε = 0. If 0 < ε ≪ 1,
type V intermittency occurs. Figure 1 shows the map for
a1 = 0.9, a2 = 2, ε = 0.001, and x̂ = −0.2.

 

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

 

Figure 1 Map given by Equation (27) for a1 = 0.9, a2 = 2,
ε = 0.001, and x̂ = −0.2. Black line: map. Blue dashed line:

bisector.

 

-0.1 -0.05 0 0.05 0.1

-0.11

-0.1

-0.09

-0.08

-0.07

-0.06

 

Figure 2 The completeM function given by equations (16)-(17)
for a1 = 0.9, a2 = 2, ε = 0.001, and x̂ = −0.2. Blue line:

numericalM(x) function. Black line: theoreticalM(x)
function.

To evaluate the equations described in Section 3, we
analyze the following test: a1 = 0.9, a2 = 2, and
ε = 0.001, x̂ = −0.2, c = 0.114, and N = 100000,
where N is the number of reinjected points. We obtain
k = 0.1868, b = 7.25689, ma = 0.4077 (αa =
−0.3117), mb = 0.4518 (αb = −0.1757). Figures 2
and 3 show the complete M(x) function and the RPD

function, respectively. The M(x) function is given by
equations (16)-(17), and the RPD function is determined by
Equation (12). From the figures, we observe that the theory
here described works accurately regarding the numerical
results. Note that the M function is non-differentiable at
xs = −0.1016, and the RPD function is discontinued at
that point.

4.2 Case 2. Type I intermittency with
overlapping in the upper part of the
laminar interval

In a recent paper, the reinjection mechanism for type I
intermittency in the logisticmapwas studied [36]. Here, we
use the results of this paper to verify the theory developed
in the previous section.

Because the logistic map displays type I intermittency
close a period-3 window, the third iterate of this map is
studied in Equation (28), where the Equation (29) is the
logistic map.

We consider the fixed point x0 = 0.5143552770619905.
We shift the third iteration of the logistic map, I3µ(x), so
that the fixed point x0 matches the origin of the coordinate
system. Then, the map results in Equation (30).

For µc = 1 +
√
8, a period-3 cycle is a solution of

the logistic map. However, for µ < µc but near it,
there is a tangent bifurcation, and type I intermittency
occurs. Figure 4 shows the map given by Equation (30) for
µ = 3.8278 < µc.

For the map given by Equation (30), the reinjection process
around the fixed point depends on the relation between
cl, cd and the laminar interval semi-amplitude, c (L =
[−c, c]). The parameter cl verifies F (−cl) = cl, and it is
the laminar interval limit where there are pre-reinjection
points close to −c. For c ≤ cl there is reinjection from
neighboring points to points to −c. The parameter cd,

satisfies dF (x)
d x

∣∣∣
x=cd

= 0 and F (cd) ∈ L.

For the sub-interval |cd| ≤ c ≤ cl the map shows
two reinjection mechanisms, then the RPD function
possesses two components. The first one is produced
by pre-reinjection points away from the laminar interval,
and the trajectories going by for these pre-reinjection
points are reinjected in the complete laminar interval,
L = [−c, c]. The second component is given by
pre-reinjection points neighboring to the laminar interval
lower limit, and they satisfy F (xn−1) ∈ (F (−c), c], where
xn−1 are the pre-reinjection points [36].

To study the reinjection processes, we consider the
following test: µ = 3.8278 and |cd| = 0.014355277062 <
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F (x) =


F1(x) = a1 x+ ε , x̂ ≤ x < 0
F2(x) = a2 x+ ε , 0 ≤ x < xm

F3(x) = x̂+ (ym − x̂)
(

ym−x
ym−xm

)γ

, xm ≤ x ≤ ym

(27)

xn+1 = I3µ(xn) (28)

Iµ(x) = µx (1− x) (29)

F (x) = −x0 + µ3 (1− (x+ x0)) (x+ x0) (1 + µ (−1 + (x+ x0)) (x+ x0))

×(1 + µ2 (−1 + (x+ x0)) (x+ x0) (1 + µ (−1 + (x+ x0)) (x+ x0)))
(30)

 

-0.1 -0.05 0 0.05 0.1
0

20

40

60

80

 

Figure 3 RPD function given by map given by Equation (12) for
a1 = 0.9, a2 = 2, ε = 0.001, and x̂ = −0.2. Black points:

theoretical RPD function. Blue points: numerical RPD function.
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Figure 4 Map given by Equation (30) for µ = 3.8278. Black
points: map. Blue dashed line: bisector.

c = 0.04 < cl = 0.058036869.

The RPD function, ϕ(x), is calculated by adding two
reinjection mechanisms described by ϕa(x) and ϕb(x).
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Figure 5 RPD functions for µ = 3.8278 and c = 0.04. Black
line: the RPD obtained using the theoretical development of the

previous section. Blue points: the numerical RPD function.
αa = −0.0168018, αb = −0.0981602.
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Figure 6M(x) function for µ = 3.8278 and c = 0.04. The
green line corresponds to xs = F (−c) = 0.0167937.

To get the slopes ma and mb, we study each reinjection
mechanism individually. We order the numerical data and
apply theM function methodology described in Section 2.

62



S. Elaskar et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 110, pp. 56-64, 2024

The RPD function is shown in Figure 5. The blue points are
the numerical data, and the black line is the theoretical
RPD. The RPD function shows two distinct behaviors, one
for x < xs, and another for x ≥ xs. Where xs = F (−c).

For the same test, theM(x) function is displayed in Figure
6. We notice the M(x) function has a non-differentiable
point at xs = F (−c), where the RPD function is
discontinuous.

5. Conclusions

In this paper, we presented a systematic methodology to
obtain the reinjection probability density function in chaotic
intermittency when there are two overlapping reinjection
processes. We extended the M function methodology
developed and verified in previous studies [1, 29–32, 34].

Two different cases were studied and described. The first
one considers that the overlapping occurs in the lower
part of the laminar interval. The second case assumes an
overlapping in the upper part of the laminar interval. For
both cases, we developed theoretical equations for M(x)
and RPD functions.

To satisfy the normalization condition we introduced a new
real parameter, called here k. This parameter takes into
account the different number of reinjected points in both
sub-intervals that make up the complete laminar interval.

We have verified the accurate behavior of the theoretical
background here introduced by comparisonwith numerical
data. We carried out two numerical tests. The first
one studied the overlapping close to the lower part of
the laminar interval, and the second test analyzed the
reinjection mechanism when there is overlapping in the
upper part of the laminar interval. One test considered type
V intermittency, and another one used type I intermittency.
In both tests, the theoretical results are very accurate
regarding the numerical data.
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