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An optimization model for network design in
disaster relief planning
Modelo de optimización para el diseño de redes de asistencia en catástrofe
Authors: Double-blind review
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ABSTRACT: A model was created to optimize aid relief efforts by identifying the best location to set up
shelters. This model, which was developed using a mixed-integer linear program - MILP, considers the
availability of resources and the cost of different locations, as well as constraints that must be met to ensure
timely aid delivery. A solution involving the use of branch-and-cut algorithm with the help of GeoJSON API
and Python code was proposed. Additionally, a study was conducted to assess the impact of the model by
analyzing the water supply during a natural disaster in Mocoa, Colombia in 2017. The results of the study
showed that the model had a positive impact on reducing the distance resources had to travel, increasing the
satisfaction of shelter needs, and decreasing the costs of implementation.

RESUMEN: Se ha creado un modelo para optimizar las operaciones de ayudas humanitarias identificando la
mejor ubicación para instalar los refugios. Este modelo, desarrollado mediante modelos de programación lineal
entera mixta, tiene en cuenta la disponibilidad de recursos y el coste de las distintas ubicaciones, así como las
restricciones que deben cumplirse para garantizar la entrega puntual del recurso. Se propuso una solución que
implicaba el uso de un algoritmo de ramificación y corte, con la ayuda del API GeoJSON y Python. Además,
se realizó un estudio para evaluar el impacto del modelo analizando el suministro de agua durante un desastre
natural en Mocoa, Colombia, en 2017. Los resultados del estudio mostraron que el modelo tuvo un impacto
positivo en la reducción de la distancia que debían recorrer los recursos, el aumento de la satisfacción de las
necesidades de refugio y la disminución de los costes de implementación.

1. Introduction
The global demand for humanitarian aid, including
requests for assistance from national governments,
continues to increase. This is because natural disasters
are becoming more severe, conflict is rising, and
populations worldwide are being impacted by the
global financial crisis, high food prices, energy and
water shortages, population growth, and urbanization
[1]. Humanitarian aid responds to situations where the
security, rights, and well-being of specific communities,
groups, or collectives are at risk. This aid can take
many forms, including economic, social, logistical,
or moral [2]. In addition, natural disasters and
humanitarian emergencies are expected to affect the
less prepared countries [3]. According to the June 2018
biannual report of the UN Office for the Coordination
of Humanitarian Affairs (OCHA), so far this year, 40
countries have been affected, and 134.1 million people
required some form of humanitarian assistance [4].
Therefore, it is appropriate to propose new initiatives
to contribute to the preparation and rapid response
to such events. Humanitarian logistics is the process
of planning, implementing, and controlling the flow
and storage of goods, materials, and information, from

the origin to the end of consumption, to alleviate the
suffering of vulnerable people in a disaster situation.
Indeed, humanitarian logistics are required to support
the planning and implementation of response networks
to ensure a successful operation. The mobilization of
personnel, the distribution of resources, the evacuation
of the wounded, and the resettlement of affected people
require a logistical system to maximize effectiveness
[5]. Also, humanitarian logistics presents a series
of challenges that differ from conventional operations
logistics. For instance, although it may be known that
certain events will undeniably occur, the uncertainty
of variables such as time or location is much more
significant. Similarly, the provision of aid to the
vulnerable population, together with the devastation of
a greater or lesser extent of the area surrounding the
disaster, translates into greater difficulty in carrying
out logistical operations [6].
Given these observations, it is reasonable that the
study of humanitarian logistics has attracted the
scientific community’s attention. In addition, the
location of humanitarian aid facilities is one of
the most challenging aspects of humanitarian relief
programs because aid agencies must respond rapidly
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to disasters to mitigate their negative impacts. The
evolution of research on this subject has been chiefly
directed toward formulating analytical models. These
may include a variety of proposals that make up
contributions to the research direction they provide
and their findings [7–10]. This is explored in more
depth in the literature review section. Although there
are multiple methodologies to carry out this practice,
none can guarantee a fast and integrated scheme
that facilitates a reliable and applicable solution in
the shortest time. When addressing the problem of
locating facilities for humanitarian attention after a
disaster, operational needs change on the fly as the
emergency develops and multiple organizations open
and close facilities in short time frames, considering
dynamic needs and resource levels [5].
Effective facility location is the linchpin of a responsive
humanitarian aid logistics network. Inefficiently placed
facilities can drastically impede both accessibility
to essential resources and the equality of their
distribution. While these challenges exist in many
logistical frameworks, they are amplified in the realm of
humanitarian response due to the unpredictable nature
of crises and the vast scale of operations.
To address these challenges, the proposed model
underscores three pivotal factors that have been
underrepresented in existing studies:

• Weighted Average Distance: Instead of merely
considering raw distances between supply and
demand nodes, the model takes a more nuanced
approach. By incorporating the demand volumes
of distant facilities, it recognizes the critical
importance of remote areas that serve large
populations. This method ensures that the model
does not indiscriminately favor closer facilities,
but instead provides a balanced perspective where
demand volumes significantly influence resource
allocation decisions.

• Demand Proximity Considerations: A
unique constraint ensures that a substantial
portion of the demand, such as 80% in a given
scenario, is met by suppliers within a specified
distance, like 50 miles. This is not an arbitrary
decision; in humanitarian contexts, time is often
critical. Ensuring that a large percentage of
demand is met by nearby facilities allows essential
supplies to reach those in need more quickly,
making the aid response more agile and timely.

• Attention Flow Restrictions: The efficiency
of a humanitarian response hinges not only on
the number of people a facility can serve, but
also on the speed at which it can do so. Our

model incorporates the rate at which facilities can
meet demands, acknowledging that raw capacity
alone can be misleading. A center capable of
serving hundreds may still be inefficient if it
takes too long to attend to each individual.
By considering the rate of service, the model
emphasizes the importance of both capacity
planning and operational speed, which are crucial
in emergency situations.

Given these tailored constraints and considerations,
it is clear that this model offers more than a
basic approach to the problem. Understanding the
complexities of humanitarian logistics necessitates
considering social costs in post-disaster relief modeling.
However, it’s important to recognize the broader
context in which these models are applied. While
the social costs model is comprehensive, it adds
complexity. In high-pressure situations with limited
resources and time, models focused on distance provide
clear and straightforward solutions. By focusing
solely on reducing deprivation costs, there is a risk of
inadvertently causing unequal outcomes.
Therefore, the purpose of this article was to design a
model for facility location in disaster relief operations,
providing a realistic and practical solution for the
design of a supply network. The model was developed
using an integrated approach that combines a Mixed
Integer Linear Programming (MILP) framework solved
with a branch-and-cut algorithm and input data
obtained from the Google Maps web mapping service
for distance calculations. To validate the model, a case
study was conducted to evaluate its performance in
the water supply operation during the natural disaster
that occurred in 2017 in the municipality of Mocoa,
Colombia. The validation results demonstrated
the advantages of implementing the proposed model
for facility location in disaster relief operations.
The methodology incorporates a predefined list of
candidate facilities identified through a preliminary
analysis of the affected area. Furthermore, the model
includes constraints focused on minimizing the distance
between supply and demand nodes while ensuring a
high percentage of demand satisfaction. Additionally,
it integrates a system that synergizes with precise GIS
data to accurately capture distance information.

2. Literature review

The location of facilities for humanitarian logistics
operations has attracted the attention of researchers
for many years. This section explores the most
recent contributions to this topic. Initially, various
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authors have addressed location problems using
operations research approaches, such as the center of
gravity method, to identify the optimal placement of
temporary or fixed facilities within specific geographic
areas. For instance, some researchers sought to
determine the best site for quick relief center operations
by minimizing the total transportation cost, using the
center of gravity approach to locate a facility that
balances distances and demand volume in a network
of customer locations [11].
Building on these efforts, regional cooperation-based
models have also been explored. One such model was
constructed to optimize relief warehouse locations by
minimizing the maximum expected cost across regions,
emphasizing the principle of territorial priority [12].
Additionally, another study focused on determining
the optimal number and locations of warehouses in
Nepal for a humanitarian relief chain designed to
respond to sudden-onset disasters. This problem
was tackled using a simplex algorithm with a
branch-and-bound method applied to the relaxed
integer problem [13]. Furthermore, a facility location
model explicitly incorporating deprivation costs in the
objective function was developed for pre-positioning
supplies during disasters, further advancing the field
[14].
In addition, some research is based on stochastic
programming. For example, two location models
were provided that explicitly consider the impact a
disaster can have on response facilities and population
centers. The first was a deterministic model
that includes distance-dependent damages to disaster
response facilities and population centers, while the
second was a stochastic programming model that
extended the first by directly considering damage
intensity as a random variable [15]. Similarly,
multi-criteria modeling frameworks were investigated
for discrete stochastic facility location problems with
single sourcing, assuming that demand was stochastic
and imposing a service level[16].
Other authors have employed goal programming
approaches; for instance, a multiple-objective decision
model was proposed to simultaneously locate central
and local distribution centers, aiming to minimize
distances among demand points, local and main
distribution centers, and to minimize the number of
regional distribution centers and central warehouses
[17]. Along the same lines, a bi-objective bilevel
optimization model was proposed to locate relief
distribution centers in humanitarian logistics [18].
In related work, a multi-objective programming
model was developed for locating relief goods
distribution centers and health centers, distributing
relief goods, and transferring casualties to health

centers pre/post-disaster [19]. Later, a bi-objective
optimization model was created to determine the
optimal temporary medical service locations and
allocation plan by maximizing the number of expected
survivors and minimizing total operational costs using
ambulances and helicopters [20].
Furthermore, several key contributions involve Mixed
Integer Linear Programming (MILP) models. For
instance, a stochastic linear programming model was
proposed for the optimal placement of shelters in small
Colombian cities [21]. Similarly, a stochastic model
was developed to determine the location and capacities
of distribution centers for emergency stockpiles,
and this study also introduced an evolutionary
heuristic, supported by a MILP model, that generates
high-quality solutions efficiently in terms of time [22].
Also, aggregate scenarios were defined to forecast
demand using past disaster data and future trends,
with orders for relief items based on these scenarios
then fed to a MILP model to improve current supply
networks [23]. In the same way, a method was
introduced to quantify the impact on accessibility
and equity in locating post-disaster healthcare service
facilities, including a robust MILP to choose facility
locations that optimize accessibility while ensuring
equity [24]. Another study proposed a MILP model
to minimize economic effects by assessing the fixed,
variable, and penalty costs associated with the adverse
environmental and human impact of post-disaster
scenarios [25]. Later, a Mixed Integer Nonlinear
Programming (MINLP) model was developed to
determine the location of distribution points and
inventory assignment, minimizing the number of
installations and deprivation costs (a cost imposed on
survivors for lack of access to critical supplies) [26]. In
other studies, researchers have developed simulation
models for humanitarian logistics; for example, a
simulation-based approach was proposed to determine
the demands of relief supplies until governmental and
central humanitarian organizations reach the affected
area, followed by the development of a plan to
allocate temporary disaster response (TDR) facilities
and distribute relief supplies [27].
There are many significant and successful contributions
in the literature to treat emergencies in humanitarian
logistics using other approaches. For instance, a
multi-objective stochastic programming model was
proposed for developing an earthquake response plan,
followed by the creation of a new multi-objective
particle swarm optimization algorithm to solve this
model [28]. Another study examined relief distribution
to non-evacuating populations in a post-disaster
setting, comparing the accessibility to relief of the
aging and other people using P-median-based modeling
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linked to a geographic information system (GIS)
[29]. Additionally, a user-friendly decision support
tool was designed to optimize Urban Emergency
Rescue Facility Locations (UERFLs) in large-scale
urban areas, describing the design, architecture, and
implementation of the tool [30]. A mathematical
model was presented, combining locational decisions
with the max-flow problem to select safe destinations
that maximize the number of people assisted [31].
Finally, a procedure was developed for structuring
an aid distribution network in disaster response
operations, incorporating UAV (Unmanned Aerial
Vehicle) technologies and geographic information
systems (GIS), and applied to a real-life situation [32].

3. Methodology

In this section, the main guidelines of the proposed
model are presented. The problem of designing a
facilities network to support humanitarian logistics
operations was analyzed considering a list of candidate
locations to avoid the unrealistic scenario of selecting
these locations within a continuous surface by
traditional methods such as the Center of Gravity
or Weber’s method. These methods may make
specific locations unsuitable for settling facilities during
humanitarian operations. Thus, the list of sites should
respond to methods that go hand in hand with a
thorough inspection of the affected area. A network
can be defined as a collection of nodes and arcs,
where a node is a point within the network, and an
arc is a union between two nodes [33]. With these
considerations in mind, this model was designed as an
allocation model in which a finite number of demand
nodes for humanitarian assistance could be satisfied
by several supply nodes. The goal was to optimize
a network of humanitarian aid facilities to meet the
demand across the designated area. While the concepts
may appear straightforward, solving an optimization
problem for real case studies is inherently complex.
To address this, an integrated solution scheme was
proposed, centered on the design of a Mixed Integer
Linear Programming (MILP) model to achieve the
desired objectives.
Additionally, the model was optimized utilizing
a branch-and-cut algorithm. The mathematical
framework of the MILP model was implemented in
Python 3.10 and solved with the Gurobi Optimizer
9.5.2 to enhance problem-solving efficiency. The
Google Maps API was employed to retrieve geospatial
data. This data was presented in the GeoJSON format,
a widely recognized standard for encoding diverse
geographic data structures. Utilizing this format

ensured effortless integration and analysis within
various GIS tools and platforms. This algorithm was
based on the possibility of accessing public cartography
and accurate road network data for specific study
problems and then exporting these data remotely to
a database. Users can easily access the application
from any computer connected to the Internet using
a standard browser and an API Key. API keys
are generated in the Google Cloud console and are
unique identifiers that authenticate calls to Google
Maps Platform.

3.1 MILP model

In the Mixed Integer Linear Programming (MILP)
model developed, two primary indexes were introduced
to represent the nodes in our supply-demand network.
Index i designates a specific supply node, while index
j corresponds to a particular demand node. For the
facilitation of flow between these nodes, the notation
xij was defined. Here, xij represents the arc or the
connection from supply node i to demand node j. In
the context of this model, there are n supply nodes
and m demand nodes in total. Furthermore, the
central goal of this network is captured by the objective
function denoted as z. This function, which serves as
the measure of optimization, is detailed in Equation 1.
Next, the two most essential components in deciding to
open new facilities were considered: a fixed cost (Ci)
incurred by locating or “opening” a supply node (Bi)
and a variable cost cij depending on the flow through
the arc. Then, this function assumes, for all possible
arcs, a particular cost multiplied by the flow through
xij :

Min z =
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

CiBi (1)

Equally important, Bi is a binary variable. It can
only take two values, either 0 or 1. The model uses
this variable to indicate whether to open or not a
facility, and this is for all the i nodes in the supply
set. This variable was added to the objective function,
multiplied by the fixed cost for opening an i supply
node. This could be for flow over a week, a month, a
year, etc., then this fixed cost (Ci) is the cost of opening
this facility for that period. A supply constraint was
also required (Equation 2). That is making sure that
everything from the supply nodes does not exceed what
is available there for all the i nodes within the supply
set (Si):
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m∑
j=1

xij ≤ Si ∀iϵS (2)

In the same way, Equation 3 is the demand constraint.
It makes sure that all the flows coming into a specific
j node must exceed or be equal to the demand at each
one of those (Dj):

n∑
i=1

xij ≥ Dj ∀jϵD (3)

Similarly, two constraints were introduced in the
model; these limit the number of facilities open. One
sets a minimum value, Fmin, and the other an upper
bound, Fmax. These values are the number of facilities
that could be opened:

n∑
i=1

Bi ≤ Fmax;
n∑

i=1

Bi ≥ Fmin (4)

In addition, link constraints were considered. It is
not possible to supply from a supply node unless it
is open. In Equation 5, W is a big number and the
binary variable Bi can take two values, either 0 or 1.
Considering the options and choosing these W’s, it is
not recommended to make it excessively big, because it
slows down some of the solution time. It was proposed
to set it equal to the sum of all the demand because the
flow on each individual arc can never be greater than
the total demand required. The particular value of W
can at times compromise the stability of the solver. As
attentive readers may have noted, there might be no
need for this constraint if we multiply the right-hand
side of equation 2 by Bi. However, the inclusion of this
restriction has been left at the discretion of the reader.

xij −WBi ≤ 0 (5)

Facility location models are crucial at the strategic
level of supply chain decision-making [34]. While
economic concerns may not be the primary focus in
humanitarian logistics, their significance cannot be
overlooked. The goal of any supply chain design is
to balance cost-efficiency with the quality of services
provided. In this context, the essence of service is
closely linked to rapid response times. Humanitarian
aid organizations aim to serve affected populations
promptly, striving to mitigate the impacts of disasters
as effectively as possible. Therefore, the challenge lies
in the design of this logistical network. Thus, in general
terms, the goal of this model was to find the scenario
that implies the lowest costs and, at the same time,
considers timely humanitarian assistance.

In understanding the complexities of humanitarian
logistics, we highly value Holguín-Veras’s
recommendation to incorporate the concept of social
costs into post-disaster relief modeling [35]. This
metric, which combines both logistic and deprivation
costs, offers a nuanced perspective on disaster
response. However, it is essential to appreciate the
broader context in which these models are employed.
While the social costs model is comprehensive, it
also introduces additional complexity. In high-stress
situations with limited resources and time constraints,
models based on distance provide a clarity that is both
predictable and easy to execute. Gutjahr’s observation
further supports our approach by focusing solely on
minimizing deprivation costs risks unintentionally
creating inequitable outcomes [36]. Emphasizing
distance can lead to a more balanced distribution
of resources, preventing inadvertent prioritization
of certain groups. Operational realities also play a
pivotal role in our decision-making. On-the-ground
situations, such as challenging terrains, damaged
infrastructure, and accessibility issues, mean that the
shortest distance might not always translate to the
quickest delivery. Despite these challenges, distance
remains a tangible and easily quantifiable metric. This
makes distance an optimal starting point, especially
when complemented with real-time situational data.
Adopting distance as the foundational metric does
not preclude incorporating aspects of the social costs
approach. As the model evolves and more data
accumulates, there is potential to develop a hybrid
approach that amalgamates the strengths of both
methodologies. In summary, the commitment to
distance-based modeling is rooted in practicality, the
urgency of response, and the necessity for a framework
that remains consistent in the tumultuous setting of
disasters. Navigating the landscape of humanitarian
assistance requires a willingness to adapt strategies
to best serve affected populations. Thus, the model
includes the following two constraints:
A constraint for the maximum allowed average distance
was included (Equation 6). Each xij is multiplied by
its distance dij , which corresponds to the distance from
a node i to a node j. This operation involves the
calculation of a weighted distance. Also, this value
is divided by the sum of the total demand (Dj) to
calculate the percentage represented. The constraint
sums all arcs xij and obtains a weighted average
distance. By setting a limit on this average, the model
ensures that resources are not overly concentrated
in nearby or easily accessible regions at the expense
of those further away. This puts a cap on how
”unfair” the distribution can be in terms of distance,
compelling the logistics model to find a solution that

5

Acc
ep

ted
 M

an
us

cri
pt



distributes resources more equitably across different
regions regardless of their proximity to supply points.

∑
ij

(
dijxij∑

j Dj

)
≤ ϕ (6)

In addition, Equation 7 involves another distance
constraint. The right side of this constraint is an
input value φ, this value is defined as the minimum
percentage of demand that must be met within a
minimum distance value; the left side of this constraint
includes an xij arc multiplied by a new input data, a
constant aij . This value is equal to 1 if a demand
node j served by a supply node i is within a given
distance value, and it is equal to 0 otherwise. For
example, consider a logistic network with collection
centers and shelters, where the former are the supply
nodes and the latter are the demand nodes. A value of
50 miles is considered to determine aij . The value of φ
is 80%. Then, if a collection center i supplies a shelter
j, aij will have the value of 1, if the distance between
i and j is less than or equal to 50 miles; otherwise,
it will be 0. The constraint will only consider those
combinations within 50 miles and divide that value by
the total demand. Therefore, the percentage of total
demand within 50 miles must be greater than or equal
to a minimum percentage value φ, which in this case
is 80%. In other words, 80% of the demand supplied
must be at a distance less than or equal to 50 miles.
This constraint is crucial to ensure a short distance on
humanitarian supply trajectories.

∑
ij

(
aijxij∑

j Dj

)
≥ φ (7)

Furthermore, it was necessary to have a restriction
that limits the attention in the facilities (Equation 8).
While a facility may have enough capacity, this feature
may not be conducive to providing prompt attention.
For instance, if a humanitarian attention facility
is responsible for several shelters, the waiting rate
for attention may increase considerably per person.
Similarly, storage systems depend on the volume of
people sheltered and the frequency with which demand
is supplied to this community. An example of this can
be illustrated if a person requires 15 liters of water
per day for basic needs and has a water supply tank
with a capacity of 10,000 liters, but with a current
base of 7.5 liters per minute. Thus, this tank could
supply water to over 650 people, but it would take more
than 21 hours, which is counterproductive. Therefore,
it is recommended to establish a value to limit the
maximum flow of attention (δ). It is essential to
mention that this constraint may not be indispensable

for some case studies, and the user can run the model
without it.

xij ≤ δ ∀ij (8)

Finally, there are non-negativity constraints for the
flows:

xij ≥ 0 ∀ij (9)

3.2 Geospatial Data Extraction

Computing the distance between combinations of
supply and demand nodes is an input required by the
model. In addition, a network structure defined on
maps and routing optimization algorithms is needed.
However, the availability of this data and the price
of good mapping can be challenging. Therefore, a
Python code was developed and integrated with the
GeoJSON API to overcome these limitations. With
this code, it is possible to collect real distance data
from the road network for any case study and record
this information in a database. In this case, the API
distance matrix created by Google is a service that
provides the distance and travel time for a matrix of
origins and destinations according to the recommended
route between the start and endpoints. Anyone can
access the API through an HTTP interface, with
requests built as a URL string, using sources and
destinations, along with an API key [37]. Algorithm
1 below shows an example response.
Primarily, these distance values are extracted by
iterative calls to Google Maps API, which provides
accurate traveling distances between each pair of
locations. By default, distances are calculated
for driving mode using the road network. Also,
distance values may be subject to certain restrictions.
Restrictions are indicated by choosing what Google
should avoid when calculating the travel time (tolls,
highways, ferries, indoor, or default: null). No
restrictions were included in this code. In addition,
units specify either metric or imperial units when
displaying distances in the results. If units are not
specified, the origin country of the query determines
the units to use. The Python code is shown in
Algorithm 2.

3.3 Executable model

The MILP model was implemented in Python and
solved using a Branch-and-Cut algorithm. This
algorithm combines the Branch-and-Bound (B&B)
method with cutting planes to efficiently solve
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Algorithm 1 API Distance Matrix: Sample request and response
Requirement: The following example requests the distance matrix data between Washington, DC and
New York City, NY, in JSON (JavaScript Object Notation) format. Mode: driving.
Response:
{ “destination_addresses” : [ “New York, NY, USA” ],
“origin_addresses” : [ “Washington, DC, USA” ],
“rows” : [

{
“elements” : [

{
“distance” : {
“text” : ”225 mi”,
“value” : 361715

},
“duration” : {
“text” : “3 hours 49 mins”,
“value” : 13725

},
“status” : “OK”

}
]

}
],

“status” : “OK” }

Algorithm 2 Google Distance Matrix API in Python
1 import googlemaps
2 import pandas as pd
3 gmaps = googlemaps.Client(key= “Insert your API key here”)
4 supplyP = pd.read_csv(“supply.csv” )
5 shelters = pd.read_csv(“shelters.csv”)
6 data = [ “ID_SUPPLY_POINT”, “SUPPLY _POINT” ]
7 data += point
8 matrix = pd.DataFrame(columns=data)
9 for index, point in supplyP.iterrows():
10 distance = [ ]
11 for index, shelter in shelters.iterrows():
12 try:
13 Cdistance = gmaps.distance_matrix(point[“LOCATION”], shelter[“LOCATION”])
14 d = (Cdistance[“rows”][0][“elements”][0][“distance”][“value”]/1000)
15 except:
16 d = “ ”
17 distance.append(d)
18 temp = [supply_point[“ID”], supply_point[“LOCATION”]]
19 temp.extend(distance)
20 temp = pd.DataFrame([temp], columns=data)
21 matrix = matrix.append(temp, ignore_index=True)
22 Nfile = pd.ExcelWriter(“distance.xlsx”)
23 Nmatrix.to_excel(Nfile, “DATA”, index=False)
24 Nfile.save()
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Mixed-Integer Optimization Problems [38]. While the
B&B algorithm provides a foundational approach,
Branch-and-Cut extends it by incorporating additional
cuts to eliminate infeasible regions of the search space
and improve solution quality.
For our implementation, we utilized the Gurobi solver,
which is well-suited for handling complex optimization
problems efficiently. The Branch-and-Cut approach
used in Gurobi follows these key steps:
Step 1. Initialization: Preprocess the MILP
formulation and solve its LP relaxation. If the LP
relaxation is infeasible, the problem itself is infeasible,
and the algorithm terminates. If the LP solution
satisfies the MILP constraints, then the problem is
solved, and the algorithm terminates. Otherwise,
initialize bounds and prepare for branching.
Step 2. Node Selection: Choose a subproblem from
the active list of nodes. Solve the LP relaxation of this
subproblem. If the relaxation is infeasible, discard the
node. If feasible, proceed to the next step.
Step 3. Generating Cuts: Generate and add cuts to the
LP relaxation to further refine the feasible region. If
no useful cuts can be added, proceed to the next step.
Step 4. Pruning and Updating Bounds: If the LP
solution of a subproblem meets or improves upon the
current best solution, update the lower bound and
incumbent solution. Prune nodes that cannot yield
a better solution.
Step 5. Branching: If necessary, branch on the current
subproblem to create additional subproblems. Add
these subproblems to the active list and continue the
process.

4. A Complete Example

The model was implemented within the context of
the natural disaster in Mocoa, Colombia. This event
occurred on the night of March 31, 2017, due to the
sudden overflow of the Mocoa, Sangoyaco, and Mulato
rivers, and the Taruca, Taruquilla, and La Mision
streams. This was followed by an avalanche that
seriously impacted this municipality, leaving reports
of the dead, injured, and missing people in its wake
and a suspension of basic services [39, 40]. The
situation report, prepared by OCHA (United Nations
Office for the Coordination of Humanitarian Affairs)
in collaboration with UMAIC (Colombia Information
Management and Analysis Unit) [40, 41] was studied.
During this emergency, water services were suspended,
and demand was met with the help of water tanks. In

this case, the proposed model was implemented to find
the optimal location of the water supply tanks (supply
nodes) to meet the demand of the shelters enabled
(demand nodes), as it was possible to access accurate
data of this operation. During the humanitarian
operation, these tanks were located at different points
in the affected areas [42].
In the study, four distinct types of supply tanks
were utilized, each differentiated by their volumetric
capacity in liters. These tanks were categorized as
follows: 250 L, 5,000 L, 10,000 L, and 20,000 L. Using
this classification, a comprehensive assessment was
conducted on 35 potential sites as candidate locations
for tank establishment. Given the flexibility for each
site to accommodate any of the four tank types, a
cumulative total of 140 different site-tank combinations
were evaluated. Notably, the model was specifically
tailored to replicate the exact scenario observed during
the real-world humanitarian operation. Also, the
guidelines for this type of operation were analyzed to
include the shelter’s demand for water. According
to the National Shelter Management Manual of the
Colombian Red Cross Society [43], the community
must be guaranteed a minimum of 15 liters of water
per inhabitant per day to carry out basic activities.
This is detailed in Table 1.
As of the date of the report, 12 shelters had been
opened serving nearly 726 families, for a total of
approximately 2462 people. Table 2 presents the
demand per shelter. Regarding the objective function,
fixed costs were determined by the unit value of
establishing a specific capacity water supply tank.
The variable cost corresponded to the transportation
cost incurred in the supply operation; the value
was calculated according to the liters of water
transported. For example, transporting 1000 gallons
would cost approximately 16.38 USD [44, 45]. Since
the problem included 12 shelters and 140 possible tank
locations, the API was applied to calculate these 1680
distance combinations using Google Maps. The exact
geographical coordinates of the nodes were considered
in the model to achieve a realistic solution. Concerning
the entry data of constraints related to short response
time (Equations 6 and 7), the maximum allowed
distance was set at 0.5 km, then the weighted average
distance was less than this value. Similarly, the
minimum permissible demand within this distance was
required to be greater than or equal to 85%. This
was based on the guidelines of the National Manual
for Shelter Management of the Colombian Red Cross
Society, which states that the distance between any
shelter and the nearest place of supply must not exceed
500 meters. Also, for the attention limit constraint
(Equation 8), the manual indicated a maximum of 250
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Table 1 Basic water needs per person

Basic water needs Influence factor Liters Required
For drinking and use with food Depends on individual climate and physiology 2.5 - 3L
Basic hygiene practices Depends on social and cultural norms 2 - 6 L
For cooking Depends on type of food, social and cultural norms 3 - 6 L
Approximate amount of water required: 7.5 - 15 L

Table 2 Enabled shelters

N° Shelter Demand (L) People Families Boys Girls Adults
1 Instituto Tecnológico del Putumayo 5970 398 112 84 81 233
2 Shelter A2 5715 381 119 69 51 261
3 Shelter A3 3765 251 88 35 38 178
4 Shelter A4 3030 202 61 34 22 146
5 Shelter A5 3630 242 75 38 53 151
6 Shelter A6 1530 102 26 24 26 52
7 Shelter A7 3675 245 83 38 40 167
8 Shelter A8 3000 200 55 12 19 169
9 Shelter A9 1515 101 27 20 23 58
10 Shelter A10 750 50 10 4 8 38
11 Shelter A11 1650 110 32 10 18 82
12 Shelter A12 2700 180 38 32 30 118

36930 2462 726 400 409 1653

Table 3 Optimal Solution (summary)

Objective Sense: Minimization Algorithm Branch and Cut
Objective Function: Total Cost Solution Status Optimal
Objective Type: Lineal Objective Value 10533
Number of Variables: 1820 Iterations 1466
Number of Constraints: 3516 Pre-solve Time (s) 0.22
Solver: MILP Solution Time (s) 0.64

Table 4 Optimal Solution (results)

Enabled supply nodes 12 Distance ≤ 0, 1 km 22.4%
Total Cost (USD) $10,533 0.1 km ≤ Distance ≤ 0.25 km 58.8%
Average distance (km) 0.56 0.25 km ≤ Distance ≤ 0.50 km 6.0%
Weighted average distance (km) 0.50 0.50 km ≤ Distance ≤ 0.75 km 1.4%
Maximum recorded distance (km) 5.63 0.75 km ≤ Distance ≤ 1 km 0.0%

1 km ≤ Distance 11.4%
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people per water source, which is equivalent to a supply
limit of 3750 liters. Thus, people do not have to wait
too long to fill their containers [43].

4.1 Overall Performance

First, the problem was solved without varying the
established input parameters. Therefore, the model
tried to find the optimal values in this first run.
Tables 3 and 4 show characteristics of the model,
along with the total cost and the calculation of a
set of metrics: the average distance, the weighted
average distance associated with the distance by the
amount of volume supplied, and the maximum distance
(representing which shelter is farthest from any supply
tank). Also, the percentage demand within different
distance intervals is presented by computing what
percentage of the demand is supplied within 0.1 km;
0.1 km to 0.25 km; 0.25 km to 0.50 km; 0.50 km to
0.75 km; 0.75 km to 1.0 km; and more than 1 km of
distance.
In the conducted operation, the total expenditure
amounted to approximately 10,533 USD. This was
facilitated by the deployment of 12 tanks, which
adequately supplied 12 shelters. The outcomes of the
operation were notably positive for several reasons.
Firstly, an optimal solution was achieved that fully
satisfied the constraints outlined earlier. Additionally,
a significant 81.2% of the demand was met from
locations within a radius of 0.5 km or less. This
proximity in supply not only underscores the efficiency
of the operation, but also ensures that the response
in humanitarian contexts is swift and impactful.The
optimal distribution of the network is presented in
Table 5.

4.2 Comparative analysis

Subsequently, several scenarios were tested where
the minimum requirements of the weighted average
distance were modified. It is essential to mention that
there was no other change in the model except for the
variation of this value. Remember that according to
the guidelines of the Colombian Red Cross Society [43],
the distance between any family space and the nearest
place of supply should not exceed 500 meters (0.5 km).
Therefore, minor modifications to this distance were
made to study its variation and the sensitivity of the
model.
The analysis of Table 6 showed that the maximum
distance to supply a shelter was between 5.63 and
6.28 km, then there was no significant variation in
this aspect. In addition, the percentage of demand

met that exceeded one kilometer of distance did not
substantially participate in the total value in any
scenario, concentrating between 11.4% and 13.6%.
Correspondingly, no value was recorded greater than
0.75 km and less than 1 km. As expected, the scenario
that established 0.49 km as the maximum value of
weighted average distance presented the best result,
with 86.5% of demand met at a distance less than or
equal to 0.25 km. In contrast, the last scenario that
set 0.61 km as the maximum value of weighted average
distance presented 62.7% in this same distance range.
Overall, it is possible to mention that the proposed
objectives of designing a model that prioritizes timely
attention in humanitarian operations were adequately
accomplished.
Regarding the total cost as a function of the maximum
values of weighted average distance, it was observed
that costs increase as more supply nodes are set up
close to the demand nodes, which means that costs
will increase by preferring to use several nodes because
of the proximity they represent, rather than setting
up a single node that supplies several points from a
more distant location. The solution to the 0.61 km
scenario had the lowest cost (7,756 USD). The 0.49 km
scenario had very different closeness values; however,
it was much more expensive (12,843 USD). Finally,
when comparing the number of supply nodes enabled
in each scenario, it should be noted that there is no
marked trend in this case. The scenarios of 0.49 km,
0.50 km, and 0.51 km require 11, 12, and 12 facilities,
respectively. This value decreases in the 0.53 km, 0.55
km, and 0.57 km scenarios, which require only 9, 8,
and 8 facilities, respectively. This is supported by the
need to open more supply nodes to meet the distance
requirements set out in the model. However, it was
observed that these values increased in the last two
scenarios, with 18 and 15 facilities, although the total
cost decreased (see Table 6).
At first, one might assume that as distance increases,
the number of facilities would either increase or
decrease in a predictable manner. However, several
factors could contribute to the results not fitting this
simple trend. The spatial distribution of demand is a
significant factor. Depending on where the demand is
concentrated, some facilities might be better positioned
to serve a larger number of people even if they are
farther away. Additionally, there might be capacity
constraints on the supply nodes. In scenarios where
these nodes have a maximum capacity, it could be
more optimal to have multiple facilities closer to the
demand than having fewer overburdened facilities.
The observation that the number of supply nodes
doesn’t decrease, even when the weighted average
distance is relaxed, is particularly interesting. The
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Table 5 Optimal selected locations and covered demand points

Demand node
(Shelters)

Demand
(Liters of water)

Selected
supply node

Flow
(Liters of water)

Distance
(km)

Shelters A1 5970
Node 08 250 0.16
Node 43 3750 0.16
Node 44 1970 0.32

Shelter A2 5715 Node 51 1965 0.13
Node 53 3750 0.11

Shelter A3 3765 Node 52 3750 0.11
Node 53 15 0.14

Shelter A4 3030 Node 66 3030 0.16
Shelter A5 3630 Node 70 3630 0.03

Shelter A6 1530
Node 51 35 0.13
Node 52 760 0.16
Node 53 735 0.16

Shelter A7 3675 Node 42 3675 0.16
Shelter A8 3000 Node 51 3000 0.02
Shelter A9 1515 Node 66 1515 5.63

Shelter A10 750 Node 06 250 0.32
Node 53 500 0.64

Shelter A11 1650 Node 63 1650 0.02
Shelter A12 2700 Node 60 2700 2.09

Table 6 Comparing scenario results

Maximum weighted average distance (km)
Scenarios: 0.49 km 0.50 km 0.51 km 0.53 km 0.55 km 0.57 km 0.59 km 0.61 km
Enabled supply nodes 11 12 12 9 8 8 18 15
Total Cost (USD) $12,843 $10,533 $9,551.8 $9,397.2 $8,367.3 $8,367.3 $7,908 $7,756.5
Average distance (km) 0.57 0.56 0.54 0.61 0.62 0.62 0.94 0.95
Weighted average distance (km) 0.490 0.499 0.509 0.514 0.546 0.546 0.586 0.610
Maximum recorded distance (km) 5.63 5.63 5.63 5.63 5.63 5.63 6.28 6.28
Percent satisfied demand
within distance brackets:
Distance ≤ 0.1 km 22.4% 22.4% 19.3% 22.4% 22.4% 22.4% 13.9% 13.9%
0.1 km ≤ Distance ≤ 0.25 km 64.1% 58.8% 58.1% 58.1% 48.2% 48.2% 48.8% 48.8%
0.25 km ≤ Distance ≤ 0.50 km 2.0% 6.0% 9.8% 6.0% 16.0% 16.0% 22.2% 22.2%
0.50 km ≤ Distance ≤ 0.75 km 0.0% 1.4% 1.4% 2.0% 2.0% 2.0% 3.5% 1.4%
0.75 km ≤ Distance ≤ 1 km 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1 km ≤ Distance 11.4% 11.4% 11.4% 11.4% 11.4% 11.4% 11.5% 13.6%
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locations and demands could also dictate that even
with a more generous distance allowance, more nodes
are still necessary to serve efficiently. Lastly, the
abrupt change in trend in the last two scenarios needs
attention. The significant increase in the number
of facilities, coupled with a decrease in total cost,
indicates a major shift in the model’s optimization.
It could be that after a certain distance, the model
optimizes to open many more facilities to counteract
other rising costs.

5. Conclusion

It was possible to design a model using Mixed Integer
Linear Programming (MILP) to solve facility selection
problems in humanitarian assistance operations
proposing a methodology that considers viable
location options resulting from an analysis of an
affected area in a disaster situation. Also, not only
was the allocation model designed to minimize costs
but also constraints were considered focusing on the
distance between supply and demand nodes and the
percentage of this demand to be satisfied as a priority.
Furthermore, the solution scheme to collect distance
information using Google Maps and a branch-and-cut
algorithm worked synergistically. This branch-and-cut
algorithm was coded in Python, and computational
experiments showed the procedure was effective. For
this model, timely humanitarian attention is the
top priority for the location of facilities. The model
generally seeks to set up an optimal network based
on the shortest response time according to factors
such as the maximum allowable average distance, the
minimum percentage of demand that must be met
within a minimum distance value, and the capacity
limit in facilities. Thus, considering that the research
focused on a strategic design to support humanitarian
logistics operations, the model uses distance as the
most appropriate variable to achieve the proposed
objectives.
In the case study, several scenarios were tested where
the maximum weighted average distance was modified,
and the percentage of the demand satisfied within 0.1
km; 0.1 km to 0.25 km; 0.25 km to 0.50 km; 0.50
km to 0.75 km; 0.75 km to 1.0 km; and more than
1 km of distance, was calculated. Overall, the results
of the validation presented positive benefits. This is
based on the proximity between a supply node, and
a demand node is one of the best ways to ensure
rapid response time and comprehensive care. First,
the most significant percentage of satisfied demand
was generated when locating the supply nodes at a
distance greater than 0.1 km and less than or equal

to 0.25 km, reaching values between 48.2% and 64.1%
in the different scenarios analyzed. Additionally, the
following most significant percentages were recorded
when locating supply nodes at a distance of fewer
than 0.1 km. Thus, the rates of demand satisfied
at this distance reached values between 13.9% and
22.4% in the different scenarios. In contrast, the lowest
percentages of satisfied demand were found by locating
supply nodes at distances greater than 0.75 km away.
Finally, regarding the total cost, we noted that the
total cost increased as the maximum weighted average
distance and the maximum recorded distance were
reduced. This is important because the results showed
that the model allows allocating humanitarian funding
in proportion to costs and aligning the constraints
according to local priorities in different contexts.
In addition to these inferences, depending on the
institutions or bodies involved, it is possible to present
other ways of using this model in practice. For
example, regarding the case study, it would be possible
to go back and establish that 85% of the demand
should not be within 0.5 km of the supply nodes;
perhaps another value could be set. As the complexity
of the problem increases, it is possible to alter these
numbers and analyze how much these changes cost
and the level of humanitarian attention. In the case
study, the solution of having 12 supply nodes within
the established distance conditions can be slightly
more expensive compared to other scenarios. Indeed,
implementing such an optimal solution at a lower
cost may not be entirely appropriate. Additional
constraints may also be imposed, which is an advantage
of the model, as it can be adapted to many hypothetical
scenarios.
Notably, the model helps analyze that the variable cost
of supply will decrease if the supply nodes are closer
to the demand nodes. This is logical, as aid agencies
commonly open response facilities closer to affected
areas. In this way, they can reduce costs and, in fact,
also improve their response time. But, as you have
more of these facilities, the cost of supplying the points
of origin that supply these response facilities increases.
One of the most significant considerations is the cost
associated with establishing and maintaining multiple
facilities. These expenses include land acquisition or
rent, infrastructure setup, facility upkeep, utilities,
and the establishment of essential communication
lines. Labor costs also rise with the addition of
more facilities. As the number of nodes in the
supply chain increases, so does the complexity of
the entire operation. While managing a single,
centralized facility might be straightforward, adding
more facilities requires advanced management systems
and potentially the recruitment of specialized staff.
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Another crucial factor is the impact on the supply
chain’s points of origin when stocking an increasing
number of response facilities. As the number of
facilities grows, ensuring consistent stock levels across
all locations becomes a significant logistical challenge.
This often requires smaller, more frequent shipments,
leading to higher per-unit costs compared to larger,
consolidated shipments. Furthermore, economies of
scale may be lost when operations are spread across
multiple smaller facilities rather than centralized in
a single, expansive one. This could increase overall
operational costs, particularly in terms of procurement
and distribution efficiency. Future research should
further investigate these dynamics, especially in more
complex distribution networks where points of origin,
as well as supply and demand nodes, are considered.
Additionally, while this study focused on the supply
of a single good, future research should address the
simultaneous demand for multiple products or services,
which may reveal different operational challenges.
Analyzing the model’s approach to fairness is also
crucial, as the current measure may allow some demand
points to be poorly served, especially at greater
distances (as shown in Table 6). Exploring alternative
fairness measures, such as those suggested in prior
revisions, could provide more equitable outcomes.
Moreover, a deeper analysis is needed to explain the
increase in the number of tanks when the average
distance constraint is relaxed. While the result is
described, understanding the underlying reason could
offer valuable insights into the model’s behavior.
Considering these aspects and incorporating stochastic
demand and additional cost factors into the model
would enhance its practical application and provide a
more comprehensive analysis.
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