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ABSTRACT: Gentle remediation options (GROs) such as vermiremediation have not been applied in 
Colombian soils with DDT and HCH yet, while bioaugmentation and biostimulation under anaerobic 
and/or aerobic conditions have been successfully implemented. However, it is important to determine 
under which of the latter conditions the assessed consortium performs better. This research evaluated 
vermiremediation and bioaugmentation under anaerobic and/or aerobic conditions, assisted with 
biostimulation, in a DDT- and HCH-contaminated soil. Bacteria were isolated from the contaminated 
soil and used for bioaugmentation. Two GROs were conducted for 60 days: 1) vermiremediation by 
Eisenia foetida without/with biostimulation with compost from organic waste; 2) bioaugmentation of a 
Proteobacteria and Firmicutes consortium under anaerobic and/or aerobic conditions and biostimulation 
with the compost. Finally, the removals determined the efficiency of each treatment. In the first GRO, 
all the earthworms died by intoxication after 48 h of experimentation. In the second GRO, the highest 
removals were obtained with the anaerobic treatment: 27% 4,4'-DDT, 52% 4,4'-DDE, 58% 4,4'-DDD, 
72% α-HCH, 35% β-HCH, 92% γ-HCH, and 23% δ-HCH. The results indicate that vermiremediation is 
not feasible for restoring soils with these pollutants at the studied levels. On the contrary, although the 
synergy between bioaugmentation and biostimulation represents a promising alternative, it is crucial to 
conduct longer evaluations of the proposed treatments to better understand their effects on the 
decontamination of soils with DDT and HCH. 
 
RESUMEN: Opciones de remediación amigable (ORA) como vermirremediación no se han aplicado 
en suelos colombianos con DDT y HCH todavía, mientras que bioaumentación y bioestimulación en 
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condiciones anaerobias y/o aerobias han sido implementadas exitosamente. Sin embargo, es importante 
determinar en cuál de las últimas condiciones el consorcio evaluado se desempeña mejor. Este estudio 
evaluó vermirremediación y bioaumentación en condiciones anaerobias y/o aerobias, asistidas de 
bioestimulación, en un suelo contaminado con DDT y HCH. Se aislaron bacterias del suelo contaminado 
y se utilizaron para bioaumentación. Dos ORA se efectuaron durante 60 días: 1) vermirremediación por 
Eisenia foetida sin/con bioestimulación con compost de residuos orgánicos; 2) bioaumentación de un 
consorcio de Proteobacteria y Firmicutes en condiciones anaerobias y/o aerobias y bioestimulación con 
el compost. Finalmente, las remociones determinaron la eficiencia de cada tratamiento. En el primer 
ORA, todas las lombrices murieron por intoxicación después de 48 h de experimentación. En el segundo 
ORA, se obtuvieron las mayores remociones con el tratamiento anaerobio: 27% 4,4'-DDT, 52% 4,4'-
DDE, 58% 4,4'-DDD, 72% α-HCH, 35% β-HCH, 92% γ-HCH y 23% δ-HCH. Los resultados indican 
que la vermirremediación no es viable para restaurar suelos con estos contaminantes en los niveles 
estudiados. En cambio, aunque la sinergia entre bioaumentación y bioestimulación representa una 
alternativa prometedora, es crucial realizar evaluaciones más prolongadas de los tratamientos propuestos 
para comprender mejor sus efectos en la descontaminación de suelos con DDT y HCH.

1. Introduction 
The term DDT, chemically known as 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane, usually refers to a 
group of isomers: 4,4'-DDT and 2,4'-DDT, and its metabolites 4,4'-DDE, 4,4'-DDD, 2,4'-DDE, and 2,4'-
DDD [1]. Similarly, HCH (1,2,3,4,5,6-hexachlorocyclohexane) has eight isomeric forms; α-, β-, γ-, and 
δ-HCH are the best known [2]. Of these two groups, only 4,4'-DDT and γ-HCH (also known as lindane) 
have insecticidal properties [1], [3]. 
These compounds were effectively used in agriculture and hygiene in the past [4], [5]. Nevertheless, due 
to their wide dispersal away from zones of production and use, high liposolubility (which favors 
bioaccumulation, bioconcentration, and biomagnification throughout the food chain), great chemical 
stability (remaining for many years in the environment), and toxicity in humans and other animals, some 
of them (4,4'-DDT, α-, β-, and γ-HCH) have been listed in the Stockholm Convention: a global treaty to 
protect human health and the environment from persistent organic pollutants (POPs) [6], [7]. 
Although DDT and HCH were banned decades ago in many countries, they are still detected in different 
places due to their persistent nature [8], [9]. For example, in Colombia, DDT and lindane were banned 
in 1993 and 1997, respectively [10]. However, 1983.5 m3 of soil contaminated with pesticides POPs were 
estimated in Agustín Codazzi (Cesar) in 2006 [11]. Therefore, considering the adverse effects of DDT 
and HCH in different environmental compartments [12]–[15], the remediation of these soils is essential. 
Gentle remediation options (GROs) such as bioaugmentation, vermiremediation, and biostimulation have 
become popular in soil decontamination because they are environmentally friendly, cost-effective, and 
relatively efficient technologies [16], [17]. 
Bioaugmentation has been widely applied for restoring soils with DDT and HCH [8], [18]–[20]. This 
methodology has been implemented with individual strains or groups of bacteria (consortia). Consortia 
represent a better alternative because a heterogeneous bacterial group provides more catabolic pathways 
for the mineralization of pollutants. The use of autochthonous bacteria is usually more successful as the 
evolution of the enzymes involved in the catabolism of a compound makes the microorganisms more 
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efficient in its degradation [21]. Recently, the phyla Proteobacteria and Firmicutes have been reported 
as suitable candidates for the remediation of agricultural soils with a long record of pesticide usage [22]. 
Furthermore, the presence or absence of oxygen (O2) is important in DDT and HCH biodegradation. The 
choice of any of these conditions is mainly influenced by the involved microorganisms and the number 
of chlorine (Cl) atoms in the molecules [21], [23]. 
Vermiremediation consists of the utilization of daily processes carried out by earthworms (burrowing, 
feeding, metabolism, secretion, and excretion) or the interrelation between these organisms and 
abiotic/biotic components to extract-accumulate and degrade pollutants [24]. Eisenia foetida is a great 
option for vermiremediation because it is easily cultured in the laboratory, grows rapidly, tolerates higher 
concentrations of pollutants than other earthworms, and its reproductive rate is high [25]. Likewise, the 
capacity of E. foetida for the remediation of soils with DDT and HCH has been evidenced [26]–[28]. 
However, vermiremediation is still an emerging technology in the treatment of soils with these 
compounds; in fact, it has not been applied in Colombia. The few studies realized in the country about 
the use of earthworms have been oriented to their application in soils degraded with mercury from mining 
[29], [30]. 
Although bioaugmentation and vermiremediation have been successfully implemented in soils with 
organochlorine pesticides, the synergy between each one of these techniques and biostimulation has 
reached better results [31], [32]. The incorporation of organic amendments is important during these 
processes as the DDT and HCH biodegradation is mainly cometabolic; in other words, it occurs 
fortuitously because organisms do not use the pollutant but a cosubstrate as carbon and energy source 
[23], [33]. Compost is normally used as an organic soil amendment. This material is a good choice as a 
biostimulant due to its nutritional richness, low or no economic cost, improvement of soil physical 
properties (e.g., porosity), and integration of microorganisms with the potential for restoring DDT- and 
HCH-contaminated soils [34], [35]. Additionally, the incorporation of organic materials in contaminated 
soils is a way of giving a second chance to waste that is usually disposed of in dumpsites, which is related 
to the circular economy. 
Considering all the above, the aim of this research was to evaluate the efficiency of vermiremediation by 
E. foetida and bioaugmentation of a Proteobacteria and Firmicutes consortium under anaerobic and/or 
aerobic conditions, both processes assisted by biostimulation with compost from organic waste, in a soil 
long-term contaminated with DDT and HCH. Furthermore, taking into account that a large bacterial 
diversity has been identified in soils contaminated with these compounds [34], [36], and that their 
biodegradation may occur under anaerobic and/or aerobic conditions [21], [23]; it is important to 
determine under which condition the evaluated consortium performs better in the bioremediation of 
DDT- and HCH-contaminated soils. 

2. Methodology 
 
2.1. Collection and preparation of the soil and compost 
The soil was collected from Agustín Codazzi, a municipality with a previous history of organochlorine 
pesticide contamination [11]. The soil was taken from three different points (10°1'15.452''N, 
73°14'23.856"W; 10°1'12.569"N, 73°14'11.429"W; 10°1'11.960"N, 73°14'10.892"W) as shown in 
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Figure 1, and then the three soil samples were homogenized to form a composite sample. Additionally, 
organic waste compost was acquired from Planta de Valorización de Residuos Orgánicos 
Biodegradables of Universidad Santo Tomás, Floridablanca Campus (Santander, Colombia). After that, 
the soil and compost were ground and sieved through a 2 mm sieve. It is important to emphasize that the 
soil and compost were not dried at room temperature because they were perceived as dry.
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Figure 1 Location of the contaminated soils evaluated in this research 



Revista Facultad de Ingeniería, Universidad de Antioquia, No.116, pp. x-xx, Jul-Sep 2025 

M. C. Portilla-Saldarriaga et al.; Revista Facultad de Ingeniería, No. 116, pp. Jul-Sep 2025 

 

2.2. Physical, chemical, and microbiological characterization of the soil and compost 
Physical, chemical, and microbiological properties of the soil and compost were measured using standard 
methods proposed by Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Canadian 
Society of Soil Science (CSSS), Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) of 
Mexico, and employing procedures recommended in other sources. 
The gravimetric method was applied to determine the water content [37]. The soil water content was 
measured after 72 h to determine the field capacity [38]. Throughout the experimentation, the water 
content was maintained as much as possible at 60 and 77% of the soil field capacity in the aerobic and 
anaerobic treatments, respectively [9], [20], [27], [28], [39]. The hydrometer method was used to 
determine the texture [40]. 
The electrical conductivity was measured in the filtrate of a 1:5 soil or compost/water suspension [41]. 
The pH was measured in 1:1 soil/water and 1:2 compost/water suspensions [42]. The oxidation with 
potassium dichromate (K2Cr2O7) and sulfuric acid (H2SO4) was used to determine the total organic 
carbon; the organic matter was calculated by the product of the total organic carbon value and the van 
Bemmelen factor (1.724); the total nitrogen was measured by the Kjeldahl method; and the colorimetric 
method with an extractant solution of hydrochloric acid (HCl) and ammonium fluoride (NH4F) was 
applied to determine the total phosphorous [43]. 
 
2.2.1 Bacterial enrichment and isolation 
Initially, 100 g of the contaminated soil and 5 mL of nystatin were added to 500 mL of an enrichment 
medium with 2.7 (NH4)2HPO4, 4.3 Na2HPO4, 4.2 KH2PO4, 0.5 MgSO4·7H2O, and 0.06 CaCl2·2H2O g/L 
of distilled water. After that, the suspension was maintained at 110 rpm, room temperature, and aerobic 
conditions for 6 days. On day 6, inocula were taken, each one was grown by the streaking method on 
Petri dishes with nutrient and MacConkey agars (Oxoid™), and the dishes were incubated at room 
temperature and aerobiosis for 48 h. Finally, the bacteria were isolated based on their macroscopic 
characteristics. Each bacterial isolate was grown by the same method on Petri dishes with nutrient agar 
(Oxoid™) and incubated at the same conditions [19]. 
 
2.2.2 Bacterial identification 
The bacteria were identified by phenotypic methods [44]. Gram stain (+), catalase activity (+), starch 
hydrolysis test (+) [45], and Schaeffer-Fulton or spore stain (+) [46] were carried out to identify the 
bacteria of the Bacillus genus, according to the Bergey's manual of determinative bacteriology [47]. On 
the other hand, Gram-negative and oxidase-negative bacteria were identified with the RapID™ ONE 
System (Remel™). 
 
2.2.3 Quantification of bacterial populations 
The spread plate method was applied to estimate the number of viable cells. Before the implementation 
of this procedure, serial dilutions up to 10-6 were carried out using sterile saline solution at 0.85%. Each 
dilution was grown on a Petri dish with nutrient agar (Oxoid™) and incubated for 24 h at room 
temperature and aerobic conditions. Lastly, the dish with a number of colonies between 30 and 300 was 
selected for counting [45], [46]. 
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2.3. Organochlorine pesticide extraction and analysis 
The matrix solid-phase dispersion (MSPD) was applied to extract organochlorine pesticides. Separation, 
detection, and quantification of the isolated substances were performed by gas chromatography-mass 
spectrometry, operated in selected ions monitoring mode (GC-MS/SIM). The certified mixture of 
organochlorine pesticides Part No. M-8081-SC (AccuStandard, Inc., 125 Market Street, New Haven, CT 
06513) was used as a reference standard. Chromatographic analysis was carried out in an AT 6890 Series 
Plus gas chromatograph (Agilent Technologies, Palo Alto, CA, USA), coupled to a mass selective 
detector (AT, MSD 5973). The column used in the analysis was DB-5MS of 5%-Ph-PDMS, 60 m × 0.25 
mm × 0.25 μm. The injection was performed in splitless mode (Viny = 1 μL). 
 
2.4. Experimental design 
 
2.4.1 First GRO, vermiremediation without/with biostimulation 
The microcosms were carried out in plastic flowerpots. Three treatments were conducted: natural 
attenuation (NA, control), vermiremediation (V), and vermiremediation + biostimulation (V + B). There 
were three replicates per treatment. 
NA and V contained 2.322 kg of organochlorine pesticides-contaminated soil, while V + B was filled 
with 1.786 kg of contaminated soil and 0.536 kg of compost thoroughly mixed (77:23 ratio) [48]. 
Furthermore, individuals of E. foetida were purchased from Abonos y Lombrices (Granja El Cortijo 
Lynn, Rionegro, Santander, Colombia). A total of 16 healthy and sexually mature earthworms per kg 
were added [31], resulting in the incorporation of 37 individuals in the treatments V and V + B. 
Each flowerpot was covered at the top with a disposable polypropylene bouffant cap to allow oxygen 
transfer and prevent external interferences. The temperature of each treatment was verified to be in the 
range of 14-27 °C [49]. Manual turning was applied to maintain the temperature in the required interval 
and to aerate the medium [28]. 
After 60 days, a well-mixed composite sample of soil from each treatment (same amount of replicates 
one, two, and three) was used to quantify the organochlorine pesticides. The efficiency of each treatment 
was determined from the obtained removals, calculated using Equation 1. 
 

Removal = 
Initial concentration - Final concentration

Initial concentration
 * 100 (1) 

 
2.4.2 Second GRO, bioaugmentation under anaerobic and/or aerobic conditions and 
biostimulation 
The microcosms were carried out in plastic flowerpots. Four treatments were conducted: natural 
attenuation (NA, control), bioaugmentation + biostimulation under aerobic conditions (B + B Ae), 
bioaugmentation + biostimulation under anaerobic and subsequent aerobic conditions (B + B An-Ae), and 
bioaugmentation + biostimulation under anaerobic conditions (B + B An). There were three replicates per 
treatment. 
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NA contained 2.322 kg of organochlorine pesticides-contaminated soil; while B + B Ae, B + B An-Ae, and 
B + B An were filled with 1.786 kg of contaminated soil and 0.536 kg of compost thoroughly mixed 
(77:23 ratio) [48]. Additionally, for the bioaugmentation, all the bacterial strains from the contaminated 
soil were grown in a nutrient broth (Millipore®) until a total rate of 108 colony-forming units (CFU) per 
mL, and it was maintained at 110 rpm, room temperature, and aerobic conditions for 72 h. After that, 
100 mL of this bacterial suspension was added on days 1 and 30 to the treatments B + B Ae, B + B An-Ae, 
and B + B An [50]. 
The aerobic treatments were covered at the top with a disposable polypropylene bouffant cap, and the 
anaerobic treatments were completely wrapped with polyethylene and placed inside an airtight chamber 
along with a sachet of AnaeroGen™ 2.5 L (Oxoid™) to promote anaerobic conditions. Anaerobiosis and 
aerobiosis in the treatment B + B An-Ae lasted 30 days each one, with the total experimental time divided 
equally between the two conditions (50:50) [51]. 
After 60 days, a well-mixed composite sample of soil from each treatment (same amount of replicates 
one, two, and three) was used to quantify the organochlorine pesticides. The efficiency of each treatment 
was determined from the obtained removals, calculated using Equation 1. 
 

3. Results and discussion 
 
3.1. Initial physical, chemical, and microbiological characterization of the soil and compost 
The initial physical, chemical, and microbiological properties of the soil and compost are shown in Table 
1. The soil from Agustín Codazzi was slightly moist [52]. Therefore, it was necessary to add water for 
the growth and stability of the organisms: bacteria and earthworms [49], [53]. It has been established that 
the adequate water content in the remediation by aerobic bacteria is between 50 and 70% of the field 
capacity. Furthermore, higher moisture levels cause the saturation of soil pores, which favors anoxic 
conditions, thus generating a jump from aerobic to anaerobic metabolism [39]. For this reason, the water 
content in the anaerobic treatments was maintained at 77% of the soil field capacity, to generate a low 
oxygen diffusion through the soil. On the other hand, the texture was classified as silt loam [52]. In that 
regard, it is a soil suitable for bioremediation and moderately appropriate for microbial colonization [38], 
[39]. 
The soil was categorized as non-saline and the compost as very slightly saline [52]. These electrical 
conductivities do not represent difficulties for the organisms, enzymes, and soil physical properties such 
as infiltration, permeability, and hydraulic conductivity [39], [54], [55]. Additionally, the soil was 
cataloged as slightly acidic and the compost as slightly alkaline [52]. These pHs are suitable for most 
microorganisms, enzymes, and E. foetida [39], [45], [49], [53]. 
At the beginning, the soil had low organic matter, medium total nitrogen, and low total phosphorus. After 
mixing the soil and compost, these parameters were medium, very high, and low, respectively [43], which 
significantly increased the nutritional content and probably promoted the cellular metabolism of the 
organisms [45], [46]. 
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Table 1 Initial physical, chemical, and microbiological properties of the soil and compost 

 

Property 
Arithmetic mean ± standard 

deviation 
Soil Compost 

Water content 
[%] 9.7 ± 0.4 

 
Field capacity 

[%] 25.8 ± 0.4 

Texture 
[%] 

29.4 ± 1.0 sand 
14.9 ± 0.2 clay 
55.7 ± 1.1 silt 

Electrical 
conductivity 

[dS/m] 
0.53 ± 0.02 2.18 ± 0.02 

pH 6.47 ± 0.03 7.79 ± 0.04 
Total organic 

carbon 
[%] 

0.63 5.17 

Organic matter 
[%] 1.09 8.87 

Total nitrogen 
[%] 0.12 0.85 

Total 
phosphorus 

[mg/kg] 
0.17 0.23 

Bacteria 

6.8 × 104 ± 7.8 CFU/g 

 

Kluyvera intermedia* 
Klebsiella pneumoniae** 

Serratia plymuthica* 
Yersinia enterocolitica* 

2 Bacillus spp. 

Organochlorine 
pesticides 
[mg/kg] 

1119 4,4'-DDT  
105 4,4'-DDE  
774 4,4'-DDD 
344 α-HCH 
86 β-HCH 
76 γ-HCH 
35 δ-HCH 

*99.9 and **96.09% probabilities of coincidence. 
 
In the case of the microorganisms, the bacterial populations were low [39]. Furthermore, the bacterial 
isolates from the soil have demonstrated their potential to reduce the concentrations of organochlorine 
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pesticides, organophosphate pesticides, and heavy metals in other studies [34], [36], [56]–[60], as shown 
in Table 2. 
 

Table 2 Bacterial isolates and their processes to reduce organochlorine pesticides and other pollutants 

 
Bacterium Process and pollutant Source 

K. pneumoniae 
DDT degradation 
under anaerobic 

conditions 
[58] 

Bacillus 
thuringiensis 

DDT degradation 
through anaerobic 

reductive 
dechlorination 

[36] 

Bacillus 
megaterium 

DDT degradation 
through anaerobic 

reductive 
dechlorination 

[60] 

Bacillus 
vietnamensis 

Degradation of DDT 
and isomers of HCH 

[34] 

K. intermedia 

Association with 
sorghum to boost the 

phytoextraction of 
cadmium (Cd) and the 
phytostabilization of 
lead (Pb) and arsenic 

(As) 

[57] 

S. plymuthica 

Phytostabilization of 
the pesticides Prosper, 

Cuivox, Fungastop, 
Nimbecidin, and 

Maneb 

[56] 

Y. enterocolitica 

Degradation of the 
organophosphate 

pesticide 
tetrachlorvinphos 

[59] 

 
Finally, two groups of organochlorine pesticides were identified: 1) 4,4'-DDT and its principal 
metabolites 4,4'-DDE and 4,4'-DDD, and 2) the isomers α-, β-, γ-, and δ-HCH. The compounds 4,4'-
DDT, α-, β-, and γ-HCH are listed in the Stockholm Convention [6]. It is important to note that, after 
extensive search, it was identified that the concentrations quantified in the present research are 
considerably high —possibly due to burial or dumping of these pesticides in the soil— and such amounts 
had not been detected in other Colombian soils. Additionally, it is relevant to point out that, to date, no 
other study has reported the simultaneous presence of DDT and HCH in the soils of the country. On the 
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other hand, according to the Cabinet Regulation No. 804 of 2005 of Latvia [61], the concentrations of 
the identified pollutants directly threaten human health and the environment. In this case, the situation is 
even more dangerous because there are human settlements very close to the sites where the soil samples 
were taken (as can be seen in Figure 1). 
 
3.2. Bioremediation experiments 
 
3.2.1 First GRO, vermiremediation without/with biostimulation 
All the specimens of E. foetida died after 48 h of experimentation. The earthworms exhibited coiling, 
curling, extrusion of celomic fluid, segmental swelling, severe constriction, and slimming, as shown in 
Figure 2. These symptoms indicated intoxication and were also evidenced in other research, in which E. 
foetida was exposed to different concentrations of the pesticides trichlorfon, dimethoate, carbendazim, 
tebuconazole, and prochloraz [62], and cypermethrin, fenvalerate, carbaryl, and carbofuran [63]. 
 
1) The concentration of total DDT (DDT plus its metabolites) did not exceed 72.35 mg/kg in soils from 
the same study area of this research [19], [60]. Furthermore, 2) E. foetida survived in soil with 50 mg/kg 
of DDT for 42 days. Also, all the earthworms survived until day 28 when they were exposed to soil with 
100 mg/kg of the same pesticide, from day 28 to 42 about 10% of the population died [64]. Considering 
these two premises, vermiremediation was a viable alternative in the current research. Nevertheless, the 
initial quantification of DDT and HCH and vermiremediation were carried out simultaneously, which 
did not allow foreseeing that the concentrations of these compounds were elevated and would cause the 
death of the earthworms. 
 

  
 

  
 

Figure 2 Symptoms in E. foetida after 48 h of exposure to the soil contaminated with DDT and HCH: 
(a) Extrusion of celomic fluid, (b) segmental swelling, (c) severe constriction, and (d) slimming 

 
 

(a) (b) 

(c) (d) 
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3.2.2 Second GRO, bioaugmentation under anaerobic and/or aerobic conditions and 
biostimulation 
The content of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in each treatment after bioremediation is shown in 
Figure 3. The concentration of 4,4'-DDT increased in NA, so the removal was negative, equivalent to -
6%. Additionally, 2 and 32% were the removals of 4,4'-DDE and 4,4'-DDD in the same treatment, 
respectively. The introduction of energy (e.g., aeration) may accelerate sorption and desorption [65]. In 
this sense, after aerating the medium by manual turning for 60 days, the organochlorine pesticides were 
probably desorbed. Consequently, new molecules of the pollutants may have appeared, and thus, the final 
concentration was higher than the initial concentration. 
 

 
Figure 3 Content of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in each treatment after bioremediation. The 

dashed lines represent the initial concentrations of the pollutants 

 
The decreases of the metabolites in NA may be attributed to mechanisms that occur naturally in soil, 
such as volatilization, adsorption, chemical transformation, and biodegradation. However, natural 
attenuation is a passive process that requires more time than active processes to reach the same remaining 
concentrations [66]. For this reason, the treatments B + B achieved higher removals compared with NA. 
Aerobic, anaerobic-aerobic, and anaerobic conditions are the three pathways that have been used for the 
bioremediation of DDT- and HCH-contaminated soils [18], [19], [21], [60]. The implementation of any 
of these pathways is mainly influenced by two aspects: the involved microorganisms and the number of 
Cl atoms in the molecules [21], [23]. 
In a study, it was found that in four soils with a long history of pesticide use, the relative abundance of 
bacteria was 30-36% Proteobacteria, 15-20% Actinobacteria, 13-14% Firmicutes, and 7-13% 
Bacteroidetes. Likewise, some core bacterial genera and some of their genes involved in pesticide 
degradation were identified [22]. The bacteria isolated and identified in the present research belong to 
the phyla Proteobacteria and Firmicutes [45]. Additionally, these bacteria are facultative anaerobic 
according to the literature (those identified up to species level, i.e., K. intermedia, K. pneumoniae, S. 
plymuthica, and Y. enterocolitica) [58], [67]–[69]. Therefore, their growth and stability are feasible in 
anaerobiosis and aerobiosis [46]. Nevertheless, it is not clear under which of these two conditions the 
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bacteria are more efficient in the degradation of DDT and HCH yet, except for K. pneumoniae subsp., 
which has demonstrated the ability to initiate the anaerobic pathway for the degradation of 4,4'-DDT 
[70]. 
In the case of the second aspect, it has been proposed as a generality that low-chlorinated molecules (one 
to three Cl atoms) are more susceptible to aerobic biodegradation; whereas if the amount of Cl is higher, 
anaerobic conditions are more convenient [71], [72]. 4,4'-DDT has five Cl atoms, in consequence, its 
first steps of biodegradation occur under anaerobic conditions. However, it has been shown that one of 
the rings of this pesticide is cleaved in subsequent aerobiosis [23]. In this sense, higher removals were 
expected in B + B An-Ae because it is a more complete treatment; nevertheless, the bacteria achieved the 
highest reductions under anaerobic conditions after 60 days of experimentation. This result may have 
been due to the short duration and, therefore, the incomplete anaerobiosis in B + B An-Ae, which meant 
that during the aerobic conditions the compound was still highly chlorinated, and the removals were not 
significant. The reductions of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in B + B An, B + B An-Ae, and B + B Ae 
were equivalent to 27, 52, and 58%; 11, 37, and 43%; and 4, 24, and 41%; respectively.  
On the other hand, the content of α-, β-, γ-, and δ-HCH in each treatment after bioremediation is shown 
in Figure 4. In general, high removals of γ- and α-HCH were obtained in comparison with β- and δ-
HCH. The chemical stability and the biodegradation of the HCH isomers are influenced by the orientation 
of the Cl atoms in the molecules. The axial (a) and equatorial (e) positions of the Cl in α-, β-, γ-, and δ-
HCH are aaaaee, eeeeee, aaaeee, and aeeeee, respectively. It is considered that axial Cl atoms facilitate 
spaces for enzymatic degradation. For this reason, α- and γ-HCH are more easily biodegraded than β- 
and δ-HCH [33]. 
 

 
Figure 4 Content of α-, β-, γ-, and δ-HCH in each treatment after bioremediation. The dashed lines 

represent the initial concentrations of the pollutants 

 
The reductions of α-, β-, γ-, and δ-HCH in NA were 41, 18, 85, and 7%, respectively. The significant 
decreases of γ- and α-HCH in this treatment may be attributed, besides their easy biodegradation due to 
the Cl atoms orientation in the molecules [33], to their use as sole carbon and energy sources under 
aerobic conditions by the bacteria, as evidenced by [73] with γ-HCH and the halophilic bacterium 
Chromohalobacter sp. LD2, isolated from an HCH dumpsite. 
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In B + B An, B + B An-Ae, and B + B Ae the removals of α-, β-, γ-, and δ-HCH were equivalent to 72, 35, 
92, and 23%; 22, 32, 85, and 13%; and -5, 11, 84, and 10%; respectively. In other words, the reductions 
in these treatments occurred in the order B + B An > B + B An-Ae > B + B Ae. As with 4,4'-DDT in NA, the 
increase of α-HCH concentration in B + B Ae may be attributed to the desorption of the pollutant [65]. 
The mineralization of HCH isomers is usually reached under aerobic conditions [33]. For example, 
Sphingomonas paucimobilis UT26 has shown the ability to completely degrade γ-HCH in the presence 
of O2 as it possesses lin genes, which encode enzymes involved in the degradation of this compound. 
However, not all aerobic bacteria are successful in the mineralization of HCH [21]. 
In contrast, although anaerobic-aerobic treatments have been considered more efficient in the degradation 
of HCH isomers —because, having six Cl atoms, they are initially degraded under anaerobic conditions, 
and then their less chlorinated products are more easily degraded under aerobic conditions [21]—, in the 
current research, the bacteria removed the highest amounts of α-, β-, γ-, and δ-HCH in anaerobiosis. 
Similar to the DDT section, this result may have been strongly influenced by the duration of the studied 
conditions: anaerobiosis and aerobiosis. 

4. Conclusions 
Vermiremediation is not a feasible technology for the decontamination of soils with DDT and HCH at 
levels such as those determined in the present research. In the end, this GRO acted as an ecotoxicity 
assay, evidencing the negative impacts of these pollutants on organisms such as earthworms. 
On the contrary, the synergy between bioaugmentation of the Proteobacteria and Firmicutes consortium 
formed by K. intermedia, K. pneumoniae, S. plymuthica, Y. enterocolitica, and two Bacillus spp. and 
biostimulation with compost from organic waste gave positive results. In general, higher removals were 
achieved in the simultaneously bioaugmented and biostimulated treatments compared to the natural 
attenuation (control). Likewise, after 60 days, it was determined that this consortium performed better in 
the degradation of DDT and HCH in anaerobiosis, which was the most efficient treatment. Nevertheless, 
it is important to evaluate the proposed treatments over a more extended period to better understand their 
effects on the decontamination of soils with these pollutants. 
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