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Minimax Regret filter for uncertainty Single-Input
Single-Output systems: simulation study

Filtro de arrepentimiento minimax para sistemas de unica entrada y salida inciertos: estudio
de simulacion

Authors: Double-blind review

KEYWORDS:
Minimax regret approach, Unknown-but-bounded, Unknown distribution error,
optimization.

Grid hyperparameter

Enfoque de arrepentimiento minimax, Desconocido pero acotado, Distribucién de error desconocida,

Optimizaciéon de hiperparametro por malla.

ABSTRACT: The Kalman filter, widely used since its introduction in 1960, assumes Gaussian random
disturbances. However, this assumption can be inappropriate in non-Gaussian contexts, leading to suboptimal
performance. Researchers have proposed robust filters like minimax filters to address this limitation, but
these filters can overly conservative estimates. This research introduces a novel approach that combines
unknown-but-bounded dynamics for the state process and stochastic processes for the measurement equation
along with a Minimax Regret framework to improve state estimation in one-dimensional linear dynamic
models. We evaluate the proposed method through two simulation studies. The first study optimizes the
hyperparameter value using Grid Search. In contrast, the second compares the performance of the proposed
method with conventional methods, including the Kalman filter and a robust version of the RobKF filter
implemented in R software, using a suitable performance metric such as mean squared error. The results
demonstrate the superiority of the proposed algorithm.

RESUMEN: El filtro de Kalman, ampliamente utilizado desde su introduccién en 1960, asume ruidos aleatorios
gaussianos. Sin embargo, este supuesto puede ser inapropiado en contextos cuyas variables no provienen de una
distribucién normal, lo que lleva a un desempenio subéptimo del filtro. Los investigadores han propuesto filtros
robustos como el filtro minimax para abordar esta limitacién, pero estos pueden proporcionar estimaciones
demasiado conservadoras. KEste trabajo presenta un enfoque novedoso que combina dindmicas desconocidas
pero acotadas para el proceso de estado y procesos estocasticos para la ecuaciéon de medidas, junto con un
marco de Arrepentimiento Minimax para mejorar la estimacién del estado en modelos dindmicos lineales de
una dimensién. Evaluamos el método propuesto a través de dos estudios de simulacion. El primer estudio
utiliza el algoritmo de busqueda por malla para optimizar el valor del hiperparametro, mientras que el segundo
estudia el desempefio del método propuesto en comparacién con métodos convencionales, incluyendo el filtro
de Kalman y una version robusta del filtro RobKF implementada en software R. Los resultados demuestran la
superioridad de nuestro algoritmo propuesto.

1. Introduction

The equations (la) - (1b) were proposed by
[1] to represent the uncertain linear system with
multiple-input multiple-output setting

Tep1 = Agy + &
Yt :Htact—&—wt, t= 1,2,...

where the estimation of the state process x; is given
solving the problem (2)

- . ~2
Ty = arg min B¢ |z, — T
F~F

(2)

where F; is the o-algebra generated by {yi,...y:}.
This can be reduced for the case Single-Input
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Single-Output (SISO) processes with uncertainty.
Since then, for the convenient mathematical
tractability of the assumption of Gaussian disturbances
of the processes (1a) - (1b), many extensions have been
proposed. The assumption of Gaussian disturbances
is inappropriate in several contexts. The objective
function of (2) is known as the Mean Squared Error
(MSE), and changing its form allows new concepts of
filtering to be built.

Several versions of the robust Kalman Filter (KF)
have been applied to many areas, spanning from
aerospace technology to control engineering and
robotics [2-5], and they can also be studied in the
context of various state forecasting problems. The
most applied approach has been the minimax method
[6-11]. Among them, Hs and H., are two classical



approaches, but they have a few drawbacks. In the
H, setting, the stochastic assumptions are not easy
to verify and under the assumption of normality, this
has shown to have a lack of robustness to outliers
data with the consequence of predicting inaccurate
future states [12]. Regarding the minimax approach,
although it has been widely used as a robust method
in the estimation of states x;, its performance is often
unsatisfactory, since it tends to be overly conservative
[13].

The theory of linear estimation in Krein Spaces is
based on simple concepts such as projections and
matrix factorizations and leads to an interesting
connection between Krein space projection and
the recursive computation of the stationary points
of certain second-order (or quadratic) forms [14].
Furthermore, they obtain upper and lower bounds
for the H., norm of the Kalman filter and the
recursive-least-squares (RLS) algorithm, concerning
prediction and filter errors. Moreover, the main
conclusion in [15] is shown that “the H. for RLS
is data dependent, whereas, for least-mean-squares
(LMS) algorithms and normalized LMS, the Ho, is
simply unity”. Approaches, such as Outlier based
t-distribution distribution by [16], infinity variance
by [17], and the bounded [18-20], interval [21], and
unknown-but-bounded [22, 23] have been applied to
filtering.

Instead of considering the Kalman stochastic filter
or the minimax approach, this paper approaches
state estimation from a novel point of view, where,
in lieu of using the classical MSE, as it is in the
previous approaches, we use an objective function to
be minimized that counterbalances the conservative
nature of the minimax approach and does not rely on
assumptions of non-measurable states. Consequently,
we do not impose any distribution to the state
equation. Namely, we propose to use the Minimax
Regret concept [24] for the filtering problem, in
particular, SISO systems described by univariate
dynamical linear systems. Due to its focus on
minimizing maximum regret, the minimax regret
approach exhibits reduced susceptibility to outliers
or extreme prediction errors, thereby alleviating
potential biases in the MSE estimator [25]. [26, 27]
have seized this vision with different uncertainty sets
in the dynamic case, and [13, 28] in the static case.
Thus, our article is organized as follows.

In section 2, we present the mathematical model
of the new approach to estimate the states of a
uni-dimensional linear dynamic system. Section 3
presents the main theorem, where we use different
optimization tools to get a closed form of the
real-valued gain for our uncertainty linear SISO
systems. In section 4, we use two Monte Carlo
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simulations; the first is used to get a tuned value of
the hyperparameter and the second one to compare
the performance of the Minimax Regret for estimating
the states of the linear dynamic system and two
selected filtering.  Finally, section V includes the
conclusion and future works.

2. Minimax Regret for an

uncertainty linear SISO system

Let us start by introducing the bounded discrete-time
dynamic system (3)

Ti41 = AT, |(Et‘ SL, .’L'tER, t:O,1,27... (3)
where z; is the current (non-observable) state of the
process, and each a; € R is the parameter of the
real-valued system associated with the discrete-time
instant ¢t € N, and L is a parameter provided by a
user. The equation (3) is the unknown-but-bounded
approach for the equation (la) in the traditional
stochastic approach with an additive noise.

In parallel with the main dynamics (3), we next
consider a discrete-time “observer” (space system)
described in (4)

Y = hxy +mp, t=0,1,2,... (4)
here, h; € R represents the known observer gain at time
t, and 7: € R denotes the disturbance term. Note that
1 characterizes the natural noise in the corresponding
observation (4). With equation (5), we assume that
stochastic processes 7; are independent, centered and
having known variance r; for all t,s = 0,1, ...

E{m} =0, E{mns} = bsme (5)

where ;5 is the delta Kronecker function.
An estimate of state x; given by (3), which is linear
concerning the last observation y;, may be represented

by (6)
(6)

where K; € R. We will calculate the MSE of the
estimator (6) by evaluating the bias B (Z;) and the
variance V (Z;) of the estimator (6). By using (3) - (4)
we have (7) and (8)

Ty = Ky

B @)|° = |z — E @)

(7)
= agflngl (1- Ktht)2

V(@) = B{j@ - E@)} =K ()
then, the M SE is described in (9)

MSE (2,1, K;) = (1 — K;hy)? a2 22 | + K?ry. (9)



Remark 1 (Non-observability). When the observation
value h; becomes zero, the MSFE simplifies to
ai_ix? , + KPry. This simplification leads to
an uninformative solution where K; equals the
zero, with no meaningful relationship between the
unknown-but-bounded state x;_1 and the gain value
K;. Henceforth, we will assume that the system is
observable for the remainder of our discussion.

We define, now, the regret function on (10)

R(x¢_1,K;) = MSE (21, K;) — MSE° (10)

where MSE® = rrll(inMSE(xt,th(xt,l)). The

regret (10) is the difference between the MSE using
the estimator (6) and the smallest possible MSE
attainable with an estimator z; = Ky (x¢—1)y; when
the state x;_1 is known.
The min-max regret filter is the value x; of (6), where
K, is the solution of the min-max regret problem given
by (11).

mm

max R (It 1 Kt)
=Kyt x2_

a, (11)

To solve (11), we develop an explicit expression for
MSE®. First, we determine the estimator & =
K (2¢—1) y: that minimizes the MSE (9) when x;_1
is known. To this end, we differentiate function (9) for
K; and equate to 0, which results in (12)

2 .2 -1
heay_qxi_qmy

Kt (xt,l) (12)

-1
1+ htat 11’1: 1T

substituting (12) into (9), the M SEY is given by (13)

a?_,z?
MSE® = e (13)
L+ af_ @7 _yhir
thus, substituting (13) into (10), we obtain (14), which
is our final Regret function R (x¢—1, Kt).
2 2
2 9 2 2 ay_1%¢—1
a;_1x;_1 (1 — Kihy)” + K7y —
t-2i-1 X 1+ a?_yx} hir,t
(14)
3. Minimax  Regret filter for

uncertainty linear SISO model

The last section defined the concept of the Minimax
Regret filter based on the gain value K; and the
Minimax Regret Problem (11). The main theorem for
K; is derived and proved.

Theorem 3.1 (Minimax Regret Gain Value). Let
us denote the unknown-but-bounded linear real-valued
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state x4 in the system (3) - (4), where a; € R
and hy € R are known real-valued associated with
the discrete-time system, n; € R denotes system
uncertainties of the observer equation for each t € N.
Then, K[ is the solution to the min-maz (15)

min max R (ri—1,K}) (15)
<r2

2
Kta: <

where the regret function is defined in (14), it has the
form described in (16)

2
a:_h

* t—1't
K;

== = 16
Bt 117 1

Proof. To get the solution to (15), first, we transform
the minimax problem into a min problem. As the
part K?2r; of (14) is independent of z;_1, we have the
transformed problem (17)

min [Kfrt—k
K

2 2
Ty_10¢_q

max

xf_<L?

<$t2—1at2~1 (1- Ktht)2

(17)
Let us define the sub-problem of maximizing on z7_; <
L? the function f(z;_1, K;) defined in (18)
vy 107y
L af jai  hiry!

2
w10y (1= Kihy)™ — (18)
As the function given in (18) is a continuous function
defined on a compact set {m;_i:a? | < L?*}, by
Weierstrass theorem, it attains its maximum on the
closed interval [—L, L] for any K, fixed.

The equation (19) is the Lagrange function for the
sub-problem with function (18)

2 2
Ty 1031

Az, N) =
(-1, ) T+ 22 oo

(c1e — A aj_q — +AL% (19)

where ¢y = a2 | (1 — Kihy)?, and cop = a2 h2r;!
The supremum of (19) is attainable iff ¢;; — A < 0,
and ¢ (\) = sup,, ,ep A (zi—1, Ky, A) = AL? is the dual
function. The Lagrange dual problem is described in
(20)
min  AL?
A
(20)

st. —A<0

a? | (1—Kh)* =1 <0.

Using (20), the Minimax Regret optimization problem
(17) becomes

min | K77y + min AL?
K st. a2 (1—Kh)?>=XA<0
A>0

o 2 2 p2.—
1+x;_qa;_1h



and it is equivalent to (21)
min Kfrt + A\L?

af_l (1 - Ktht)2 - A S 0
A >0, K; free.

S.t. (21)

We next define the Karush-Kuhn-Tucker (KKT)
conditions for (21) when we introduce the auxiliary
decision variables K; = K, — K; ; K;", K; > 0 and
the Lagrange function

4
L(KS K7 N) = Kiry + AL+ pigi(KF K, )

i=1

where g1 (Kt K7, ) = a2, [1— (K — K; ) h]” —
)‘7 g2 (Kzt—i_7Kt_a)‘) = _K;_a g3 (Kijwt_a)‘) = _Kt_7

and g4 (KﬁK;,A) = —AX. Then, the Lagrangian
optimality
4
VF (K} KA + Y wiVe (K K, A) =0
i=1

is equivalent to (22a) - (22¢)

2K 7y — 2u1a?_ | [1 — Kihe]hy —pa =0 (22a)
—2Kry + 2ppal_ [1 — Kihe hy —pus =0 (22b)
L* — g —pg = 0. (22¢)

The slackness equations p;g; (K;F,K{,)\) =0,7 =
1, 2, 3, 4 are given by (23a)-(23d)

i faiy [U= (K = K7 h]” = [ =07 7 (233)
paKH =0 (23b)
nsKi=0  (23¢)

)

paA =0 (23d

Adding (22a) and (22b), and joint to dual feasibility
condition pa, ug > 0, we get (24)

p2 = p3 =0 (24)

thus (23b) and (23c) always hold.

Inserting (24) into (22a) and (22b) simplifies to (25)
2 (Ki = K )re —2mai_y [1— (K — K7 ) he] he =0
(25)
-2 (KtJr - K;) Tt+2,u1at271 [1 — (Kt+ — K{) ht] hy =0
Case 1. Assuming pq > 0, and the condition (23a), we
get the key condition (26)
_ 2
@[ (K KR =N (9

Now, we consider the following subcases.
Case (a) pq > 0, then, by (23d) we have A = 0. Also,

@O0 ’

(23a) implies that 1 — (K;” — K; ) hy = 0 by (26), and
(K} — K[ ) = h% # 0 and (25) does not hold. So, the
only possible case is uy = 0. A = 0, similarly to the
latter argument is not possible.

Case (b) A > 0. Using the result of Case (a), by (22¢),
we get u1 = L2, and substituting u; into (25) and
solving it, we get (27)

* L2a2 ht
Kt —K7) =K =——1—"5 (27
( t t ) t e +L2agflh% ( )
and by (26) we obtain (28)
L2a2 - h2 12
X =a2 Gl oS00 (28)

B 2,2 2
re + L2a;_qh;

Case 2. The only remaining case is pu; = 0. This
assumption and (22¢) imply ugy = L? > 0. By Case
(a), it is not possible.

Thus the only solution of (15) is given by the equations
(27), and (28). O

Theorem 3.1 reduces the problem of minimizing the
worst-case regret in the framework of univariate
dynamical linear systems to a closed form given
by (16). The univariate Minimax Regret estimator
depends on the bounding parameter L. From (16) the
larger variance r;, the closer to zero is the real-valued
of the gain, which gives a character of robustness to
the Minimax Regret filter in the presence of outliers
for each constant L. (16) shows interesting additional
cases, one is when r, — 0, the real-valued gain K; goes
to the naive solution h%, as well as r, # 0 and L — oo.
Finally, when L — 0%, K; goes to zero.

4. Simulation Study.

We now present a simulation study that illustrates
the performance of the Minimax Regret estimator.
We use two metrics proposed in [29] to assess the
performance of our proposal. We consider the problem
of estimating a one-dimensional state from a dynamical
linear system, which is obtained by simulating the
system (3)-(4), whose dynamic state space equations
are given by

Ti+1 = *0.981’1;7 |.’,Et| S L, ZTo S ]R
Yt =2xs + 1, t €N

First of all, we need to tune the parameter L. We
use a Monte Carlo simulation to select this parameter.
This is described in subsection 4.1. Second, we
compare the performance of the Minimax Regret with
other methodologies, namely, the classic Kalman Filter
(KF) and the Innovative and/or Additive Outlier



Robust Kalman Filtering is implemented in the RobKF
package (RKF) in the R software [30]. We use another
Monte Carlo simulation to assess the performance of
the following methodologies: the Minimax Regret filter
with the L value selected in subsection 4.1, the Classic
KF, and RKF, which is described in subsection 4.2.
We perform one simulation of two sequences of N =
100 points with starting state point zg = —15.
The measurement noise without external outliers is
assumed to follow three different distributions; those
are, Gaussian distribution with zero mean and variance
two, Student’s t-distribution with three degrees of
freedom, and Laplace distribution using a location
parameter of zero and scale parameter of two. The
total Monte Carlo trials are M = 50. Finally, we
introduce a normal error with zero mean and variance
one in the state z; to simulate the fact that two
different states 7, and x} can produce two close space
data 7, and y; and the non-observable state which is
unknown-but-bounded.

Let ™ and ™ (L) be the true state data and the
L-minimax filtered data for the distribution d in the
set of the three selected statistical distribution D in the
m-~th Monte Carlo trial for ¢ = 1,..., 100, respectively.
We use the generalized metrics (29) and (30), similar
as [29]

1 < 2
RMSE} (1) = | 22 > («f™ = 5™ (L))" (30)

m=1
To ensure the reliability of data analysis, robustness
measures play a crucial role in guiding the development
of methods that can adapt effectively to variations in
the data. This is essential for preventing undesired
responses, such as erratic behavior, in the presence of
outliers. In addition to conventional loss functions,
we propose the incorporation of mean Huber error
(MHE) and root mean Huber error (RMHE) to
further enhance the robustness of data analysis
methods. This function is a smooth transition between
quadratic and linear penalties that helps mitigate the
influence of outliers, leading to more accurate and
reliable results when dealing with data containing
outliers [31-33], which are supported in the Huber loss
function given below

Ls(e) = 2¢° iffe] <0
5(lel — 36) ifle| >0
d,m

where ¢ = 2{"™ — 7% (L), and § is a user-defined
threshold between zero and oo. Therefore, the M HE
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and RMHE are defined as

N
1 m ~a,m 2
MHE; (m) =+ > Ls (mf’ — 7 (L)) (31)
t=1

M

1 " 2

RMHEf; (t) = \| 72 > L5 (et =zt ()
m=1

(32)
for each t = 1,...,N, and each of three selected
distributions indexed by d. Those are the conditions
for both simulations in the following subsection 4.1 and
4.2.

4.1L tune simulation

To ensure the Minimax Regret filter performs
optimally, its parameter L needs to be selected. This
study identifies the optimal L* by evaluating the
reliability of state estimates obtained under various L
values. Both MSE and M HE serve as metrics for
estimating reliability. The optimal L* is the value that
minimizes both M'SE and M HE loss functions. This
is achieved by reformulating equations (29) and (31) as
functions of L, resulting in (33) and (34), respectively.
These reformulated equations treat L as the decision
variable, enabling the efficient identification of the L*
that yields the most reliable state estimates based on
both MSE and M HE criteria.

1 N

MSEqm (L) = > (wif’m - (L))2

t=1

(33)

N
1 m  ~dm 2
MHE}, (L) = > £ (™ =™ (L))" (34)
t=1

To achieve this, the study adopts a Monte Carlo
approach with extensive simulations. The Monte
Carlo data were generated using a seed set to
123. A descriptive analysis is conducted to extract
insights into the randomness exhibited by the functions
MSEq ., (L) and ]\4HE'§7m (L) with 6 = 1.345, in the
definition (33) and (34), respectively. As a criterion to
select the L parameter, the mean and third quartile
(Q3) of the MSEy ,, (L) in the equation (33) and for
MHEg’m (L) in equation (34), overall M simulations
were calculated for each distribution d € D to highlight
a range of efficient values of L.

The Grid Search method, a common hyperparameter
tuning technique in machine learning, was employed
to optimize the L value. This approach is particularly
effective for models with a limited number of
hyperparameters, as it exhaustively evaluates all
possible parameter combinations within a pre-defined
grid. This method is well-suited for scenarios where the
number of hyperparameters is manageable, allowing for
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(b)

(c)

Figure 1

(a)

(b)

(c)

Figure 2



a comprehensive exploration of the parameter space
to identify the optimal configuration [34]. The Grid
Search was performed on parameter L with 100 equally
spaced points between 0 and 50. For each value of
L, the Monte Carlo simulations were conducted across
statistical distributions. The mean and @3 of both
MSEqm (L) and the M HLg,,, (L) were calculated for
each distribution d € D and presented in Figs. 1
and 2, respectively. These figures show the values
that minimize the MSEg,, (L) and MHE}3 (L)
for each distribution and statistics. Those values
mean that the state estimates gain higher accuracy
when the Minimax Regret filter is evaluated at those
L* values. It is possible to see that both loss
criteria decrease exponentially for the normal and
Laplace distributions, while the t-distribution exhibits
a concave form, getting the minimum value for both
metrics at L* = 0.1.

4.2 Minimax Regret filter performance

After the optimal value L* had been obtained in the
set of distributions D in the immediately preceding
subsection 4.1, we generated a new data set with the
same former conditions but the seed set to 53.

The performance comparison of state estimates by the
filters is based on two classic metrics: MSE for each
Monte Carlo run and RMSE for each ¢, represented by
equations (29) and (30), respectively. Additionally,
robust metrics given by equations (31) and (32) for
MHE and RMHE, respectively, were employed.

The statistical analysis, depicting the evolution of
MSE and RMSE for each distribution and statistic,
is presented in Fig. 3 and Fig. 4. For normal
noises, the KF and the Minimax Regret filter exhibit
marginal differences in MSE estimation, while the
RKF performs poorly. However, in terms of RMSE,
the Minimax Regret filter outperforms the other two
filters significantly. Regarding the MHE metric for
normal noises, both statistics of the Minimax Regret
filter show superior performance compared to the
other filters. Although exhibiting higher variation
than MHE, RMHE consistently outperforms the KF
and RKF.

For  processes characterized by  heavy-tailed
distributions, such as the t-distribution, the RKF
outperforms the classical KF in terms of MSE.
However, while the RKF’s estimates are comparable
to those of the Minimax Regret filter in MSE,
the latter demonstrates superior performance in
RMSE. Notably, the Minimax Regret filter offers
an additional advantage with a closed-form solution
for one-dimensional linear systems. This result is
illustrated more clearly in Figs. 7b and 8b. In this
distribution, the loss values in Fig. 5b and Fig. 9b are
very close, leading to a similar conclusion for MHE.
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(a)

(b)

(c)

Figure 3
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(b)

(c)

Figure 4

(a)

(b)

(c)

Figure 5
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(b)

(c)

Figure 6

(a)

(b)

(c)

Figure 7
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(b)

(c)

Figure 8

10

(a)

(b)

(c)

Figure 9
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(a)

(c)

Figure 10

11

Nevertheless, Fig. 6b and Fig. 10b indicate that the
Minimax Regret under the @3 statistic is slightly less
competitive than the RKF.

For the Laplace distribution, as shown in Figs.
6¢c to 10c, the Minimax Regret filter consistently
outperforms both the KF and RKF across various
metrics, including MSE, MRSE, MHE, and RMHE,
evaluated for both mean and @3 statistics. Notably,
the Minimax Regret filter exhibits a remarkable
performance advantage, achieving up to 97% lower
MSE and up to 83% lower RMSE compared to the
RKF. These results underscore the superior estimation
accuracy of the Minimax Regret filter, particularly in
the presence of heavy-tailed noise. This finding has
significant implications for applications where robust
state estimation is crucial.

5. Conclusions and future works

We addressed 'the problem of estimating an
unknown-but-bounded real-valued state and a
stochastic real-valued space in the uncertainty linear
SISO model (3) - (4) in the minimax regret framework.
Each state in this model belongs to the uncertainty
set {mt,l cx? ) < LQ}, representing a novel approach
that diverges from existing literature, considering
prior knowledge of the probability distribution or
the uncertainty described by a group of weighted
probability measures controlling the state.

We developed a new estimator of the states for a
one-dimensional dynamical linear model based on
minimizing the worst-case regret, which is defined as
the difference between the M SFE of the estimator and
the best possible MSE attainable with a dynamical
linear estimator that knows the state value x;_; based
on a linear operator. We opt for a linear operator
instead of an affine operator, specifically excluding
the use of an affine function like x;—1 = Ky + by.
This choice is deliberate, motivated by our interest
in scenarios where the bias deviates from zero. Using
optimization tools, such as Lagrange theory, duality,
and KKT conditions, our main contribution is the
theorem on the closed form of the gain value K.

It was shown, with a simulation study, how this
novel concept is applied. Furthermore, the simulation
study in section 4.2 provides evidence of the Minimax
Regret performance by comparing it with the KF
and the RKF. The simulation study showed that our
methodology is competitive or better in the selected
metric for the studied distributions. Interesting
directions for future research are to study how to
define mathematical bounds for the L hyperparameter
independent of the simulation distribution, how to
estimate the covariance matrix of the stochastic
part of the model by the Minimax Regret approach,



how to extend the Minimax Regret filter to the
multidimensional case, and define a methodology that
allows the estimation of parameters a;, h;, and r;
using the Minimax Regret concept.
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