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ABSTRACT: The Kalman filter, widely used since its introduction in 1960, assumes
Gaussian random disturbances. However, this assumption can be inappropriate in
non-Gaussian contexts, leading to suboptimal performance. Researchers have proposed
robust filters like minimax filters to address this limitation, but these filters can overly
conservative estimates. This research introduces a novel approach that combines
unknown-but-bounded dynamics for the state process and stochastic processes for
the measurement equation along with a Minimax Regret framework to improve state
estimation in one-dimensional linear dynamic models. We evaluate the proposed
method through two simulation studies. The first study optimizes the hyperparameter
value using Grid Search. In contrast, the second compares the performance of the
proposed method with conventional methods, including the Kalman filter and a robust
version of the RobKF filter implemented in R software, using a suitable performance
metric such as mean squared error. The results demonstrate the superiority of the
proposed algorithm.

RESUMEN: El filtro de Kalman, ampliamente utilizado desde su introducción en 1960,
asume ruidos aleatorios gaussianos. Sin embargo, este supuesto puede ser inapropiado
en contextos cuyas variables no provienen de una distribución normal, lo que lleva
a un desempeño subóptimo del filtro. Los investigadores han propuesto filtros
robustos como el filtro minimax para abordar esta limitación, pero estos pueden
proporcionar estimaciones demasiado conservadoras. Este trabajo presenta un enfoque
novedoso que combina dinámicas desconocidas pero acotadas para el proceso de
estado y procesos estocásticos para la ecuación de medidas, junto con un marco de
Arrepentimiento Minimax para mejorar la estimación del estado en modelos dinámicos
lineales de una dimensión. Evaluamos el método propuesto a través de dos estudios de
simulación. El primer estudio utiliza el algoritmo de búsqueda por malla para optimizar
el valor del hiperparámetro, mientras que el segundo estudia el desempeño del método
propuesto en comparación con métodos convencionales, incluyendo el filtro de Kalman
y una versión robusta del filtro RobKF implementada en software R. Los resultados
demuestran la superioridad de nuestro algoritmo propuesto.

1. Introduction

The Equations (1a) - (1b) were proposed by [1] to represent
the uncertain linear system with multiple-input

multiple-output setting

xt+1 = Atxt + ξt (1a)

yt = Htxt + wt, t = 1, 2, . . . (1b)

where the estimation of the state processxt is given solving
the problem (2)

x̃t|t := arg min
x̃∼Ft

E

{
|xt − x̃|2

}
(2)
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where Ft is the σ-algebra generated by {y1, . . . yt}. This
can be reduced for the case Single-Input Single-Output
(SISO) processes with uncertainty. Since then, for the
convenient mathematical tractability of the assumption
of Gaussian disturbances of the processes (1a) - (1b),
many extensions have been proposed. The assumption
of Gaussian disturbances is inappropriate in several
contexts. The objective function of (2) is known as the
Mean Squared Error (MSE), and changing its form allows
new concepts of filtering to be built.

Several versions of the robust Kalman Filter (KF) have
been applied to many areas, spanning from aerospace
technology to control engineering and robotics [2–5],
and they can also be studied in the context of various
state forecasting problems. The most applied approach
has been the minimax method [6–11]. Among them,
H2 and H∞ are two classical approaches, but they
have a few drawbacks. In the H2 setting, the stochastic
assumptions are not easy to verify and under the
assumption of normality, this has shown to have a lack
of robustness to outliers data with the consequence of
predicting inaccurate future states [12]. Regarding the
minimax approach, although it has been widely used
as a robust method in the estimation of states xt, its
performance is often unsatisfactory, since it tends to be
overly conservative [13].

The theory of linear estimation in Krein Spaces is
based on simple concepts such as projections and
matrix factorizations and leads to an interesting
connection between Krein space projection and the
recursive computation of the stationary points of certain
second-order (or quadratic) forms [14]. Furthermore,
they obtain upper and lower bounds for the H∞ norm
of the Kalman filter and the recursive-least-squares
(RLS) algorithm, concerning prediction and filter errors.
Moreover, the main conclusion in [15] is shown that
“the H∞ for RLS is data dependent, whereas, for
least-mean-squares (LMS) algorithms and normalized
LMS, the H∞ is simply unity”. Approaches, such as
Outlier based t-distribution distribution by [16], infinity
variance by [17], and the bounded [18–20], interval [21],
and unknown-but-bounded [22, 23] have been applied to
filtering.

Instead of considering the Kalman stochastic filter or
the minimax approach, this paper approaches state
estimation from a novel point of view, where, in lieu
of using the classical MSE, as it is in the previous
approaches, we use an objective function to be minimized
that counterbalances the conservative nature of the
minimax approach and does not rely on assumptions
of non-measurable states. Consequently, we do not
impose any distribution to the state equation. Namely, we

propose to use the Minimax Regret concept [24] for the
filtering problem, in particular, SISO systems described
by univariate dynamical linear systems. Due to its focus
on minimizing maximum regret, the minimax regret
approach exhibits reduced susceptibility to outliers or
extreme prediction errors, thereby alleviating potential
biases in the MSE estimator [25]. [26, 27] have seized
this vision with different uncertainty sets in the dynamic
case, and [13, 28] in the static case. Thus, our article is
organized as follows.

In section 2, we present the mathematical model of the
new approach to estimate the states of a uni-dimensional
linear dynamic system. Section 3 presents the main
theorem, where we use different optimization tools to get
a closed form of the real-valued gain for our uncertainty
linear SISO systems. In section 4, we use two Monte
Carlo simulations; the first is used to get a tuned value
of the hyperparameter and the second one to compare
the performance of the Minimax Regret for estimating
the states of the linear dynamic system and two selected
filtering. Finally, section V includes the conclusion and
future works.

2. Minimax Regret for an uncertainty
linear SISO system

Let us start by introducing the bounded discrete-time
dynamic system (3)

xt+1 = atxt, |xt| ≤ L, xt ∈ R, t = 0, 1, 2, . . . (3)

where xt is the current (non-observable) state of the
process, and each at ∈ R is the parameter of the
real-valued system associated with the discrete-time
instant t ∈ N, and L is a parameter provided by a user.
The Equation (3) is the unknown-but-bounded approach
for the Equation (1a) in the traditional stochastic approach
with an additive noise.

In parallel with the main dynamics (3), we next consider a
discrete-time ”observer” (space system) described in (4)

yt = htxt + ηt, t = 0, 1, 2, . . . (4)

here, ht ∈ R represents the known observer gain at time
t, and ηt ∈ R denotes the disturbance term. Note that
ηt characterizes the natural noise in the corresponding
observation (4). With Equation (5), we assume that
stochastic processes ηt are independent, centered and
having known variance rt for all t, s = 0, 1, . . .

E{ηt} = 0, E{ηtηs} = δtsrt (5)

where δts is the delta Kronecker function.
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An estimate of state xt given by (3), which is linear
concerning the last observation yt, may be represented by
(6)

x̃t = Ktyt (6)

whereKt ∈ R. We will calculate the MSE of the estimator
(6) by evaluating the biasB (x̃t) and the variance V (x̃t) of
the estimator (6). By using (3) - (4) we have (7) and (8)

|B (x̃t)|2 = |xt − E (x̃t)|2

= a2t−1x
2
t−1 (1−Ktht)

2
(7)

V (x̃t) = E
{
|x̃t − E {x̃t}|2

}
= K2

t rt (8)

then, theMSE is described in (9)

MSE (xt−1,Kt) = (1−Ktht)
2
a2t−1x

2
t−1 +K2

t rt. (9)

Remark 1 (Non-observability). When the observation value
ht becomes zero, theMSE simplifies to a2t−1x

2
t−1+K2

t rt.
This simplification leads to an uninformative solution
whereKt equals the zero, with no meaningful relationship
between the unknown-but-bounded state xt−1 and the
gain valueKt. Henceforth, we will assume that the system
is observable for the remainder of our discussion.

We define, now, the regret function on (10)

R(xt−1,Kt) = MSE(xt−1,Kt)−MSE0 (10)

where MSE0 = min
Kt

MSE
(
xt−1,Kt(xt−1)

)
. The

regret (10) is the difference between the MSE using the
estimator (6) and the smallest possible MSE attainable
with an estimator x̃t = Kt (xt−1) yt when the state xt−1

is known.

The min-max regret filter is the value x̃t of (6), whereKt is
the solution of the min-max regret problem given by (11).

min
x̃t=Ktyt

max
x2
t−1≤L2

R (xt−1,Kt) . (11)

To solve (11), we develop an explicit expression forMSE0.
First, we determine the estimator x̂ = Kt (xt−1) yt that
minimizes theMSE (9) when xt−1 is known. To this end,
we differentiate function (9) for Kt and equate to 0, which
results in (12)

Kt (xt−1) =
hta

2
t−1x

2
t−1r

−1
t

1 + h2
ta

2
t−1x

2
t−1r

−1
t

(12)

substituting (12) into (9), theMSE0 is given by (13)

MSE0 =
a2t−1x

2
t−1

1 + a2t−1x
2
t−1h

2
t r

−1
t

(13)

thus, substituting (13) into (10), we obtain (14), which is our
final Regret functionR (xt−1,Kt).

a2t−1x
2
t−1 (1−Ktht)

2
+Kt

2rt −
a2t−1x

2
t−1

1 + a2t−1x
2
t−1h

2
t r

−1
t

.

(14)

3. Minimax Regret filter for
uncertainty linear SISO model

The last section defined the concept of the Minimax Regret
filter based on the gain value Kt and the Minimax Regret
Problem (11). The main theorem for Kt is derived and
proved.

Theorem 3.1 (Minimax Regret Gain Value). Let us denote
the unknown-but-bounded linear real-valued state xt in the
system (3) - (4), where at ∈ R and ht ∈ R are known
real-valued associated with the discrete-time system, ηt ∈ R
denotes system uncertainties of the observer equation for
each t ∈ N. Then,K∗

t is the solution to the min-max (15)

min
Kt

max
x2
t−1≤L2

R (xt−1,Kt) (15)

where the regret function is defined in (14), it has the form
described in (16)

K∗
t =

a2t−1ht
rt
L2 + a2t−1h

2
t

(16)

Proof. To get the solution to (15), first, we transform the
minimax problem into a min problem. As the part K2

t rt
of (14) is independent of xt−1, we have the transformed
problem (17)

min
Kt

[
K2

t rt+

max
x2
t−1≤L2

(
x2
t−1a

2
t−1 (1−Ktht)

2 −
x2
t−1a

2
t−1

1 + x2
t−1a

2
t−1h

2
t r

−1
t

)]
(17)

Let us define the sub-problem ofmaximizing onx2
t−1 ≤ L2

the function f(xt−1,Kt) defined in (18)

x2
t−1a

2
t−1 (1−Ktht)

2 −
x2
t−1a

2
t−1

1 + x2
t−1a

2
t−1h

2
t r

−1
t

(18)

As the function given in (18) is a continuous function
defined on a compact set

{
xt−1 : x2

t−1 ≤ L2
}
, by

Weierstrass theorem, it attains its maximum on the closed
interval [−L,L] for anyKt fixed.

The Equation (19) is the Lagrange function for the
sub-problem with function (18)

Λ(xt−1, λ) = (c1t − λ)x2
t−1 −

x2
t−1a

2
t−1

1 + x2
t−1c2t

+ λL2 (19)

where c1t = a2t−1 (1−Ktht)
2, and c2t = a2t−1h

2
t r

−1
t . The

supremum of (19) is attainable iff c1t − λ ≤ 0, and q (λ) =

11
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supxt−1∈R Λ (xt−1,Kt, λ) = λL2 is the dual function. The
Lagrange dual problem is described in (20)

min
λ

λL2

s.t. − λ ≤ 0

a2t−1 (1−Ktht)
2 − λ ≤ 0.

(20)

Using (20), the Minimax Regret optimization problem (17)
becomes

min
Kt

K2
t rt +min λL2

s.t. a2t−1 (1−Ktht)
2 − λ ≤ 0

λ ≥ 0


and it is equivalent to (21)

min K2
t rt + λL2

s.t. a2t−1 (1−Ktht)
2 − λ ≤ 0

λ ≥ 0,Kt free.

(21)

We next define the Karush-Kuhn-Tucker (KKT) conditions
for (21) when we introduce the auxiliary decision variables
Kt = K+

t −K−
t ;K+

t ,K−
t ≥ 0 and the Lagrange function

L
(
K+

t ,K−
t , λ

)
= K2

t rt + λL2 +
4∑

i=1

µigi(K
+
t ,K−

t , λ)

where g1
(
K+

t ,K−
t , λ

)
= a2t−1

[
1−

(
K+

t −K−
t

)
ht

]2 −
λ, g2

(
K+

t ,K−
t , λ

)
= −K+

t , g3
(
K+

t ,K−
t , λ

)
= −K−

t ,
and g4

(
K+

t ,K−
t , λ

)
= −λ. Then, the Lagrangian

optimality

∇F
(
K+

t ,K−
t , λ

)
+

4∑
i=1

µi∇gi
(
K+

t ,K−
t , λ

)
= 0

is equivalent to (22a) - (22c)

2Ktrt − 2µ1a
2
t−1 [1−Ktht]ht − µ2 = 0 (22a)

−2Ktrt + 2µ1a
2
t−1 [1−Ktht]ht − µ3 = 0 (22b)

L2 − µ1 − µ4 = 0. (22c)

The slackness equations µigi
(
K+

t ,K−
t , λ

)
= 0, i =

1, 2, 3, 4 are given by (23a)-(23d)

µ1

[
a2t−1

[
1−

(
K+

t −K−
t

)
ht

]2 − λ
]
= 0 (23a)

µ2K
+
t = 0 (23b)

µ3K
−
t = 0 (23c)

µ4λ = 0 (23d)

Adding (22a) and (22b), and joint to dual feasibility condition
µ2, µ3 ≥ 0, we get (24)

µ2 = µ3 = 0 (24)

thus (23b) and (23c) always hold.

Inserting (24) into (22a) and (22b) simplifies to (25)

2
(
K+

t −K−
t

)
rt − 2µ1a

2
t−1

[
1−

(
K+

t −K−
t

)
ht

]
ht = 0

(25)
−2
(
K+

t −K−
t

)
rt+2µ1a

2
t−1

[
1−

(
K+

t −K−
t

)
ht

]
ht = 0

Case 1. Assuming µ1 > 0, and the condition (23a), we get
the key condition (26)

a2t−1

[
1−

(
K+

t −K−
t

)
ht

]2
= λ. (26)

Now, we consider the following subcases.

Case (a) µ4 > 0, then, by (23d) we have λ = 0.
Also, (23a) implies that 1 −

(
K+

t −K−
t

)
ht = 0 by (26),

and
(
K+

t −K−
t

)
= 1

ht
̸= 0 and (25) does not hold. So,

the only possible case is µ4 = 0. λ = 0, similarly to the
latter argument is not possible.
Case (b) λ > 0. Using the result of Case (a), by (22c), we
get µ1 = L2, and substituting µ1 into (25) and solving it,
we get (27)(

K+
t −K−

t

)∗
= K∗

t =
L2a2t−1ht

rt + L2a2t−1h
2
t

(27)

and by (26) we obtain (28)

λ∗ = a2t−1

[
1−

L2a2t−1h
2
t

rt + L2a2t−1h
2
t

]2
> 0. (28)

Case 2. The only remaining case is µ1 = 0. This
assumption and (22c) imply µ4 = L2 > 0. By Case (a), it
is not possible.

Thus the only solution of (15) is given by the Equations (27),
and (28).

Theorem 3.1 reduces the problem of minimizing the
worst-case regret in the framework of univariate
dynamical linear systems to a closed form given by
(16). The univariate Minimax Regret estimator depends on
the bounding parameter L. From (16) the larger variance
rt, the closer to zero is the real-valued of the gain, which
gives a character of robustness to the Minimax Regret
filter in the presence of outliers for each constant L. (16)
shows interesting additional cases, one is when rt → 0,
the real-valued gain Kt goes to the naive solution 1

ht
, as

well as rt ̸= 0 and L → ∞. Finally, when L → 0+, Kt

goes to zero.

4. Simulation study

We now present a simulation study that illustrates the
performance of the Minimax Regret estimator. We use

12
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two metrics proposed in [29] to assess the performance
of our proposal. We consider the problem of estimating
a one-dimensional state from a dynamical linear system,
which is obtained by simulating the system (3)-(4), whose
dynamic state space equations are given by

xt+1 = −0.98xt, |xt| ≤ L, x0 ∈ R
yt = 2xt + ηt, t ∈ N

First of all, we need to tune the parameter L. We use a
Monte Carlo simulation to select this parameter. This
is described in subsection 4.1. Second, we compare
the performance of the Minimax Regret with other
methodologies, namely, the classic Kalman Filter (KF)
and the Innovative and/or Additive Outlier Robust Kalman
Filtering is implemented in the RobKF package (RKF)
in the R software [30]. We use another Monte Carlo
simulation to assess the performance of the following
methodologies: the Minimax Regret filter with the L value
selected in subsection 4.1, the Classic KF, and RKF, which
is described in subsection 4.2.

We perform one simulation of two sequences of
N = 100 points with starting state point x0 = −15.
The measurement noise without external outliers is
assumed to follow three different distributions; those are,
Gaussian distribution with zero mean and variance two,
Student’s t-distribution with three degrees of freedom, and
Laplace distribution using a location parameter of zero
and scale parameter of two. The total Monte Carlo trials
are M = 50. Finally, we introduce a normal error with
zero mean and variance one in the state xt to simulate the
fact that two different states xt and x⋆

t can produce two
close space data yt and y⋆t and the non-observable state
which is unknown-but-bounded.
Let xd,m

t and x̃d,m
t (L) be the true state data and the

L-minimax filtered data for the distribution d in the set
of the three selected statistical distribution D in the m-th
Monte Carlo trial for t = 1, . . . , 100, respectively. We use
the generalized metrics (29) and (30), similar as [29]

MSEL
d (m) =

1

N

N∑
t=1

(
xd,m
t − x̃d,m

t (L)
)2

(29)

for eachm = 1, . . . ,M , and

RMSEL
d (t) =

√√√√ 1

M

M∑
m=1

(
xd,m
t − x̃d,m

t (L)
)2

(30)

To ensure the reliability of data analysis, robustness
measures play a crucial role in guiding the development
of methods that can adapt effectively to variations in
the data. This is essential for preventing undesired
responses, such as erratic behavior, in the presence of
outliers. In addition to conventional loss functions, we

propose the incorporation of mean Huber error (MHE)
and root mean Huber error (RMHE) to further enhance
the robustness of data analysis methods. This function is a
smooth transition between quadratic and linear penalties
that helps mitigate the influence of outliers, leading to
more accurate and reliable results when dealing with data
containing outliers [31–33], which are supported in the
Huber loss function given below

Lδ(e) =

{
1
2e

2 if |e| ≤ δ

δ(|e| − 1
2δ) if |e| > δ

where e = xd,m
t − x̃d,m

t (L), and δ is a user-defined
threshold between zero and∞. Therefore, theMHE and
RMHE are defined as

MHEL
d,δ (m) =

1

N

N∑
t=1

Lδ

(
xd,m
t − x̃d,m

t (L)
)2

(31)

RMHEL
d,δ (t) =

√√√√ 1

M

M∑
m=1

Lδ

(
xd,m
t − x̃d,m

t (L)
)2
(32)

for each t = 1, . . . , N , and each of three selected
distributions indexed by d. Those are the conditions for
both simulations in the following subsection 4.1 and 4.2.

4.1 L tune simulation

To ensure the Minimax Regret filter performs optimally, its
parameterL needs to be selected. This study identifies the
optimal L∗ by evaluating the reliability of state estimates
obtained under various L values. Both MSE and MHE
serve as metrics for estimating reliability. The optimal L∗

is the value that minimizes both MSE and MHE loss
functions. This is achieved by reformulating Equations
(29) and (31) as functions of L, resulting in (33) and (34),
respectively. These reformulated equations treat L as the
decision variable, enabling the efficient identification of the
L∗ that yields the most reliable state estimates based on
bothMSE andMHE criteria.

MSEd,m (L) =
1

N

N∑
t=1

(
xd,m
t − x̃d,m

t (L)
)2

(33)

MHEδ
d,m (L) =

1

N

N∑
t=1

Lδ

(
xd,m
t − x̃d,m

t (L)
)2

. (34)

To achieve this, the study adopts a Monte Carlo approach
with extensive simulations. The Monte Carlo data were
generated using a seed set to 123. A descriptive analysis
is conducted to extract insights into the randomness
exhibited by the functionsMSEd,m (L) andMHEδ

d,m (L)
with δ = 1.345, in the definition (33) and (34), respectively.
As a criterion to select the L parameter, the mean and
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Figure 1 Hyperparameter tune under MSE loss function
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(c)

Figure 2 Hyperparameter tune under MHE loss function
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third quartile (Q3) of the MSEd,m (L) in the Equation
(33) and for MHEδ

d,m (L) in Equation (34), overall M
simulations were calculated for each distribution d ∈ D to
highlight a range of e�icient values of L.

The Grid Search method, a common hyperparameter
tuning technique in machine learning, was employed to
optimize theL value. This approach is particularly effective
for models with a limited number of hyperparameters,
as it exhaustively evaluates all possible parameter
combinations within a pre-defined grid. This method
is well-suited for scenarios where the number of
hyperparameters is manageable, allowing for a
comprehensive exploration of the parameter space
to identify the optimal configuration [34]. The Grid
Search was performed on parameter L with 100 equally
spaced points between 0 and 50. For each value of L,
the Monte Carlo simulations were conducted across
statistical distributions. The mean and Q3 of both
MSEd,m (L) and the MHLd,m (L) were calculated for
each distribution d ∈ D and presented in Figures. 1 and 2,
respectively. These figures show the values that minimize
theMSEd,m (L) andMHE1.345

d,m (L) for each distribution
and statistics. Those values mean that the state estimates
gain higher accuracy when the Minimax Regret filter is
evaluated at those L∗ values. It is possible to see that both
loss criteria decrease exponentially for the normal and
Laplace distributions, while the t-distribution exhibits a
concave form, getting the minimum value for both metrics
at L∗ = 0.1.

4.2 Minimax Regret filter performance

After the optimal value L⋆ had been obtained in the set of
distributions D in the immediately preceding subsection
4.1, we generated a new data set with the same former
conditions but the seed set to 53.

The performance comparison of state estimates by
the filters is based on two classic metrics: MSE for each
Monte Carlo run and RMSE for each t, represented by
Equations (29) and (30), respectively. Additionally, robust
metrics given by Equations (31) and (32) for MHE and
RMHE, respectively, were employed.

The statistical analysis, depicting the evolution of MSE and
RMSE for each distribution and statistic, is presented in
Figure 3 and Figure 4. For normal noises, the KF and the
Minimax Regret filter exhibit marginal differences in MSE
estimation, while the RKF performs poorly. However, in
terms of RMSE, the Minimax Regret filter outperforms the
other two filters significantly. Regarding the MHE metric
for normal noises, both statistics of the Minimax Regret
filter show superior performance compared to the other
filters. Although exhibiting higher variation than MHE,

 

 

(a)

 

 

(b)
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Figure 3 MSE Monte Carlo runs by distribution
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Figure 4 RMSE Monte Carlo runs by distribution
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Figure 5 MHE Monte Carlo runs by distribution
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Figure 6 RMHE Monte Carlo runs by distribution
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(c)

Figure 7 MSE histogram by distribution
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Figure 8 RMSE histogram by distribution
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Figure 9 MHE histogram by distribution
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Figure 10 RMHE histogram by distribution

RMHE consistently outperforms the KF and RKF.

For processes characterized by heavy-tailed distributions,
such as the t-distribution, the RKF outperforms the
classical KF in terms of MSE. However, while the RKF’s
estimates are comparable to those of the Minimax
Regret filter in MSE, the latter demonstrates superior
performance in RMSE. Notably, the Minimax Regret
filter offers an additional advantage with a closed-form
solution for one-dimensional linear systems. This result
is illustrated more clearly in Figures 7b and 8b. In this
distribution, the loss values in Figure 5b and Figure 9b
are very close, leading to a similar conclusion for MHE.
Nevertheless, Figure 6b and Figure 10b indicate that the
Minimax Regret under the Q3 statistic is slightly less
competitive than the RKF.

For the Laplace distribution, as shown in Figures 6c
to 10c, the Minimax Regret filter consistently outperforms
both the KF and RKF across various metrics, including
MSE,MRSE,MHE, andRMHE, evaluated for bothmean and
Q3 statistics. Notably, the Minimax Regret filter exhibits a
remarkable performance advantage, achieving up to 97%
lower MSE and up to 83% lower RMSE compared to the
RKF. These results underscore the superior estimation
accuracy of the Minimax Regret filter, particularly in the
presence of heavy-tailed noise. This finding has significant
implications for applications where robust state estimation
is crucial.

5. Conclusions and future works

We addressed the problem of estimating an
unknown-but-bounded real-valued state and a stochastic
real-valued space in the uncertainty linear SISO model (3)
- (4) in the minimax regret framework. Each state in this
model belongs to the uncertainty set

{
xt−1 : x2

t−1 ≤ L2
}
,

representing a novel approach that diverges from existing
literature, considering prior knowledge of the probability
distribution or the uncertainty described by a group of
weighted probability measures controlling the state.
We developed a new estimator of the states for a
one-dimensional dynamical linear model based on
minimizing the worst-case regret, which is defined as the
difference between the MSE of the estimator and the
best possible MSE attainable with a dynamical linear
estimator that knows the state value xt−1 based on a
linear operator. We opt for a linear operator instead of
an affine operator, specifically excluding the use of an
affine function like xt−1 = Ktyt + bt. This choice is
deliberate, motivated by our interest in scenarios where
the bias deviates from zero. Using optimization tools, such
as Lagrange theory, duality, and KKT conditions, our main
contribution is the theorem on the closed form of the gain
valueKt.
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It was shown, with a simulation study, how this novel
concept is applied. Furthermore, the simulation study
in section 4.2 provides evidence of the Minimax Regret
performance by comparing it with the KF and the RKF.
The simulation study showed that our methodology is
competitive or better in the selected metric for the studied
distributions. Interesting directions for future research
are to study how to define mathematical bounds for
the L hyperparameter independent of the simulation
distribution, how to estimate the covariance matrix of
the stochastic part of the model by the Minimax Regret
approach, how to extend the Minimax Regret filter to the
multidimensional case, and define a methodology that
allows the estimation of parameters at, ht, and rt using
the Minimax Regret concept.
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