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ABSTRACT: Mango cultivation in Colombia faces the impact of regional climate variability. To 
improve fruit development and minimize environmental and economic effects, it is necessary to 
implement efficient irrigation and appropriate water management technologies. In this study, we 
developed a trend forecasting system based on an LSTM neural network and technologies such as 
ThingsBoard, LoRA, and MQTT. The aim was to improve mango irrigation practices through informed 
decisions based on monitoring and predicting matric potential and evapotranspiration variables. This 
article describes the development and application of the system for mango irrigation management. 
Results validate the effectiveness of the proposed system for mango cultivation, with RMSE indices of 
1.56 and 0.0019 and determination coefficients (R2) of 0.9989 and 0.9971 for matric potential and 
evapotranspiration, respectively. These findings support enhancing growth conditions and promoting 
sustainable practices. Despite data availability limitations, the system's efficacy in prediction and 
irrigation management demonstrates significant potential to maximize productivity and reduce the 
environmental and economic impacts of inadequate water management. 
 
RESUMEN: El mango (Mangifera indica L.) es un fruto tropical ampliamente comercializado en varios 
continentes y el cultivo de mango en Colombia se ve afectado por la variabilidad climática regional. 
Para mejorar el desarrollo del fruto y minimizar los impactos ambientales y económicos, se requiere un 
riego eficiente y tecnologías de manejo del agua adecuadas. En este estudio, se desarrolló un sistema de 
pronóstico de tendencias basado en una red neuronal LSTM y tecnologías como ThingsBoard, LoRA y 
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MQTT. El objetivo fue mejorar las prácticas de riego en el cultivo de mango mediante decisiones 
informadas, basadas en el monitoreo y la predicción de las variables de potencial mátrico y 
evapotranspiración. Este artículo describe el desarrollo y aplicación de dicho sistema en el manejo del 
riego del cultivo de mango.  Los resultados validaron la efectividad del sistema propuesto para el cultivo 
de mango, con índices de RMSE de 1.56 y 0.0019, y coeficientes de determinación (R2) de 0.9989 y 
0,9971 para el potencial mátrico y la evapotranspiración, respectivamente. Estos hallazgos respaldan la 
mejora de las condiciones de crecimiento y la promoción de prácticas sostenibles. Aunque se reconoce 
la limitación de datos, la eficacia del sistema en la predicción y la gestión de riego ofrece un potencial 
significativo para maximizar la productividad y reducir los impactos ambientales y económicos 
asociados a una gestión inadecuada del agua.
 
1. Introduction 
Mango is a widely valued and popular tropical fruit worldwide due to its sweet flavor and exotic aroma. 
It is extensively cultivated in over 100 countries across Asia, South America, North America, and Africa. 
According to statistics, the global production of mango is estimated at 50.64 million metric tons  [1], [2]. 
 
In 2021, the mango sector in Colombia recorded a total of 26,158 hectares of cultivated mango, with a 
production of 279,886 tons during that period. Within the Colombian context, the Cesar department 
stands out as one of the top 10 mango producers in the country, with 1,223 hectares of cultivated mango. 
In 2021, a production of 7,576 tons was achieved, resulting in an average yield of 11.4 tons of mango 
per hectare planted [3]. 
 
In Colombia, inadequate soil and water management are among the various technical factors affecting 
the efficiency and sustainability of mango production [4]. In the current context, irrigation application is 
determined without considering the plants' agroclimatic conditions and actual water needs. This can 
result in excessive or insufficient irrigation, affecting crop productivity and quality, and resource and raw 
material consumption [5]. 
 
Efficient water management in mango cultivation is crucial to maximize production and ensure fruit 
quality while reducing water scarcity's environmental and economic impacts. Despite numerous studies 
to improve irrigation practices in mango cultivation, the inadequacy of suitable water management 
technologies for this activity has been highlighted [1, 6-8]. 
 
The present study proposes leveraging the IoT paradigm for efficient water management in mango 
cultivation. This would enable real-time monitoring and control of irrigation systems while enhancing 
traceability and security [9]. Additionally, integrating LSTM neural networks improves accuracy by 
addressing missing and anomalous sensor data, fostering sustainable agricultural practices through 
better insights and predictions [10]. 
 



Revista Facultad de Ingeniería, Universidad de Antioquia, No.xx, pp. x-xx, xxx-xxx 20xx 

J. F. Noguera-Polania et al.; Revista Facultad de Ingeniería, No. xx, pp. x-x, 20xx 

 

 

Mango cultivation has been the subject of numerous studies worldwide, with research focusing on 
irrigation management systems. For instance, an alternative infiltration irrigation system was introduced 
in China, which improved the photosynthetic characteristics and water use efficiency in mango plants 
[11]. This system employed a homemade irrigation device consisting of a water storage bottle, a switch, 
a rubber hose, and a porous emitter, effectively reducing irrigation by 30% to 50%. Furthermore, an 
automated micro-sprinkler irrigation system was developed in China, incorporating a soil moisture sensor 
at a depth of 30 cm from the mango tree trunks and an automated agrometeorological station for recording 
climatic data [12]. The results demonstrated significant increases in average fruit weight, diameter, and 
length, as well as soluble protein and titratable acidity. In summary, the present system relies on 
monitoring soil and climatic variables using Long Short-Term Memory (LSTM) neural networks to 
enhance irrigation management in mango cultivation and achieve more efficient water utilization. 
 
In addition to the advancements in irrigation management, recent research has focused on enhancing the 
security and traceability of agricultural products through IoT-based systems. For instance, a proposed 
hardware architecture integrates Blockchain technology into IoT devices, explicitly targeting food 
traceability systems [13]. This hardware design, implemented on FPGA Altera DE0-Nano, enables IoT 
devices to participate as miners in the blockchain network, addressing security issues related to data 
integrity and traceability within the food certification process. Similarly, another study presents a 
greenhouse traceability model based on IoT for tracking and monitoring seedlings and agricultural 
products [14]. This model facilitates the automated control of greenhouse environments and internal 
traceability of products, promoting sound farming practices and ensuring quality and safety throughout 
the agricultural value chain. Integrating these advancements with innovative irrigation management 
systems can further enhance the productivity and sustainability of mango cultivation practices. 
 
Irrigation is fundamental to ensuring crop production and meeting the demand for water resources 
worldwide. As agriculture is crucial to feeding the global population, irrigation is essential to increasing 
production and improving food availability [15]. 
 
In Mango cultivation, irrigation is essential for plant growth and development, ensuring the necessary 
water balance for optimal growth and fruit quality. Furthermore, proper irrigation can enhance the fruit's 
quality and yield by providing an adequate water supply during critical stages of the cultivation cycle, 
such as flowering and fruit formation. Therefore, it is essential to implement an efficient and well-
planned irrigation program in mango cultivation to maximize productivity and profitability [4]. 
 
Integrating IoT-based systems and LSTM neural networks is central to the present study, offering 
enhanced precision in mango irrigation management. This approach enables real-time monitoring of 
irrigation systems and allows for tailored water delivery to meet the specific needs of mango plants. 
Consequently, it leads to improved efficiency, sustainability, and yield outcomes compared to 
conventional methods. Notably, the versatility of this solution suggests its potential applicability across 
various agricultural domains, highlighting its broader impact beyond mango cultivation. 
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The present article is structured as follows: Section 1 addresses the introduction and related works, 
Section 2 describes the architecture of the monitoring system and the LSTM neural networks, Section 3 
presents the detailed results of the monitoring system, and finally, Section 4 presents the conclusions of 
this work. 
 
2. Materials and Methods 
The present study is based on applied field research employing a data collection approach using devices 
and sensors in the study area. The research is classified as quantitative and aims to train a Long Short-
Term Memory (LSTM) neural network model to develop a trend forecasting system. This system will 
provide information for decision-making in mango crop irrigation, utilizing the data collected by the 
sensors. 
 
The monitoring and forecasting system relied on automatic data collection in the field crops. The LSTM 
neural network deployed on a Virtual Private Server (VPS) stored, transmitted, and analyzed the 
collected data. Subsequently, the processed and analyzed data was sent and represented on a web 
platform for visualization and understanding by the end-users (see Figure 1). 

 
Figure 1 General graphical description of the system. 

 
 
 
2.1. Study area 
The study was conducted on a farm in the municipality of Chimichagua, located in the department of 
Cesar, Colombia. The farm is situated at geographic coordinates 9° 16' 0.8688" N, 73° 50' 40.2684" W, 
and has an area of 120,000 m2 (see Figure 2). The Cesar River runs through several municipalities, 
including Chimichagua, in this Caribbean region. It plays a vital role as a water supply source and in 
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economic activities such as agriculture, fishing, and livestock farming [16]. Additionally, the area is 
characterized by diverse thermal floors and climates, with temperatures ranging from 38 °C to below 
four °C [17]. 
 

 
Figure 2 Farm location: Chimichagua, Cesar, Colombia. 

 
2.2. Data collection 
In the study area, two types of devices were used for data collection: the data logger, which measured 
matric potential, and the weather station, which monitored climatic variables such as solar radiation, UV 
index, humidity, wind direction and speed, and precipitation. A Gateway device was also employed as 
an intermediary device that communicated with the input devices, transmitting the sensed variables via 
the Long Range (LoRa) protocol. These variables were then sent and stored in a Node-Red database and 
their corresponding time series (see Figure 3). 

 
Figure 3 Data collection devices installed in the field. 

2.2.1 Input variables 
The monitored variables represented in the Internet of Things (IoT) platform were as follows: 
evapotranspiration, calculated from the values captured by wind speed, direction, solar radiation, UV 
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index, and precipitation sensors of the weather station. These data played a crucial role in adjusting the 
irrigation needs of the mango crop. In addition, matric potential sensors located in the data logger were 
used to measure soil moisture levels. Data collection occurred every 15 minutes throughout the day, 
resulting in a sampling frequency of 96 daily values. Subsequently, the data were graphically represented 
on the ThingsBoard platform for comparison with the values predicted by the LSTM model. Finally, a 
technician was responsible for validating the forecasted trends and deciding whether to activate the 
irrigation system. 
 
2.3. Specifications of the computing device 
The computing setup consisted of a Ryzen 5 3500U processor and 12 GB of RAM, running on the 
ArchLinux x86-64 operating system with Linux kernel 6.1. The study was conducted on a VPS with a 2-
core processor, 8 GB of RAM, and the Ubuntu Server 22.04 operating system. 
 
2.4. Virtual Private Server (VPS) 
The processing system and IoT platform were deployed in the Virtual Private Server. This system was 
divided into sections, from data transformation to JavaScript Object Notation (JSON) format. This format 
was chosen for its text structure, which facilitates communication between various technologies and 
languages and enables agile and efficient information exchange. The transformed data was sent as inputs 
to both the ThingsBoard platform and the neural network (see Figure 1). 
 
2.5. IoT tools 
ThingsBoard is an open-source platform used in the project for IoT device management. This platform 
facilitated device connectivity and management, real-time data collection and visualization, alert 
configuration, and automation of actions. Its intuitive and user-friendly web interface enabled users to 
manage and monitor IoT devices at scale efficiently. Additionally, the platform offered a wide range of 
built-in tools and services that assisted users in developing custom IoT applications and creating solutions 
for diverse use cases [18]. Given its advantages and features, this platform was the ideal choice for 
graphically representing the collected and analyzed variables in the field. 
 
For the transfer of information between the sensor data processing applications and the ThingsBoard 
platform, the Message Queuing Telemetry Transport (MQTT) communication protocol was chosen. This 
protocol, created and published in 1999 and standardized by the OASIS consortium under the ISO/IEC 
20922 number, stood out for being lightweight, simple, and reliable for IoT devices. An important and 
positive aspect of this protocol is its open nature, which means that companies or developers do not need 
to acquire a license or pay copyright fees for its use in their systems and applications [4]. 
 
On the other hand, the LoRa protocol was used for internal communication with the input devices 
installed in the field, facilitating the transfer of variables to the Gateway. The Gateway sent the 
information to the Node-Red database (Figure 1). LoRa is a long-range, low-power wireless technology 
designed to connect IoT devices with energy efficiency and extended battery life over long distances. It 
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enables data transmission over several kilometers, making it suitable for applications in smart cities, 
agriculture, environmental monitoring, and security [5]. 
 
2.6. Evapotranspiration 
Evapotranspiration is crucial in water management in agriculture as it determines the amount of water 
required for crop growth and development. This complex process depends on temperature, relative 
humidity, wind speed, solar radiation, soil characteristics, and vegetation. Measuring and estimating 
evapotranspiration is essential for planning and managing crop irrigation [21, 22]. The calculation of 
reference evapotranspiration (ET0) is performed using the FAO Penman-Monteith standard method 
developed by the Food and Agriculture Organization of the United Nations (FAO) [21, 22]. This method 
allows for estimating the value of ET0 for various vegetation conditions using Equation (1), as shown 
below. 
 

𝐸𝐸𝑇𝑇0 =
0.408 ∗ Δ ∗ (𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 ∗ 900

𝑇𝑇 + 273 ∗ 𝑢𝑢2 ∗ (𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)

Δ + 𝛾𝛾 ∗ (1 + 0.34 ∗ 𝑢𝑢2)       (𝟏𝟏) 

 
In Equation (1), the following terms are defined: ETo is the reference evapotranspiration (mm day−1), 
Rn is the net radiation at the crop surface (MJ mm−2 day−1), G is the soil heat flux density 
(MJ mm−2 day−1), T is the average daily air temperature at 2 meters height (ºC), u2 is the wind speed at 
two meters height (m/s−1), es is the saturation vapor pressure (kPa), ea is the actual vapor pressure  (kPa), 
Δ is the slope of the vapor pressure curve (kPa/ºC−1), and γ is a psychrometric constant (kPa/ºC−1). 
 
2.7. Artificial Neural Networks 
In recent years, neural networks have garnered significant attention in computing, drawing inspiration 
from biological models. Defined as mathematical models composed of multiple processing elements 
organized in levels, these networks are characterized by their computational complexity and dynamic 
response to external stimuli [23]. 
 
Artificial neural networks, mimicking the biological nervous system [23], play a crucial role in 
agroclimatic prediction and agricultural production optimization. They facilitate improved productivity, 
weather forecasting, and plant image classification in precision agriculture. These technologies, 
including convolutional and recurrent neural networks, enable real-time monitoring of agricultural 
parameters through IoT, enhancing decision-making tools [24],[25]. 
 
While neural networks have been a subject of research in computing, it's notable that more recent 
architectures like LSTM neural networks are currently being investigated for various applications [26]. 
 
2.7.1 Long Short-Term Memory (LSTM) Artificial Neural Networks 
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LSTM artificial neural networks are recurrent architectures for processing sequential data, such as natural 
language or time series. Recurrent neural networks (RNNs) are widely employed in deep learning for 
dynamic modeling due to their ability to retain information in their internal memory. However, RNNs 
face significant challenges, such as the vanishing or exploding gradient problem during training [27]. 
The uniqueness of LSTM artificial networks lies in their gate structure, which enables them to effectively 
capture sequential information and address the issue of vanishing or exploding gradients in RNNs [28]. 
 
2.8. Development of the LSTM Artificial Neural Network in Python 
This study utilized Python libraries such as JSON, Numpy, Pandas, Keras, and Sklearn. 
 
2.8.1 Data input 
The input data was collected by reading JSON-format files provided by the process of converting the 
information recorded by the in-situ devices. Once the input data was gathered, it was converted to data 
frames using Pandas, a high-performance library for data manipulation and analysis. Subsequently, the 
input variables were separated from their time series index to normalize the data for each variable using 
Sklearn, a library of tools for classification, regression, clustering, and data processing (see Figure 4). 
 
2.8.2 Sequential model 
For the implementation of the model, the LSTM structure was used through the integration of Keras, a 
library designed for building and training artificial neural networks. Once the neural network structure 
was established, the Numpy library was implemented, which allows efficient work with 
multidimensional arrays and vectors and was used to adjust the dimensions of the matrices suitable for 
the model (see Figure 4). 
 
After completing the aforementioned processes, the model was trained, followed by input of the desired 
forecast input values to obtain predictions from the trained model (see Figure 4). 
 
2.8.3 Prediction Compilation 
Once the LSTM artificial neural network model predictions were obtained, the data normalization 
process was performed on the model's output. The data was transformed back to its original scale before 
being sent to the IoT platform ThingsBoard (see Figure 4). 
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Figure 4 Structure of the LSTM Artificial Neural Network in Python. 
 
118 data samples per variable were used for training and testing the model. During the training stage, 
65% of the data (77 samples per variable) was employed from December 21, 2022, to March 16, 2023. 
The remaining 35% (41 samples per variable) was used to verify the model and make predictions from 
March 17, 2023, to May 14, 2023, for each field input variable, including evapotranspiration and 
humidity in the matric potential logger. The data and the neural network results were sent to the 
ThingsBoard platform, where the historical and graphical trends of the variables were visualized. It is 
worth noting that 106 data points were filtered out and not considered for graphical analysis due to 
technical failures in the sensors and communication devices. 
 
2.8. Data visualization 
The data visualization was performed using the IoT platform ThingsBoard, allowing real-time graphical 
observation of the data captured by the sensors. In each graph corresponding to the monitored variables, 
namely evapotranspiration and matric potential, sensor measurements were presented alongside the 
predictions generated by the neural network. This facilitated result comparison and model performance 
evaluation for both variables. Graphs depicting the calculation of evapotranspiration and matric potential, 
along with the outputs provided by the neural network, were displayed, providing a clear insight into the 
behavior of both variables over time. The visualization proved helpful in comprehending and analyzing 
the relationship between actual measurements and model-generated predictions (see Figure 5). 
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Figure 5 Monitoring Panel in ThingsBoard. 

 
2.9. Model Evaluation 
To evaluate the performance of the LSTM artificial neural network model, the root mean square error 
(RMSE) [29] was utilized as a measure of discrepancies between predicted and observed values. A lower 
RMSE value indicated higher prediction accuracy, making it a valuable metric for assessing model 
performance. The calculation of RMSE was performed using Equation (2): 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = ���
𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖
𝑁𝑁 �

2𝑁𝑁

𝑖𝑖=1

   (2) 

 
Where N is the number of samples, 𝑦𝑦𝚤𝚤�  represents the predicted values, and 𝑦𝑦𝑖𝑖 corresponds to the observed 
data. 
  
Finally, the sensor data and neural network results were exported from the ThingsBoard platform in 
JSON format. Subsequently, these data were converted to the .xlsx format for processing in Microsoft 
Excel. The coefficient of determination (R2) was calculated by analyzing the linear regression between 
the observed and predicted values using a graph generated in Microsoft Excel.  
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3. Results 
In the present study, the LSTM artificial neural network was employed to perform prediction in the 
context of efficient water management in mango cultivation. The effectiveness of the neural network was 
validated using 41 data points collected during the last two months of monitoring. In this study, 
monitoring and predictions were conducted for matric potential and evapotranspiration variables, as 
shown in Figures 6 and 7. 

 
Figure 6 Comparison of predicted and observed matric potential. 

 
Figure 7 Comparison of predicted and observed evapotranspiration. 

 
The results obtained for the matric potential showed an RMSE index of 1.56 with 41 validation data 
points and a coefficient of determination (R2) of 0.9989. A graphical representation of the observed and 
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predicted values was performed, enabling the derivation of linear regression with an R2 value of 0.9989 
(see Figure 8). 
 

 
Figure 8 The trend of matric potential in mango cultivation. 

 
On the other hand, evapotranspiration obtained an RMSE index of 0,0019 with 41 validation data points 
and an R2 of 0.9971. Similarly to the matric potential case, a graph representing the observed and 
predicted values was constructed, resulting in a linear regression with an R2 value of 0.9971, see Figure 
9. 

 
Figure 9 The trend of evapotranspiration in mango cultivation. 

 
It is important to highlight that the LSTM artificial neural network's training process was carried out over 
9,000 iterations. This allowed for model adjustments and improvement in its predictive capacity. 
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The validation of the obtained results emphasizes their validity and contribution. As Table 1 shows, the 
RMSE values indicate the accuracy of the predictions made by the LSTM artificial neural network, while 
the R2 values reflect the model's ability to explain the data's variability. 
 

Table 1. Results for soil water potential and evapotranspiration Prediction 
Metric Soil water potential Evapotranspiration 

RMSE index 1.56 0.0019 
Validation data points 41 41 

R2 Value 0.9989 0.9971 
 
The obtained results are highly satisfactory in terms of precision and predictive capacity. The linear 
regression obtained for both variables indicates a strong relationship between the observed and predicted 
values. 
 
These overall findings and conclusions support the study's main objective, which is to enhance growth 
and development conditions in mango cultivation through irrigation-based decision-making. 
Furthermore, this approach is expected to contribute to reducing environmental impact and promoting 
economic development among farmers through the adoption of innovative agricultural technologies. 
 
Despite the encouraging results, it is essential to acknowledge the study's limitation, which lies in the 
limited availability of data for validation and the possibility of other unconsidered factors that could 
influence the monitored variables. 
 
Therefore, the obtained results demonstrate the effectiveness of the LSTM artificial neural network in 
predicting the matric potential and evapotranspiration in mango cultivation. These findings support 
implementing an efficient and well-planned irrigation program for this crop to maximize productivity 
and profitability while reducing inadequate water management's environmental and economic impacts. 
 
4. Conclusions 
This study addressed the importance of efficient water management in mango cultivation and highlighted 
the need for suitable technologies to achieve effective management. It was demonstrated that agricultural 
irrigation plays a crucial role in mango crop production by contributing to the necessary water balance 
for optimal plant development and fruit yield. 
 
Implementing a monitoring and forecasting system based on LSTM artificial neural networks has 
significantly improved decision-making related to mango irrigation. The results demonstrate high 
precision in the predictions made by the neural network model, supported by low RMSE values (1.56 for 
matric potential and 0.0019 for evapotranspiration) and high R2 values (0.9989 and 0.9971, respectively). 
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The validation of these results emphasizes their validity and contribution, where RMSE values indicate 
prediction accuracy and R2 values reflect the model's ability to explain data variability. 
 
Implementing innovative agricultural technologies, such as precision agriculture, can enhance crop 
efficiency and sustainability, reduce costs, and minimize environmental impact. This study contributes 
to this objective by providing accurate and accessible irrigation and nutrition tools for farmers, potentially 
resulting in increased productivity and profitability in mango cultivation. 
 
However, it is essential to consider the limitations of this study, such as the limited availability of data 
for validation and the possibility of other unconsidered factors that could influence the monitored 
variables. Despite these limitations, the results support implementing an efficient and well-planned 
irrigation program in mango cultivation to maximize productivity and profitability while reducing the 
environmental and economic impacts of inadequate water management. 
 
The work enhances efficiency and irrigation planning in mango cultivation by providing tools and 
methods to improve water management, but its real impact depends on technology availability and field 
support. While results show the proposed techniques work, external factors like technological 
infrastructure and logistical support could hinder their practical use. 
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