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ABSTRACT: The School Bus Routing Problem (SBRP) is a classic optimization problemwith
a massive potential for real applications that have a high impact on society. Research
interest in this problem is constantly rising. Previous review papers with a time-space
between them of 10 years have helped understand the different features studied by the
research community about this problem. In this systematic review, we consider two new
categories not discussed before: the incorporation of a mixed load composed of multiple
schools, along with the inclusion of a smart element related to the availability of user
information and communication in real-time to join the smart mobility trend. In addition,
we discuss the lack of real applications in the SBRP in university contexts with a focus
on the multi-load problems.

RESUMEN: El problema de enrutamiento de autobuses escolares (SBRP) es un problema
de optimización clásico que tiene un enorme potencial para aplicaciones reales de alto
impacto en la sociedad. El interés de la investigación por este problema aumenta
constantemente. Artículos de revisión previos, con un espacio temporal de 10 años
entre ellos, han sido de ayuda para comprender las diferentes características estudiadas
por la comunidad investigadora sobre este problema. En esta revisión sistemática
consideramos dos nuevas categorías no discutidas antes: la incorporación de una
carga mixta compuesta por múltiples escuelas, junto con la inclusión de un elemento
inteligente, relacionado con la disponibilidad de información del usuario y comunicación
en tiempo real. para sumarse a la tendencia de movilidad inteligente. Además,
discutimos la falta de aplicaciones reales del SBRP en contextos universitarios con
énfasis en los problemas de carga múltiple.

1. Introduction

The School Bus Routing Problem (SBRP) is a real-world
problem that impacts not only the school transportation
systems but also the mobility in the cities. SPRP
involves the design and operation of schedules to provide a
transportation service for students from and to schools

with effectiveness regarding the satisfaction of the
service, efficiency in costs, and safety of the parts involved
(operators, students, and schools) while fulfilling several
constraints mainly referred to transport the students
safely and on-time [1–5].

As a sign of the impact of this activity, the school
bus fleet in the US is more than twice the size of all
other forms of mass transit combined [6]. It transports
about a third of students to and from school, with an
average annual public expense per student approaching
US $1,200 in 2018-19 [7]. Even so, technological advances
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in transport are slowly impacting school transportation
operations. For example, only 33% of the American school
bus fleet uses GPS to track the buses [6], and 54% of the
school transportation operations use routing software.

As a classical optimization problem, many mathematical
approaches to solving the SBRP can be found in the
literature in the last decade, with variants in the focus
of the problems addressed, and the solution methods
proposed [2]. In response to these changes, and keeping
the classification framework originally proposed by [8],
we go further, proposing a distinction of the approaches
that take into account the multiple school SBRP problems
with mixed loads, the technological and communications
advances available to users with more dynamic solutions,
and we examine how this classification fits university
transport services, that seems to be scarce in the related
literature.

As contributions, in this paper, we: (i) Present a clear
systematic review process that can be traceable, offering
hints on the contribution of the different databases used,
and on the trends of the variants or particularities of
the problems addressed. (ii) Analyze a specific category
of SBRP focused on interuniversity routing, through the
consideration of mixed load allowance. (iii) Identify a new
dimension in the categorization of SBRP, related to the
timeliness of information and response, in terms of static
or dynamic contexts. (iv) Analyze how the classical school
contexts differ from university contexts, and (v) Identify
areas of opportunity for future research.

We have structured this paper as follows: firstly, we
offer a concise description of the SBRP. Section 2 provides
the primary outcomes of the Systematic Literature Review
(SLR), detailing the sub-problems and characteristics
addressed in these optimization issues. Moving on to
Section 3, we delve into the most prevalent solution
approaches. Lastly, Section 4 discusses some of the most
pertinent findings and explores the distinctions of this
problem within university contexts.

1.1 The school bus routing problem

A typical SBRP begins with the selection of stops (BSS:
bus stop selection) and their relationship to the address
of residence of the students [9]. In these cases, social
factors, and quality of service to the user are important,
among which stands out the distance traveled on foot by
the student to the stop. The selection of the stops can
be solved in several ways: strategies in which first the
stops are selected and then the students are assigned to
them, called Location – Allocation - Routing (LAR) or vice
versa, the Allocation-Routing-Location (ARL) strategies
where the students are first grouped and then one stop

per group is assigned [8]. The LAR strategies generate
solutions with an excessive number of paths because they
do not consider the effect of route capacity on the student
assignment. In contrast, ARL strategies look for options to
overcome this obstacle [10]. Also, LAR can be easily solved
as an assignment problem [4] and ARL as a clustering
problem [11].

Once the stops have been selected, the routing problem
itself (VRP) springs into action, that is, selecting the order
of visiting the stops. This sub-problem is denoted BRG:
bus route generation. However, to avoid future confusion,
the results will be called trips (not routes). Some of the
classic variants of VRP apply, such as vehicle capacity,
time windows, and consistency [12], which are all known
to be Non-Deterministic Polynomial (NP) hard problems.
However, several variants of the school context make the
SBRP a special and interesting problem. Some of these
are the duration of the routes, which is more important
from the point of view of quality of service than for cost
issues. Here, the riding times are of interest as a service
quality indicator. Also, the number of stops, length of
stops, and passenger pickup time windows are important.
Unlike VRP for logistics, it is not necessarily of interest
in maximizing vehicle occupancy. On the contrary, it is
necessary to consider the possibility of overcrowding,
especially in these post-pandemic times. Additionally, the
need to minimize costs in terms of distance or time, or the
number of buses and routes, also becomes transcendental
when solving SBRP by seeking the optimization of school
bus routes [5].

When defined, trips can be sequenced or covered by
a fleet of vehicles. This sub-problem is denoted BRS: bus
route scheduling. Henceforth, the result of a sequence
of stop visits is a trip, and the sequence of trips is a
route. Unlike other contexts, bell times can be fixed and
unique (e.g., one time for entrance and one time for school
departure), so that the number of trips is usually equivalent
to the number of routes since a vehicle cannot serve more
of a route on the same day, at least in the same direction.
Bus routing and bus scheduling can help improve bus
utilization while minimizing the number of routes and the
total travel distance [13]. Based on the school system, an
SBRP can be categorized into two classes: single school
and multiple school. When the context involves multiple
schools, multiple schedules, staggered schedules, and
mixed loads, then the sequencing problem becomes
remarkably interesting. The mixed-load allowance exists
as an alternative that provides a better-carrying rate since
it allows students to commute to different schools on the
same bus route [14]. Due to this reason, there is a tangible
similarity between this problem and the pickup and
delivery with time windows VRP problem, as both issues
involve a set of pick and delivery locations. Operational
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Glossary
General Acronyms Acronyms in Model Classification

AAC Artificial ant colony C Vehicle capacity
ACO Ant colony optimization COL Chance of being late
ARL Allocation – Routing – Location COO Chance of overcrowding
BirD bi-objective routing decomposition CU Capacity utilization
BRG Bus route generation DC Demand covering
BRS Bus route scheduling EPT Earliest pick-up time
BSS Bus stop selection FB Flow balance
CPLEX Commercial Optimization Software ® HO Homogeneous
EDA Estimation distribution algorithm HT Heterogeneous
GA Genetic algorithm LB Load or ride time balance
GAA Genetic ant algorithm MR Maximum route length/distance
GPS Global Positioning System MRL Maximum route length
GRASP Greedy randomized adaptative search procedure MRT Maximum riding time
ILK Iterated Lin-Kernighan MSN Minimum student number to create a route
ILP Integer linear programming MSR Maximum stops per route
ILS Hybrid iterated local search MWT Maximum walking time or distance
IWS Intelligent water drops algorithm N Number of buses used
LAR Location – Allocation – Routing NS Number of stops
LS Local search NT Number of transfers
MIP Mixed-integer programming RB Route balance
NP Non-deterministic polynomial-time SBS Shared bus stop
SA Simulated annealing SF Safety factor
SBA School bell time adjustment STW Stop time window
SBRLIB Library with benchmark instances for SBRP SWD Total student walking distance
SBRP School Bus Routing Problem TBD Total bus travel distance or time
SLR Systematic literature review TC Total cost
STP School bus routing policies TCT Total commute time
TS Tabu search TRC Trip compatibility
VND Variable neighborhood descent TSD Total student riding distance or time
VNS Variable neighborhood search TT Transfer time
VRP Vehicle routing problem TW School time window

practices and research have proved that mixed-load can
potentially reduce the need for vehicles as well as the
operational cost of the school bus service [15].

Furthermore, there exists the option that a typical
input data for these problems, such as the school bell
times, becomes a decision variable looking for more
efficient solutions. This sub-problem is denoted as SBA:
school bell time adjustment. Finally, and similarly to
SBA, there is a component that becomes relevant given
its ability to optimize specific routing objectives (i.e.,
total distance traveled when considering a mixed-load
policy), which refers to the analysis of school bus routing
policies (STP subproblem) [2]. It is worth mentioning
that, even though the literature currently defines the STP
as a fifth SBRP sub-problem, no publication has been
identified as focused on the modeling process of solving
this sub-problem (either individually or in conjunction with
another SBRP subproblem).

This partition of sub-problems is very similar to how
other complex operational problems in transportation are
approached, like in airline operations problem, where
each sub-problem can be seen analogously to a specific
problem: The flight schedule design with the BSS, the
allocation of fleets and the routing of airplanes with the
BSR, the conformation of pairings with the BSS. The

analogy with the BSA is rarely addressed, only in [16].
The complexity of each sub-problem supports the fact
that in both applications, the search for more integrated
solutions (i.e., simultaneous solutions for two or more
sub-problems) is a constant trend in literature [17].

2. Systematic literature review (SLR)
methodology

To clarify the selection of the relevant literature revised in
this work, we have adopted the Method proposed in [18]. In
this section, we describe the first four stages of the SLR.
In the first stages, we selected the scope of the search,
the sources, the criteria for inclusion and exclusion, and
the specific search fields and terms: Table 1 summarizes
this process. In the first stages, we applied a conservative
criterion: the paper was included when in doubt, and the
decision was made after the complete paper was read.
Decisions on acceptance of a paper were made in pairs.
When there was doubt, a third (senior) researcher took the
final decision.

The process yielded a total of 336 initial results across
all databases. The first filter was to eliminate repeated
papers among databases, resulting in 205 papers. Then,
eighty-three papers were selected based on the reading
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Table 1 Scope of the Search

Source scope
Database selection Scopus, ProQuest, IEEE and Web of Science
Source type Articles in journals & Conference proceedings
Fields Scopus: Title and Title-Abs-Key || ProQuest: Document Title, Abstract and

Keywords/identifiers || IEEE: All Metadata || Web of Science: Topic (Title, Abstract,
Author Keywords, and Keywords Plus)

Filters Language: English || Year: >2010
Inclusion/exclusion criteria

Boolean phrase Scopus and ProQuest: (“smart rout*” OR “urban rout*” OR “bus rout*”) AND
(simulat* OR select* OR optimiz* OR estimat* OR model*) AND (university OR college OR school) AND
(bus)) IEEE Xplore: “All Metadata”: smart NEAR/3 rout* OR urban NEAR/3 rout*
AND “All Metadata”: model* OR simul* OR estimat* OR select* AND
”All Metadata”: university OR college OR school
AND ”All Metadata”: bus NEAR/3 rout*Web of Science:
((((TS=(“smart rout*” or “urban rout*” or “bus rout*”)) AND
TS=((simulat* or select* or optimiz* or estimat* or model*))) AND
TS=((university or college or school))) AND TS=(bus))

Exclusion criteria Papers not in English that passed the filter.
Papers dealing with urban services (not related to school bus transport)
Papers dealing only with tracking systems without mathematical optimization approach
Papers focused on the bus design.
Papers dealing with social topics (disabilities, security, among others)
Papers dealing with a rural service environment.
Papers dealing with single route problems.
Papers with no access by the research team.

Other inclusion Mendeley suggestions
Criteria Backward citations

of their title and abstract. We excluded eight due to
access restrictions. Finally, after backward inclusions,
a total of 49 papers were selected as the corpus of
this review. Figure 1 shows the source of the selected
corpus. The number “1” in the orange circle inside the
gray one in Figure 1 denotes that one paper, reference
[19] was selected from ProQuest and Web of Science
simultaneously. The proportions by databases are Scopus
76%, Web of Science 59%, ProQuest 16%, IEEE Xplore 12%.
However, only one paper was solely found in ProQuest,
so this database contributed little to the final corpus.
Interestingly, most of the papers were found exclusively
in only one of the databases. This justifies the practice
of not restricting the search to a single database from the
beginning of the review process.

 

 

Figure 1 Venn Diagram of the Corpus

2.1 SBRP Sub-problems

As previously mentioned, the different SBRPs in literature
are classified into four “sub-problems” that can be
addressed either independently, sequentially, or
simultaneously: bus stop selection (BSS), bus route
generation (BRG), bus route scheduling (BRS), and
school bell time adjustment (SBA). Though strategic
transportation policy (STP) was initially considered, no
publication addressing it was found. Table 2 summarizes
the key features of each sub-problem and identifies the
publications dealing with each one. Figure 2a. shows the
yearly frequency of publications in the corpus, classified
for each SBR sub-problem, showing the steady interest
in the last six years. This figure supports that BRG is
the dominant sub-problem of interest, with 80% of the
papers addressing it, while SBA is only considered by four
publications.

The Venn diagram in Figure 3 shows that SBR
sub-problems are considered together. Nevertheless,
it was found that the most frequently solved problem in
the corpus was BRG with 35%. Additionally, 22% of the
studies consider the combination BSS – BRG, and 2% deal
with three sub-problems at the same time (BRS + BRG +
BRS). Only two studies deal with the four sub-problems.
The number “1” in the blue circle inside the green one
in Figure 3 means that one paper studies BRG and SBA
simultaneously [20]. BSS is mostly addressed together
with BRG, since in a scheduling problem, one key factor is
the compatibility of trips, as it can help reduce the overall
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number of buses. The trips themselves are an input for the
scheduling problem, so it is essential to provide a solution
with a set of highly compatible trips so it can result in
routes of multiple trips served by one bus.

2.2 Characteristics of the SBRP considered
in literature

A classification scheme based on the problem
characteristics was proposed in [8] and later followed and
complemented in [2]. In addition to the sub-problem type,
it considers six categories, as shown in 0. To facilitate
the reading, we have adopted the same convention. To
complement this classification, we have added a category
that involves the dynamic aspects of the problem together
with the availability of real-time communications with the
passenger.

Figure 4a shows that approaches dealing with
homogeneous fleets prevail, assuming the papers that do
not specify the fleet type normally model homogeneous
fleets. The few papers that consider heterogeneous fleets
integrate two or three sub-problems at the same time
[21]. Additionally, the papers that consider heterogeneous
fleets are those that simultaneouslymodel multiple school
SBRP, due to the mixed loads. Recalling that the papers
in the corpus are in an urban socio-geographical context,
Figure 4b shows major interest in China and the US. In
addition, Figure 4c shows that almost two-thirds of the
papers focus on working by multi-objective functions.

Finally, as shown in Figure 4d, 16% of papers consider the
dynamic aspect of the problem, by using GPS systems and
IT to receive data from the students and react dynamically
to the changes (e.g., [1, 25, 32, 50]). This evidences
that most of the papers focus on a static response with
historical data or even test data to validate models, and
very few use real-time information to propose dynamic
approaches. It is worth noting that studies regarding
dynamic aspects of the SBRP but focused on bus design,
mobile applications, and tracking systems of passengers
of school bus services rather than optimization problems
were excluded, as shown in Table 1.

Regarding objective functions, total bus travel time
or distance (TBD) stands out with 30 out of 49 papers
(i.e., [3, 46]), followed by the total cost (TC) with 27 papers
(i.e. [29, 38, 41]), and the number of buses used (N)
with 18 papers (i.e., [15, 45]. The total riding and the
walking distance are followed by 6 papers each. The
least common are the number of shared stops, trip
compatibility, maximum route length, and the number of
transfers, as well as route balance and total commute
time. Furthermore, 35% of the studies optimize more
than one objective function, although the practical need

to consider multi-objective problems has been recognized
[23]. Among these studies, in [43], the multi-objective
function included the minimization of the route balance,
seeking to make every school bus travel the same distance
as possible, and to minimizing the total number of school
buses and the total travel distance. Besides, in [11],
the minimization of the total commute time of students,
involving walking, riding, and service time was added to
the minimization of the number of stops. Finally, in [9],
the minimizing straphangers (i.e., a standing passenger in
a bus) were used in the multi-objective function along with
total travel time.

Regarding the constraints, as seen in Table 3 , in addition
to the standard constraints that are specific to each
subproblem, the most common conditions considered in
school bus contexts are school time windows at the start
and end of the route, flow balance, which stable connection
within the routing, the maximum length/distance of the
route for upper limit allowed, demand coverage, the
maximum walking distance, earliest pick-up time for the
period in which the vehicle is allowed to arrive at the
stop before the indicated time, maximum walking time,
minimum number of students to create a route, among
others.

Additional limitations related to the well-being of
the student are the maximum driving time, service
time (loading/unloading), transfer time, walking
distances/speeds, overcrowding, straphangers meaning
the standing passengers in the vehicle, the possibility of
arriving late, the maximum number of stops per route and
load tracking.

Finally, regarding the new classification category, most
of the papers assume a static condition, explained by
the assumption that students, their locations, and the
time bells will remain constant during the school period.
Contexts-based and solutions supported on real-time data
are classified as dynamic.

3. Methods to solve the SBRP

The SBRP is a type of Vehicle Routing Problem (VRP)
involving multiple variants, which further increase the
complexity of the problem. To understand the way the
SBRPs are solved by the corpus, Table 4 categorizes the
papers based on their primary general solution approach
in three options: exact, heuristic, and metaheuristic
methods. The first one encompasses papers focused
on practical models without necessarily introducing new
solution methods but utilizing commercial optimization
solvers. They can also introduce combinations or
improvements of well-known exact methods with specific
heuristics. The other two groups give special attention
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(b) BRG

 

 

(c) BRS
 

 

(d) SBA

Figure 2 Annual frequency of publications in SBRP sub-problems

 

 

Figure 3 Venn diagram. Studies on multiple sub-problemss

to the solution methods, proving improvements in
computational time or showing their capability of solving
larger problems. Papers that blend twometaheuristics are
labeled as a hybrid, while those incorporating additional
heuristic methods within a metaheuristic framework
are categorized under the respective metaheuristic
classification.

3.1 Exact methods

The different SBRP sub-problems are formulated as either
integer linear programming (ILP) or mixed integer linear
(MIP) models that are difficult to solve (i.e., NP-hard).
These models have shown satisfactory performance in
tackling practical but not large-scale problems for schools.
Exact methods are suitable for practical-sized cases with
acceptable times, for instances with less than 50 nodes

[1]. Nonetheless, the use of exact methods has areas
of opportunity in instances with sizes adapted to reality,
since the method does not facilitate decision-making in
reasonable times, especially in cases where mixed-load
strategies are considered [29]. The revised literature
proposing variants in the formulations as well as in the
classical exact methods are all focused on increasing
the efficiency in the computational effort –or time– and
lowering the gaps to optimality.

A school bus service in Lisbon was designed using
SBRP formulation [27]. The solution applied consisted of a
MIP divided into two steps: BSS + BRG. It proved to be able
to obtain solutions for medium-sized and single-school
problems. Furthermore, an example of implementation
in a real context showed that certain changes had to be
made to the initial solution. These changes increased the
estimated travel time; however, the solutions became
more acceptable for users considering bus stops and
congested areas.

Later, in [17], an exact branch and piece algorithm
with an emphasis on efficiency issues of the column
generation of a covering formulation was developed
and proved to solve many SBRP instances to optimality,
where some of the largest instances solved contain
40 stops and 800 students. The application of several
techniques, including the use of the exact and heuristic
pricing algorithms, bounding procedures, a column pool
manager, and stabilization techniques, as well as their
rigid branching approach for the branch-and-price tree
was reported to increase the performance of the column
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Table 2 School Bus Routing Sub-problems

Sub-problem Objective Input data Comments References (*)
BSS To identify a bus stop Potential stops Student Approaches: First stops selection, [1, 3, 10, 11, 17, 19, 21–24]
Bus stop location for each location or zonal then students’ assignment [25–33]
selection student. demand Time (location- allocation).

constraints First students grouping,
then assign to a stop simultaneously

BRG To build the school Stops location. The most frequent problem. When both BRG [1, 3, 5, 9–11, 14, 15, 17, 19]
Bus route bus routes. Demand per location and BRS are studied, the concept of trip is [20–23, 25, 26, 28–30]
generation Includes the generation Fleet features (size, distinguished: BRG deals with trips, while [31, 34–40]

generation of a single capacity, cost, etc.) BRS deals with routes. [41–49]
trip, a series of trips Operation policies Trip: begins with an empty bus at an origin point, [50–53]
(routes) for a single (max length, max visits the stops (where students get
school, or routes for time, mixed loading, etc.) into/get off the bus), and finishes at the school.
multiple schools. Route: series of trips covered by the same bus.

BRS To identify the Time windows Social quality [1, 4, 11, 13, 21, 29, 31, 35, 47]
Bus route timetable for buses Load/unload times measures: early [49, 50, 52, 54, 55]
scheduling Trips durations, Fleet pick-up, drivers’ brakes.

features Distance
matrices

SBA To adjust school Several school’s time Usually solved in conjunction with other [1, 20, 35, 50]
School Bell schedules with bus windows. sub-problems.
Time Adjustment schedules. Fleet features

operational policies

(*) references are repeated if the same paper covers more than one sub-problem.

 

 

(a) Fleet mix
 

 

(b) Country when specified

 

 

(c) Function type
 

 

(d) Response timing

Figure 4 Corpus Composition

generation. In [56], a new formulation for the Mixed
Capacitated General Routing Problem and a two-phased
branch and cut algorithm to solve it exactly were proposed,
in which the new branch and cut constructed an initial
solution through an effective location-based heuristic.
Optimality on two benchmark sets was proved through the

algorithm, and a group of larger instances was studied for
the first time, gaining a remaining gap to optimality below
a threshold of 20%.

In [57], a bi-objective routing decomposition (BirD)
algorithm allowed to solve a mixed integer optimization

85



J. Díaz-Ramírez et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 114, pp. 79-94, 2025

Table 3 Classification categories of SBRP based on problem
characteristics

Category Alternatives
Number Single
of schools Multiple
Service Urban
environment Rural

Both
Response Static
Timing (New) Dynamic
Load type Yes: Mixed-load Allowed

No: Mixed-load Not allowed
Fleet mix HO: Homogeneous

HT: Heterogeneous
Objectives N: Number of buses used *

TBD: Total bus travel distance or time
TSD: Total student riding distance or time
SWD: Total student walking distance*
RB: Route Balance
MRL: Maximum route length
LB: Load or ride time balance
SBS: Shared bus stop
CU: Capacity utilization*
TC: Total cost*
TRC: Trip compatibility
SF: Safety factor
NT: Number of transfers
NS: Number of stops
TCT: Total Commute Time
DC: Demand covering*

Constraints C: Vehicle capacity
MRT: Maximum riding time
TW: School time window
MWT: Maximum walking time or distance
EPT: Earliest pick-up time
MSN: Minimum student number to create a route
TT: Transfer time**
STW: Stop time window
MSR: Maximum stops per route
COO: Chance of overcrowding
COL: Chance of being late
MR: Maximum route length/distance
FB: Flow balance

Further Service time (load/unloading)
considerations Walking distance/speed

Overcrowding / Straphangers
Load tracking

Based on [2, 8]. * Used also as a constraint, ** Used also as an objective

model for the school bell time selection problem, which
is a generalization of the quadratic assignment problem
that aims to evaluate transportation costs when each
school is assigned a particular bell time. The BirD
algorithm was able to improve by 20% of computational
cost besides considering the best option for each school
and multiple routes. Finally, exact solutions for an
environmentally related VRP considering maximum route
length, vehicle capacity, and fleet type were provided in
[42]. A flow-based mixed integer linear program was
formulated to compare heterogeneous and homogeneous
fleets. The heterogeneous fleet solution minimized 30% of
the total cost and enabled the utilization of all the buses’

capacity.

Stochastic approaches are also used with exact methods.
In [55], numerical experimentation was performed with
instances with zero transition time, non-zero transition
time, and multiple scenarios. Transition times refer to
transit time between routes, which are assumed to be
significantly smaller than route times. In [48], a robust
optimal schedule times model, which considers the
stochastic nature of the problem, was suggested to obtain
an exact solution for the cost of delays and idle times. A
small-scale computational instance was considered and
solved through the mathematical programming solver
named CPLEX to verify the integrity of the model, which
concludes stochastic and time-dependent transportation
networks must be considered more in the assumptions of
the SBRP.

3.2 Heuristics methods

In [31], a school-decomposition heuristic algorithm is
proposed for solving the routing and scheduling problem.
The objective consisted of maximizing trip compatibility
while potentially minimizing the number of buses. To
test the performance of the algorithm, it was compared
with traditional routing by solving eight midsize problems,
which showed that the proposed model could reduce the
number of buses needed by up to 25%. Following the
topic, an insertion-based Minimum Cost Matching with a
Post Improvement algorithm was presented in [47], which
is a two-step heuristic adopting the trip compatibility
idea presented to solve the multi-SBRP under single load
assumptions. The first step found an initial solution using
the iterative minimum cost matching-based insertion
heuristic, and then, the initial trips were improved using
a Simulated Annealing (SA) and Tabu Search (TS) hybrid
method. Experiments based on benchmark problems [4]
were conducted and showed that the proposed heuristic
algorithm could save up to 25% of buses. This strategy
has proven to be effective and could be used to solve
similar VRP with time windows and trip compatibility, as
the heuristic algorithms could find solutions with higher
quality than the exact methods in a much shorter time, as
well as in large-size problems.

Additionally, in [29], a heuristic method was followed
to improve computational times and to find near-optimal
solutions to the problem. The algorithm started with
a constructive approach known as cluster first-route
second. It ended with a machine-scheduling heuristic to
determine the order and time intervals in which routes
needed to be executed. They showed that a mixed-load
strategy produces a better use of resources, by reducing
the number of buses by 25% in comparison to the
single-load strategy (the latter being solved by an exact
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Table 4 Table 4 Solution Methods for the SBRP

Approach Methods References
Exact Decomposition (BirD) Stochastics [57]

Integer Linear Programming ILP [34]
Mixed Integer Programming MIP [4, 13, 27, 29, 33, 42, 55, 56, 58]
Column Generation [17]

Heuristic Minimum Cost Matching with Post-Improvement Algorithm [47]
Machine-scheduling [29]
School decomposition algorithm [31]
Mixed-load Improvement Algorithm [45]
Augmented Lagrangian Relaxation [14]

Metaheuristic Evolutionary Genetic Algorithm (GA) [2, 19, 26, 32, 35, 38, 43, 44]
Ant Colony Optimization (ACO) [11, 44, 52]
Estimation Distribution Algorithm (EDA) [19]
Intelligent Water Drops Algorithm (IWD) [3]
Local Search Tabu Search (TS) [1, 15, 25]
Hybrid iterated local search (ILS) [23, 39, 51]
(Iterated) Local Search (LS) [22, 41]
Simulated Annealing (SA) [13, 47]

Constructive Greedy Randomized Adaptative Search [50]
Procedure (GRASP)

Hybrid GA + TS [46]
GAA: GA + ACO [49]
GA + Exact +TS and SA+Exact+TS [28]
GA+ILS [30]
ILS + SP [40]
TS+VNS [54]
AAC+VNLS [24]
GRASP + VND [10]
ACO+ ILK [36]

method). A mixed-load improvement algorithm was
proposed in [45] with modifications of a single load plan,
such as the introduction of a simple relocation operator
that functions for single and multiple schools. The model
focused on finding the optimal routes while reducing the
number of vehicles required. Computational experiments
were performed to generate benchmarks and real-world
instances. For instance, the proposed algorithm was
applied to 7 real-world instances with data collected from
school districts in the US, resulting in a decrease of 22%
of the current buses.

Furthermore, an Augmented Lagrangian Relaxation was
applied in [14] to simplify the base Lagrangian model into
a 0-1 quadratic programming model with balanced linear
flow constraints. After decomposition and linearization,
this augmented model can be further partitioned
into different linear multiple-product sub-problems.
Therefore, a cyclic-block coordinate-descent method is
suggested to iteratively solve linear multi-commodity
sub-problems based on a multiple school SBRP
with mixed-load allowance and a heterogeneous fleet
considering pickup-time windows and school-bell-ring
constraints.

The use of heuristic methods to solve the School Bus
Routing Problem has proved to be more efficient than
exact methods in terms of computational time and quality
of solutions. This solution method is useful for large-scale

problems because it has been shown to give better
results for real-world problems when compared. The
tendency shows the development of heuristic methods to
solve problems with mixed-load, multiple schools, and
heterogeneous fleet characteristics as it, according to the
authors mentioned, provides a more significant outcome;
however, there is an opportunity for further research.

3.3 Metaheuristics methods

Mixed-load conditions in an SBRP are known to add
complexity to the models and solution methods used.
In [44] a multi-objective Ant Colony Optimization (ACO)
algorithm integrated a routing heuristic algorithm.
Comparing mixed-load and single-load situations, results
showed a greater reduction in the number of buses when
using mixed-load formulation. A two-stage metaheuristic
algorithm was developed in [52] to solve an SBRP with
a mixed-load plan, in which schools share resources
for the delivery of students. The combination of the
aggregation-based clustering algorithm with an improved
ant colony optimization solved this problem with virtual
stops and interscholastic transportation models. The
results on built instances showed that the second one is
better for large-scale cases and the first one works better
for small-scale instances but with larger running times.

Deepening into evolutionary algorithms, [43] proposed
a Genetic Algorithm (GA) to solve a multi-objective
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SBRP with the optimization objectives of route balance,
total number of school buses, and total travel distance.
To achieve this, the authors proposed an improved
non-dominated sorting GA that can outperform the
standard NSGA-II and the Multi-Objective Evolutionary
Algorithm due to the stability of the algorithm, by
presenting a solution that has the best balance degree
(in terms of the route selection). Similarly, a GA that
uses operators (mutation-S) to solve SBRP is used in [35].
As a result, the algorithm can achieve good results by
optimizing the total bus travel distance and the number of
buses to be used within a route which was tested on a set
of instances of the SBRPLIB library.

Combinations of metaheuristic algorithms with clustering
techniques are also used to solve the SBRP. A two-stage
solutionmethod is proposed in [11] that considers, in stage
I, an iterative clustering method based on the k-means
and density-based spatial clustering of applications with
noise, and in stage II, the ACO. The results show that the
school bus stop location and routing problem with walking
accessibility and mixed-load provide convenient and safe
school bus services in dense areas, but in sparse ones, a
door-to-door school bus service is better. Regarding the
algorithm, the authors concluded that the proposed ACO
is robust and less vulnerable, although some parameters
must be adjusted to achieve a better solution for sparse
areas.

On the other hand, an Intelligent Water Drops Algorithm
is applied in [3], which is a metaheuristic swarm-based
optimization technique. The proposed algorithm results
in obtaining reasonable SBRP solution results in good
computational times. Another algorithm based on
distribution estimation EDA has been proposed to improve
the traditional sequential selection-routing approach, by
obtaining different and better results than with a GA, as
well as adding an alternative to solve permutation-based
representation problems, in this particular case, with
applications related to logistics [19].

Regarding local search (LS) approaches, in [41],
a metaheuristic composed of an ILS and a set
partitioning procedure (SP) was introduced specifically
for heterogeneous school bus routing problems. [39]
proposed a metaheuristic framework in which LS
and neighborhood operators are used to simplify the
design and implementation in SBRP, based on several
scenarios such as single and multiple schools, mixed-load
allowance, and heterogeneous or homogeneous fleets.
Also, in [1] and [15], SBRPs were solved with a tailored TS
and a pick-up and delivery problem with a time windows
approach with a record-to-record travel metaheuristic for
mixed-load problems. Both improve computational times
while giving quality solutions.

A partial allocation LS algorithm discussed in [22] is
a metaheuristic approach based on three main steps:
selecting the bus stops, constructing the solution
by computing routes and allocating students, and
applying several LS procedures. The results showed
that it is an extremely competitive method in terms of
closeness to solution and computing times. Also, a
metaheuristic with online learning to solve a multi-school
heterogeneous-fleet school bus routing problem was
presented in [51]. The online learning mechanism was
integrated with the VNS heuristic in the iterated local
search (ILS) framework. This algorithm was effective
for solving mixed-load (and single-load) problems and
shows its ability to increase solution quality together
with the speed of solution convergence. On the other
hand, insertion-based heuristics, and greedy randomized
adaptive search procedures (GRASP) were used to
minimize the number of buses and times with good results
in terms of bell time adjustments, service, punctuality,
and shorter student ride time [50].

In [47], a two-step heuristic approach is applied to solve
the SBRP under single-load assumptions, considering a
method improved by using a Simulated Annealing (SA)
and Tabu Search. The results of this approach showed
that the two-step proposed heuristic improves single-load
problem solutions regarding benchmark problems.

Hybrid approaches

In the last decade, a trend for combining the strengths of
different metaheuristics in the same approach has been
observed. For example, in [24], a hybrid metaheuristic
based on the Artificial Ant Colony (AAC) with a VNS to
plan the bus routing problem is proposed, which leads
to an improvement in the performance of the AAC. Their
proposal was applied in a Tunisian case, showing that
the solution produced by their metaheuristic is highly
dependent on the choice of the LS and that the solutions
were competitive and consistent when compared with the
results of the bus network provided.

Previously, in [49], a Genetic Ant Algorithm (GAA)
was proposed, that introduces the evolutionary process
of genetic algorithm to improve the optimizing efficiency
of the ant colony algorithm. This combination improves
the optimization performance and boosts convergence,
enabling the algorithm to combine randomicity and
determinacy at the same time. Another hybrid
approach was stated in [10], which is integrated by a
construction phase in which a GRASP is used, followed
by a VND improvement phase. Both phases are executed
sequentially in an iterative way to find the best solution
much faster giving the possibility to manage larger scale
instances. However, there is still an area of opportunity to
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expand the approach to be able to involve more aspects
such as multiple schools and testing in real scenarios.
Also, a GIS-based framework along with clustering
techniques, network cutting techniques, and a hybrid ACO
with the iterated Lin-Kernighan (ILK) local improvement
heuristic is proposed in [36] for solving the SBRP as a split
delivery vehicle routing problem.

Most recently, in [30], a memetic algorithm for a
heterogeneous fleet school bus routing problem is
proposed. This type of algorithm is considered a
hybrid genetic algorithm (GA) because it involves LS
procedures. Comparing the memetic algorithm with a
greedy and genetic algorithm, the computational time
was much greater even though it has high consistency
in obtained solutions. Additionally, hybrid iterated LS
and set portioning procedure (ILS + SP) metaheuristic
algorithms were used for solving SBRP with multiple
planning scenarios such as single and mixed-load, and
homogeneous and heterogeneous fleets in large-scale
multi-school SBRP [40]. The results proved the efficiency
of the developed algorithm by outperforming the existing
SBRP for multiple-school cases.

Finally, a hybrid metaheuristic method is developed in [54],
which combines TS and the VNS. The study concludes that
this search procedure, which is numerically compared with
the exact algorithm (via CPLEX) and the TS metaheuristic
on a small-scale network, can generate superior routes
and paths, while still making efficient use of available
vehicles.

Bi-level Approaches

Bi- and multi-level approaches involve a hierarchical
organization to distribute and streamline decision-making.
Specifically, in the bi-level, there are two levels and in
each of them, part of the decision variables is controlled
[28]. A bi-level mathematical model was constructed
to predict students’ response when designing an
efficient transportation system by applying two hybrid
metaheuristic approaches (GA-EX-TS and SA-EX-TS) on a
location-allocation routing strategy, in the first one using
GA to locate bus station, EX to refer to an exact method
to allocate the students and TS for the routing, and in
the second approach using SA instead of GA to locate
the stations, both resulting appropriate for solving large
scale problems in less computational time than with exact
methods, without any of them showing dominance in their
performance [28].

Similarly, another bi-level bi-objective location routing was
proposed tominimize routing costs andmaximize the profit
of the transportation company based on leader-follower
games [46]. In this case, a hybrid method (i.e., ILP and
Metaheuristics) was developed to solve this problem.

Computational comparison between explicit enumeration
and hybrid methods was along with demand and cost
analysis.

4. Discussion

SBRP research mainly focuses on single-school problems,
although it is based on a multi-school system. Adding
multiple and heterogeneous features adds complexity
to the models and implementations in real contexts
of a single school at a time are simpler [27]. Recent
research has indicated the study of mixed-load allowance
on route as an alternative approach to the multiple
school SBRP, known as the mixed-load SBRP [15] (See
Figure 5). Henceforth, the development of algorithms
to solve this type of problem is increasing the attention
of literature as well as the inclusion of heterogeneous
fleets, which increases the complexity of the problem
[39, 40]. However, heterogeneous fleet solutions have
demonstrated improved results involving total costs and
seat occupation on SBRPs [42].

Time-dependence of travel times was rarely considered
in SBRPs. Only a couple of studies explicitly addressed
this issue. In the first one, a robust optimization model
that minimizes the worst-case total cost is solved in a
stochastic time-dependent network for a single-school
configuration and homogeneous fleet. The cost is a
function of delays and the disutility of travel times [48].
In [54], the approach considers path flexibility between
nodes to be included in the route. It combines TS and VNS
to solve the model and evaluate the effects of congestion
on cost, travel time, and distance. In both studies, a
small-scale instance was used to validate the proposals.
On the other side, time dependency is implicitly considered
in the dynamic approaches that will be discussed next.

The consideration of multi-objective versions of SBRP
models has also gained interest in the literature.
Henceforth, the elements of these objective functions that
appear most in the literature refer to minimizing total
cost, number of buses, travel distance, or travel times.
Nonetheless, some authors begin to integrate elements
that consider the minimization of environmental impact
into multi-objective functions [17, 29]. Environmental
concerns have been addressed, following the research
trends of the variant of the VRP called the Green Vehicle
Routing Problem, such as the Environment-Friendly
School Bus Routing Problem [42]. Inefficient school
bus route management can result in more energy
usage and pollution than necessary; meanwhile, the
opposite has a positive impact on the environment and
students’ health [26]. A minimum number of documents
oriented to dynamic environments, with real-time data
considerations, can be observed during the review [32].
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Interest persists in the development of heuristic,
metaheuristic, and exact solution methods. A
concentration of work on metaheuristic methods is
evident, due to the NP-hard complexity of the problem.
Even so, the development of new and improved solution
approaches remains a potential for further research.
Another trendy use in solution methods is linking data
mining techniques as grouping methods, especially in stop
selection [28, 33, 46].

4.1 Dynamic approaches

We introduced a novel category, labeled “response
timing” in Table 3, referring to the temporal aspects of
input data used in the optimization model. Static works
predominantly constitute the corpus, involving pre-given
input data. On the other hand, dynamic studies have only
appeared in the last decade, as shown in Figure 5. They
entail the real-time acquisition of input data, facilitated
by the easy and inexpensive tracking capacity of users,
owing to advances in GPSs, traffic sensors, and mobile
communication systems such as mobility as a service
(MaaS) applications and cellphones. When transport
solutions integrate this data-driven approach, they are
recognized as “smart solutions” [59]. These IT innovations
invite us to identify up-to-date bus routes during the
daily operation. Smart and dynamic approaches mark a
burgeoning trend that has garnered attention in the last
decade [1, 32, 60].

Examples of this approach include GPS, which can
be used to identify real-time student waiting locations
and the school bus online, as in [32, 60, 61] to generate
dynamic adjustments on the route to last-minute changes
such as non-attending students. Data is sent to a server
where a metaheuristic method (e.g., GA or ACO) runs to
find the dynamic route, and finally, IT tools are used to
visualize the solution. Connected to mobility or traffic
applications, these approaches inherently account for
time-dependent variations in speed. These approaches,
when connected tomobility or traffic applications implicitly
regard the time-dependent variations in speed. On the
other hand, cellphone applications are used to make a
reservation for a seat on the bus, and the dynamic route
can be simplified by skipping the stops where there is no
demand for them, therefore lowering travel times, as in
[1].

4.2 University contexts

In the vast majority, the applications with real data
were developed for school cases, leaving aside the
application in universities, except for only two works
[1, 29]. These institutions have important challenges

such as the heterogeneity of schedules and, in most
contexts, mixed loads, higher dispersion of users, multiple
depots of the same institution, and the absence of the
restriction of 100% demand covering, unlike an SBRP
in a school context. In [1], where a university context
is considered, one can seek to optimize social interests
such as demand coverage and travel time under limited
resources. Another relevant characteristic refers to the
consideration of mixed loads in university contexts. For
this, the use of a mixed-load strategy with students from
different schools sharing buses allows for minimizing
operational costs and optimally satisfying time windows
[29]. Both works highlight the similarity of these problems
to public transport, regarding the need to comply with
requirements such as the arrival reliability of multiple bell
times, the consequent multiple arrivals and departures,
and other aspects such as traffic congestion, mobility
problems, high operational costs, and high transfer times.
We conclude that, even though some authors have joined
efforts to contribute to the solution of the SBRP in
university contexts, as shown in Figure 5, the effort that the
literature has directed towards this matter is still scarce
but promising.

4.3 Mixed-load allowance

According to the literature, there are two types of routing in
multi-school problems: single-load route and mixed-load
route. In a single-load route, the bus is only allowed to
pick up students from the assigned school at each stop,
meaning the students have the same destination school.
Meanwhile, in a mixed-load route, the students on a bus
may have different destination schools [2]. As stated in
[45], the SBRP should be considered a mixed-load plan
because the essence of the problem is aimed at impacting
several school districts. Since students from suburban
areas are often dispersed around the area, prohibiting
mixed-loading could be inefficient. Therefore, the transfer
school bus operation plan must allow mixed loads. In
these cases, certain characteristics, such as the time
windows of the schools, are key, so much so that being
able to adjust the time windows can improve the effect of
allowing mixed load [11].

Researchers are currently studying the SBRP with
a mixed-load route because of the high operation
cost and low utilization of buses the schools are
facing. A mixed-load plan can consider interscholastic
transportation, which refers to picking up students from
different schools and delivering them to their respective
schools. A single-load plan was compared to a mixed-load
plan to share resources between multiple schools to
improve the utilization of buses [52]. In [8], it is pointed out
that considering a single-load plan can be too restrictive,
resulting in an excessive number of buses being required
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for passengers. Therefore, allowing mixed loading can
achieve greater flexibility and cost savings. In addition, it
has been shown that the multiple-school SBRP could be
modeled as a continuous approximation model, or as a
kind of pickup and delivery VRP with a homogeneous fleet
where student stops are considered as pickup locations
and schools as delivery ones [14].

Mixed load SBRP has been successfully addressed
with heuristic and metaheuristic algorithms. They have
proved to produce better use of resources, such as shorter
routes, less operating costs, greener operation, as well
as fewer buses in rush hours, less vehicle congestion,
and reduced student travel times. Nevertheless, for
large-scale mixed SBRPs, enhancing the performance
of the actual algorithms is necessary [29, 31]. Lastly, in
[29], load and mixed-load strategies are used to optimize
the use of buses in the school transportation system of
Bogota, concluding that interuniversity routing, through
the consideration of mixed-load allowance, generates a
better use of resources and lower operation costs.

5. Conclusions and
recommendations for future work

A differentiating element of the work presented here is
providing a systematic study of the literature detailing
each stage of the process at a level higher than that
shown in [8] to foster greater reliability when replicating
or developing a future SLR on SBRP.

Although a significant amount of research has been
conducted regarding SBRP in the last few decades,
especially between the gap of the reviews in [2, 8],
promising opportunities remain regarding (i) the multiple
SBRP with a mixed load, (ii) university contexts, and (iii)
the dynamic contexts with real-time data exist, due to the
increasing interest and the few previous publications in

these specific contexts.

• (i) The consideration of multiple SBRP modeling has
attracted the attention of the literature for the last
decades. However, there is a tangible opportunity
to solve this problem in multi-school systems and
university contexts, given the variants involved, such
as heterogeneous students, heterogeneous fleet,
multiple time windows, and mixed load.

• (ii) There is an area of opportunity in the consideration
of the dynamic aspect when modeling and solving
SBRP, especially from the university context. Access
to different mobile and technological resources or
applications makes the development of dynamic
routing solutions possible. However, very few studies
have considered real-time data when modeling
dynamic SBRP. Henceforth, focusing the research on
the use of systems or applications such as GPS, AI,
or IT to receive information from university students
and react in real-time for routing and scheduling
solutions is a potential future direction.

• (iii) Finally, it is worth exploring multi-university
or multi-site solutions as they can help address
the complexity and potential for efficiency increases.
The solution of the SBRP from the interuniversity
context, considering heterogeneous fleets, mixed
loads, and real-time data, through the modeling
of multi-objective functions and the construction of
metaheuristic solution algorithms can contribute in a
tangible way to the literature in the area, through the
development of sustainable, effective, and efficient
school routing systems.
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