
Revista Facultad de Ingeniería, Universidad de Antioquia, No.117, pp. x-xx, xxx-xxx 20xx

D. P. Tobón-Vallejo et al.; Revista Facultad de Ingeniería, No. 117, pp. x-x, 20xx

Title: Anomaly classification in IIoT edge devices

Authors: Diana Patricia Tobón-Vallejo1 https://orcid.org/0000-0003-4659-7693, Danny Alexandro Múnera-Ramírez2

https://orcid.org/0000-0003-0762-0571 and Martha Lucía Rodríguez-López2* https://orcid.org/0000-0001-9718-7673

1Departamento de Ingeniería Electrónica, Universidad de Antioquia, Calle 67 #53-108. Medellín, Antioquia.
2Departamento de Ingeniería de Sistemas, Universidad de Antioquia, Calle 67 #53-108. Medellín,

Antioquia.

Corresponding Author: Martha Lucía Rodríguez-López

E-mail: mlucia.rodriguez@udea.edu.co

DOI: 10.17533/udea.redin.20250368

To appear in: Revista Facultad de Ingeniería Universidad de Antioquia

Received: March 19, 2024

Accepted: March 17, 2025

Available Online: March 17, 2025

This is the PDF version of an unedited article that has been peer-reviewed and accepted for publication. It

is an early version, to our customers; however, the content is the same as the published article, but it does

not have the final copy-editing, formatting, typesetting and other editing done by the publisher before the

final published version. During this editing process, some errors might be discovered which could affect the

content, besides all legal disclaimers that apply to this journal.

Please cite this article as: D. P. Tobón-Vallejo, D. A. Múnera-Ramírez and M. L. Rodríguez-López.

Anomaly classification in IIoT edge devices, Revista Facultad de Ingeniería Universidad de Antioquia.

[Online]. Available: https://www.doi.org/10.17533/udea.redin.20250368

Revista Facultad de Ingeniería

https://orcid.org/0000-0003-4659-7693
https://orcid.org/0000-0001-9718-7673
http://crossmark.crossref.org/dialog/?doi=10.17533/udea.redin.20250368

Revista Facultad de Ingeniería, March, 2025

Anomaly Classification in IIoT Edge Devices
Clasificación de anomalías en dispositivos del borde de IIoT
Authors: Double-blind review

KEYWORDS:
Anomaly detection, anomaly classification, neural networks, Industrial Internet of Things.

Detección de anomalías, clasificación de anomalías, redes neuronales, Internet Industrial de las Cosas.

ABSTRACT: An early Industrial Internet of Things (IIoT) Anomaly Detection reduces maintenance costs,
minimizes machine downtime, increases safety, and improves product quality. A multi-class classifier that
detects events, failures, or attacks is much more efficient than a simple binary classifier, as it relieves a human
operator of the task of identifying anomaly causes, thereby avoiding wasted time that could compromise process
performance and security. With these issues in mind, this paper aims to determine whether it can differentiate
between a failure that generates a temperature increase in an IIoT device processor, a denial-of-service attack
on an MQTT broker, and an event caused by an application executing on the IIoT edge device. Data used
to perform the classification comes from a Raspberry Pi 3, specifically from its CPU (e.g., temperature, load,
free memory, Wi-Fi sent and received packets). A k-nearest neighbors (KNN), random forest (RF), support
vector machine (SVM), and Multilayer Perceptron (MLP) algorithms were trained. Considering metrics such
as false positive rate, false negative rate, accuracy, F1-score, and execution time, we concluded that SVM and
MLP were the best methods for the case study because of their accuracy (78.6 and 76.1, respectively) and low
execution time (17.3ms and 0.35ms).

RESUMEN: Una detección temprana de anomalías en Internet Industrial de las Cosas (IIoT) reduce los costos
de mantenimiento, minimiza el tiempo de inactividad de la máquina y aumenta la seguridad de la planta. Un
clasificador multiclase que detecta eventos, fallas o ataques libera al operador humano de la responsabilidad
de identificar la causa de la anomalía, evitando desperdicio de tiempo que podría comprometer el rendimiento
y la seguridad del proceso. Con estas cuestiones en mente, este artículo tiene como objetivo determinar si es
posible diferenciar entre una falla de temperatura en un dispositivo IIoT, un ataque de negación de servicio a
un broker MQTT y un evento causado por una aplicación que se ejecuta en el dispositivo de borde IIoT. Los
datos utilizados para realizar la clasificación provienen de una Raspberry Pi 3, concretamente, datos de su CPU
(temperatura, carga, memoria libre, paquetes Wi-Fi enviados y recibidos). Se entrenaron algoritmos del tipo
k vecinos más cercanos (KNN), bosque aleatorio (RF), máquina de soporte vectorial (SVM) y un perceptrón
multicapa (MLP). Teniendo en cuenta métricas como tasa de falsos positivos, tasa de falsos negativos, precisión,
F1-score y el tiempo de ejecución, llegamos a la conclusión de que SVM y MLP fueron los mejores métodos
para el caso de estudio, debido a la precisión (78,6 y 76,1, respectivamente) y el bajo tiempo de ejecución (17,3
ms y 0,35 ms).

1. Introduction

The Industrial Internet of Things (IIoT) presents a
realm of wireless connectivity, enabling data collection
and processing within interconnected industrial
settings. Coupled with other advances characteristic
of the fourth industrial revolution (Industry 4.0),
it furnishes manufacturing environments that are
real-time, secure, and autonomous [1–3]. Enhancing
production efficacy requires reliable computing and
communication tools to address security vulnerabilities
arising from extensive subsystem interconnections
[2, 4, 5]. Moreover, IIoT components leverage diverse
technologies to collect various types of data, often
lacking structure, plagued by noise, and exhibiting
redundancy [6]. Security loopholes and data collection

challenges pose significant hurdles to ensuring data
integrity, potentially rendering IIoT-gathered data
unfit for user-centric services [7]. Anomaly detection
systems offer a means to identify subpar data quality.

In their study, Gosh et al. [8] characterize anomalies
as observations or subsets that deviate significantly
from the dataset’s norm, classifying them as events,
failures, or attacks. They define a ”failure” as
data from a malfunctioning sensor due to calibration
issues or device faults [9]. Conversely, an ”event”
denotes a real-world occurrence altering monitored
variables, such as natural phenomena impacting
specific metrics [7]. Unauthorized access or intrusions
pose substantial security threats across the system [10,
11], with a ”malicious attack” encompassing actions
compromising IIoT network nodes, thus jeopardizing

1

Acce
pte

d M
an

usc
rip

t

overall security [8, 11].
Early detection of anomalies within industrial
processes proves pivotal in facilitating real-time
decision-making, curtailing maintenance expenses,
mitigating machinery downtime, enhancing safety, and
elevating product quality [12, 13]. Pinpointing the
origin of the anomaly (whether an event, failure, or
attack) helps to select appropriate recovery measures
to minimize abnormal behavior [3, 14]. This study
sought to ascertain the feasibility of discerning between
a temperature-induced failure in an IIoT device’s
processor, a denial-of-service attack on the MQTT
broker, and an event triggered by an application
executing on the IIoT edge device. We investigated
whether this differentiation could be achieved using
internal CPU data such as temperature, load, available
memory, and Wi-Fi transmission metrics, employing
machine learning techniques for real-time anomaly
detection. This paper compares multiple machine
learning approaches based on several metrics for
classifying anomalies in real time on an edge device.
The remainder of this paper is organized as follows:
Section 2 describes the machine learning algorithms
compared in this work. Section 3 mentions some
related works. Section 4 describes the testbed, dataset,
and machine learning techniques used in this report.
Section 5 shows the results of applying ML methods
to classify anomalies. Finally, we highlighted the open
challenges (6) for future research and conclusion (7).

2. Background
This section describes the algorithms that classify
anomalies as events, failures, and attacks. These
methods are described as follows.

2.1 K-Nearest Neighbor
The K-nearest neighbor (KNN) is a widely used
nonparametric pattern classification method [15].
Despite its simplicity, KNN has been successful in
many classifications and regression problems, including
handwritten digits and satellite image scenes [16]. It
is often successful in classification situations where
the decision boundary is irregular since it is a
non-parametric method [17]. Most KNN algorithms
are developed for classification problems with balanced
training sample sets [17]. A KNN Euclidean is the
nearest neighbor technique based on the Euclidean
distance between values; the nearest nodes have the
nearest captured values [18]. A KNN classifier consists
of the annotated training samples in the feature space
for all the classes [16].

2.2 Support Vector Machine
Support vector machines are supervised learning
methods for classification, regression, and outlier
detection. Support Vector Machine (SVM) method
is an algorithmic application of statistical learning
theory [19]. SVM is a strategy for classifying
linear and nonlinear information [20]. SVM creates
an N-dimensional hyperplane, ideally separating the
information into different categories [21]. SVM works
by maximizing the edge to achieve the most effective
performance execution in terms of classification [10,
20].
Specifically, this work uses the SVC algorithm
(C-Support Vector Classification) from the Scikit
Learn library [22] to classify anomalies. SVM is
effective in high dimensional spaces and uses a subset of
training points in the decision function (called support
vectors), so it is also memory efficient. However,
the fit time scales at least quadratically with the
number of samples, and SVM does not directly provide
probability estimates; these are calculated using an
expensive fold cross-validation [10, 22].

2.3 Random Forest
The Random Forest (RF) model is an ensemble
learning process for classification and regression tasks
[23]. The RF method can be grouped under the
category of ensemble models. The building block of
a Random Forest is the Decision Tree [24]. A decision
tree is a tree-like structure in which each internal node
represents a ”split” based on an attribute, and each
leaf node represents a prediction result of classification
or regression [23, 25]. Random Forest gathers a
group (or ensemble) of decision trees and uses their
combined predictive capabilities to obtain relatively
strong predictive performance [24]. Since decision
trees are sensitive to class imbalance, each tree will be
biased in the same direction and magnitude by class
imbalance [23].
Random forest uses multiple classification trees. A tree
classification algorithm requires a different bootstrap
sample from the original data. When the forest
formation is completed, each tree casts a vote for the
object’s class. The forest selects the class with the most
votes for the object [10]. RF model is based on decision
trees and the bootstrap aggregating mechanism to
avoid the overfitting problem of complex decision trees
[23].

2.4 Multilayer Perceptron
A Multilayer perceptron (MLP) is a feedforward
neural network with a gradient descent feature. MLP
is composed of multiple neurons and uses back

2

Acce
pte

d M
an

usc
rip

t

propagation supervised learning [19]. Except for the
input neurons, every neuron has an activation function,
continuously reducing the gradient to achieve the
convergence [26, 27]. An MLP has the same structure
of a single layer, adding one or more hidden layers with
all the nodes connecting each other between layers [19,
28]. The network trains itself with an algorithm called
backpropagation. This supervised learning algorithm
first computes outputs using a sigmoid function and
then propagates the errors backward. Each unit
receives the amount of error generated, and the weights
are adjusted [29]. Artificial neural networks fire a
potential action if the cumulative input of the signals
exceeds a threshold. The output is calculated with
a transfer function through the sum of every input
multiplied by its weights. The weights are computed
during training [29, 30].

3. Related Works
Machine learning (ML) approaches are effective
techniques for data analysis and hidden patterns search
[19]. ML techniques are even used for anomaly
detection systems in incomplete and unbalanced data
[20, 29]. This work compares several ML methods to
classify anomalies on IIoT edge devices. The literature
revision found that ensemble regression performs
better since it combines several single methods to
improve the accuracy and stability of a single regressor
[31]. An ensemble regression method by minimizing
total least square loss in multiple reproducing kernel
Hilbert spaces is proposed in [31] and evaluated in
several classification datasets.
Similarly, [32] suggests a kernel ridge regression
based on intuitionistic fuzzy membership from binary
classification without giving the same significance
to the critical and unimportant samples. The
report in [33] proposes a non-overlapped risk-based
bagged ensemble model to handle imbalance and
noise contained in credit card transactions. Since
ensemble models can use any classification method, [34]
proposes a homogeneous bagging ensemble of 3-layer
fully connected networks for anomaly detection in
surveillance camera video.
Furthermore, a comprehensive study of anomaly
detection of malware-based k-nearest neighbor
algorithms is presented in [17]. In contrast, [16]
designs a KNN-based classifier for sea-surface small
target detection methods in high-resolution maritime
ubiquitous radars. Additionally, [18] describes how
to detect abnormalities from spatial distribution data
using KNN technique and Euclidean distance in a
wireless sensor network. Some reports combine two or
more methods to improve performance. The report in
[23] designs an anomaly detection method based on an

autoencoder and random forest for solving the credit
card fraud detection problem; first, the autoencoder
reduces the dimensionality of data, and then the
random forest classifies data as anomalous or normal.
The report in [20] proposes a weighted hybrid
model utilizing a Support Vector Machine and
Naïve Bayes for anomaly discovery; they show how
to merge the prediction from multiple systems to
improve the generalization over a single estimator.
While [10] proposed a two-layered anomaly detection
model with Random Forest and Support Vector
Machine as classifiers for intrusion detection on a
computer network, authors in [24] implemented various
classification algorithms—such as ridge classification,
decision trees, and random forests—to predict
the probability of employee attrition in a large
company. In addition, a comparison between
multilayer perceptron neural networks and support
vector machines on the heart diseases dataset is
conducted in [19], a medical field where decisions deal
with patient outcomes, highlighting the importance
of high accuracy in data mining for medical
decision-making.
Authors in [30] propose a multilayer perceptron
with optimal stochastic gradient descent to extract
meaningful conclusions from medical datasets. Other
work using MLP is described in [29]. In this study, a
multilayer perceptron approach is used to monitor the
packet headers of the network traffic rather than the
attached data, in order to keep up with the growing
bandwidth of networks and to maintain the privacy
of the users on their Intrusion Detection Systems.
Moreover, the authors in [28] compare the different
performances of multilayer perceptron algorithms for
solving the electrical impedance tomography inverse
problem. The work in [26] proposes an anomaly
detection based on multilayer perceptron for reducing
overhead in Software Defined Networks. Finally, [27]
evaluates some multilayer perceptron networks based
on Easy-Ensemble to learn the imbalance transient
stability data of power systems after using principal
component analysis to reduce the dimensionality of the
data.
A previous work carried out by the authors [13]
showed through an analysis of variance (ANOVA) that
a temperature fault, a denial-of-service (DoS) attack
on the MQTT broker, and the normal operation of
a testbed similar to the one used in this work, were
statistically different. It was also found that, while
current and frequency differentiated between normal
and attack, temperature allowed for the differentiation
between failure and normal operation of the system.

3

Acce
pte

d M
an

usc
rip

t

4. Research strategy

4.1 Methodology
The research goal is to determine whether it is
possible to differentiate between a temperature failure,
a denial-of-service (DoS) attack, an event caused by
an application running on an IIoT device, and normal
operation of an Industrial Internet of Things edge
device, using only internal CPU variables and simple
machine learning methods. Figure 1 shows this work
summary. A testbed was implemented, with an
IIoT system monitoring an AC three-phase motor.
Temperature failures, DoS attacks in MQTT Broker,
and a non-dangerous event were simulated in the edge
device of the testbed. Data were collected daily for a
week to reduce the errors caused by external factors,
such as indoor temperature changes.
Collected data passed by a subsampling process to
delete randomly as many samples as was necessary for
all classes to have the same amount of data. A balanced
data set was used to optimize hyperparameters
on four non-complex machine learning algorithms.
The optimization used Python and libraries such
as ScikitLearn and TensorFlow running on Google
Colaboratory (Colab).
The multilayer perceptron model was trained with
an optimized hyperparameter on Google Colab and
converted by TFLite to a model suitable for running
on a constrained device such as Raspberry Pi. The rest
of the models were trained directly on the edge device.
Each model ran on edge devices to process internal
CPU variables and predict events (E), failures (F),
attacks (A), or normal (N) operations. Predicted and
actual states (E, F, A, N) are saved for later metrics
analysis.

4.2 Testbed
An IIoT system was selected to simulate events,
failures, and attacks in its edge device. This system
consists of several low-cost sensors that monitor a
three-phase motor. Each sensor sends motor current,
temperature, sound, speed, and vibration data to
a Raspberry Pi 3 edge device, through a low-cost
ESP32 development system using MQTT. Motor data
is processed on Raspberry to activate alarms when
a value exceeds a normal range. Then, processed
information is sent to a cloud application that stores
and displays statistics on a website.
This work tried to differentiate between a
high-temperature failure, a DoS attack, and an
event triggered by a harmless application. The
DoS attack was controlled by a computer running
Kali Linux in a local network. A fan regulated the
edge device processor temperature. The harmless

application calculated the average time to perform
100000 floating point divisions. Raspberry collected
internal data such as temperature, CPU load, sent
and received packets through Wi-Fi, and free memory.
This Internal data was obtained through RPi-Monitor
[35] application. That information was written in a
CSV file by a Python script. It was not possible to
determine internal data accuracy. Figure 2 shows the
Testbed used to collect the data set.

4.3 Dataset
The selected internal CPU variables for classifying
events, failures, attacks, and normal operations include
temperature, average last-minute load, free memory,
and sent and received Wi-Fi packets. The last three
variables were transformed to use the delta between
two consecutive values, avoiding upward or downward
trends unrelated to the anomaly occurrence. Several
data collection sessions lasting one hour were taken
during one week. In each, normal operation system
data was collected along with anomaly data (event,
failure, attack). Selected data for the training phase
were combined in a single data set, sub-sampling
was also performed to provide a balanced data set,
and scaling was applied between 0 and 1. Separate
anomalies are explained as follows,

• Failure. It simulated a temperature failure by
turning off the edge device’s fan. The 24-watt
AC fan was placed 20 centimeters above the
Raspberry.

• Attack. It ran a Python script from a local
computer that subscribes 1024 clients to the “#”
topic and publishes a short message every second
to make a DoS attack on the MQTT Mosquitto
broker running on the same edge device.

• Event. It simulated an event by running a
Python script calculating the average time needed
to make 100,000 divisions. The script did not
interfere with the normal operation of the IIoT
system but consumed the edge device’s CPU
resources.

Figure 3 shows labels of data testing with anomalies
(a), temperature (b), and last-minute-load CPU (c).
Since free memory and sent and received Wi-Fi data
have a cumulative behavior, this work does not directly
use these variables but the delta between current and
previous values, as shown in graphs (d), (e), and (f).

4.4 Machine learning methods
The dataset gathers 13117 samples for each class, such
as event, failure, attack, and normal. It is worth

4

Acce
pte

d M
an

usc
rip

t

Figure 1 Summary of the experimental setup for anomaly classification.

Figure 2 Testbed used for data collection.

noting that a balanced set is rare in anomaly detection
problems. This dataset had been specially collected for
machine learning algorithms that require a balanced
dataset. The testing dataset was collected separately
and did not need to be balanced. Then, some ML
algorithms were selected to classify data as normal,
event, failure, or attack: random forest, k-nearest
neighbor, support vector machine, and multilayer
perceptron. The first three algorithms were trained on
Raspberry Pi with the ScikitLearn library. In contrast,
MLP was trained with the TensorFlow library on

Google Collaboratory and then converted to a TFLite
model. All the algorithms were evaluated on Raspberry
Pi in real time; the results are described in the next
section.

4.5 Metrics
To evaluate which methods detected anomalies better,
some metrics were compared, including file size,
execution time, accuracy, precision, recall, and
f1-score. Since an IIoT system monitors an industrial
process, it is also essential to evaluate false positive
rates that generate alarms and move resources to solve
an unreal anomaly and false negative rates that ignore
abnormal situations.
A false positive rate (FP) is normal data predicted
as some anomaly. In FP, there are two categories:
one is unrelated to actual anomalies, triggering
unnecessary alarms that waste resources and exhaust
staff, potentially leading them to ignore future alerts
if FPs occur too frequently. The other type arises
as a residual effect of a past anomaly, where certain
variables—such as temperature or load—take time to
return to normal ranges, causing continued false alerts
even after the anomaly itself has ended (Figure 4).
A false negative rate (FN) is abnormal data the
classifier model evaluates as a normal value. FN
could make a system or human operators ignore
potentially hazardous situations. Here, there are two
categories; one occurs immediately after the anomaly
begins, and it could be considered a system delay to
detect an anomaly; in the other category, FN avoids
alerting human operators for a long time (Figure 4).
Misclassified rate anomalies are events, failures, and
attacks confused with each other. This can result
in deploying the wrong personnel, such as alerting
maintenance staff to address a physical failure during
a cyberattack.

5

Acce
pte

d M
an

usc
rip

t

20:10 30:11 40:08 50:09 60:06 70:25
Time (mm:ss)

Normal

Failure

Event

Attack

Cl
as

sif
ica

tio
n

(a). Testing Data

0 2000 4000 6000 8000
Time (mm:ss)

0.6

0.7

0.8

0.9

Sc
al

ed
 M

ag
ni

tu
de

(d). Free memory

20:10 30:11 40:08 50:09 60:06 70:25
Time (mm:ss)

0.1

0.2

0.3

0.4

Sc
al

ed
 M

ag
ni

tu
de

(b). Temperature

0 2000 4000 6000 8000
Time (mm:ss)

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

(e). Sent WiFi bytes

20:10 30:11 40:08 50:09 60:06 70:25
Time (mm:ss)

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

(c). Load CPU

0 2000 4000 6000 8000
Time (mm:ss)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
al

ed
 M

ag
ni

tu
de

(f). Received WiFi bytes

Figure 3 Selected variables to classify anomalies in an IIoT edge device.

5. Results and Discussion

During a real-time evaluation of classification methods,
predictions and true labels were stored for subsequent
metrics calculation and their corresponding analysis.
Table 1 shows the disk space occupied, accuracy,
execution time, and training time for each method;
since these are multi-class classifiers that are evaluated
on an unbalanced dataset, it also shows averaged and
weighted precision, recall, and F1-score. KNN and
MLP occupy the smaller disk space. Since Raspberry
Pi is a device with disk and memory restrictions, file
size is a parameter to be considered. However, it is not
the most critical metric as long as it stays within the
acceptable range for the edge device.
For the case study, execution time (runtime) is
an important metric to justify the selection of the
real-time anomaly classification method. In this work,
the authors consider that ”real-time” implies that the
anomaly is classified before a second. According to
Table 1, the methods with the shortest execution
time are MLP (0.35ms), KNN (5.71ms), and SVM
(17.28ms). Suppose the reaction time of a human
operator is considered in that case; it could be
stated that all the methods evaluated allow real-time
classification since their execution times are below one
second.
As for weighted average precision, Table 1 shows that
SVM (82.22) and MLP (82.45) show a higher ratio
between true anomalies and all samples labeled as

anomalies. Likewise, SVM (78.59) and MLP (76.06)
have the highest weighted average recall, i.e., the
highest proportion of true anomalies detected. Finally,
the methods with the highest proportion of correctly
classified samples (accuracy) are MLP (76.09) and
SVM (78.68).

Table 2 shows other metrics to evaluate the
performance of an anomaly classifier in IIoT. The rate
of normal data labeled as an anomaly (false positive,
FP) dedicates resources to solving an abnormal
situation that does not exist. FP rate for SVM is 0.267
and 0.296 for MLP. Meanwhile, the false negative (FN)
rate quantifies undetected anomalies. FN for SVM is
0.2166 and 0.1803 for MLP. The rate of misclassified
anomalies, events, failures, and attacks confuse each
other and can delay anomaly resolution. For example,
the maintenance department may try to resolve a fault
that could be a cyberattack that needs to be addressed
by the IT department.

Figure 4 confirms that SVM and MLP perform better,
where both methods only generate FP after the
anomaly cause has finished. The remaining effect that
causes the classifier to continue detecting the anomaly
could be because variables such as temperature or CPU
load require some time to return to normal values. The
above is an apriori conclusion from the superposition
of these variables’ plots and the anomaly labels’ plot in
Figure (c). What cannot be determined from the data
extracted from Figure 4 is which range is considered
normal for each variable in each classifier model. As

6

Acce
pte

d M
an

usc
rip

t

Table 1 Results of each method.

Method Library Sized
(kB)

Training
time (s)

Exec
time (ms)

Wighted
Precision

Wighted
Recall

Wighted
F1-score Accuracy

SVM SkLearn 2596.86 737.12 17.28 82.22 78.59 79.19 78.62
MLP TensorFlow 8.19 56.69 0.35 82.45 76.06 77.42 76.09
RF SkLearn 233209.85 359.79 678.2 78.84 74.28 75.44 74.29

KNN SkLearn 4.78 0.69 5.71 77.72 71.65 73.05 71.66

20:39 26:51 30:22 36:04 40:25 47:39 50:40 56:32 60:13 66:05 70:47 78:21
Time (mm:ss)

Normal

Failure

Event

Attack
Support Vector Machine (Acc: 0.7859)

20:29 27:11 30:22 36:04 40:25 47:39 50:30 56:52 60:13 66:05 70:36 78:21
Time (mm:ss)

Normal

Failure

Event

Attack
Multilayer Perceptron (Acc: 0.7606)

20:10 25:07 30:11 35:05 40:08 45:09 50:09 55:07 60:06 65:12 70:25 75:12
Time (mm:ss)

Normal

Failure

Event

Attack
Overlapping plots: testing dataset (color:blue), temperature(°C, color:green), and load (CPU, color:red)

40

45

50

55

1

2

3

4

5

Figure 4 Performance of SVM and MLP classifiers.

for FN for SVM and MLP, it occurred immediately
after the anomaly began; this could be interpreted as
a delay in the classifier’s ability to perform detection
and could be associated with the temperature change
rate and CPU load.
From the time indicated in the three plots in Figure 4
we could say that these classifiers take about 30 seconds
to detect a failure, less than 10 seconds to detect the
execution of a script considered an abnormal event,
and less than 25 seconds to alert to the occurrence
of a cyberattack in the case study. The delay before
the classifier detects that an anomaly has ended
and the system has returned to its normal state is
approximately two minutes after a failure, one minute
after an event, and 2.5 minutes after a DoS attack.
The variable free memory and packets sent and

received via Wi-Fi do not have a continuous change
during abnormal or normal operation. This aspect
is illustrated in Figure 5, where on the left are the
labels of the anomalies (below) and the deltas of the
received packets (up). Zooming in the graph during the
occurrence of an attack (right), the discrete character
of the variable is better observed. Since not all samples
have a high Wi-Fi received packet value while the
attack is carried out, it could be argued that it is the
cause of the confusion between events and attacks.

This work represents an advance in the research topic
presented by the authors in their previous work [13].
In the work discussed in this report, machine learning
models were tested to facilitate the classification of the
event, failure, and attack described. However, using
time series-based models could improve the results in

7

Acce
pte

d M
an

usc
rip

t

20:10 30:11 40:08 50:09 60:06 70:25
Time (mm:ss)

0.0

0.2

0.4

0.6

Sc
al

ed
 m

ag
ni

tu
de

Received data WiFi

40:08 45:09
Time (mm:ss)

0.0

0.1

0.2

0.3

0.4

Sc
al

ed
 m

ag
ni

tu
de

Received data WiFi (zoom)

20:10 30:11 40:08 50:09 60:06 70:25
Time (mm:ss)

N

F

E

A

Cl
as

sif
ica

tio
n

Testing Data

40:08 45:09
Time (mm:ss)

N

A

Cl
as

sif
ica

tio
n

Testing Data (zoom)

Figure 5 The plot on the top left shows that the data received over Wi-Fi is not a continuous variable. A zoom (top
right) around minute 40 better illustrates this idea.

Table 2 Confusion matrix.

PREDICTED
Class A E F N Total

A
C

T
U

A
L A SVM=69.12%

MLP=71.23%
SVM=18.75%
MLP=16.86%

SVM=3.47%
MLP=3.47%

SVM=8.64%
MLP=8.42% 949

E SVM=0%
MLP=10.09%

SVM=92%
MLP=81.96%

SVM=5.05%
MLP=5.04%

SVM=2.95%
MLP=2.88% 1525

F SVM=0%
MLP=0%

SVM=0%
MLP=0%

SVM=89.92%
MLP=93.26%

SVM=10.07%
MLP=6.73% 1558

N SVM=12.85%
MLP=16.73%

SVM=5.34%
MLP=1.96%

SVM=8.51%
MLP=10.92%

SVM=73.28%
MLP=70.36% 5484

future works, since these models allow the detection of
spatial and temporal correlations between samples.

6. Open Challenges
Some of the methods compared, such as SVM and
MLP, showed that they could detect all anomalies,
and the FP and FN rates could be partly explained
by the physical nature of the process, reducing the
waste of resources attending to false anomalies. Some
challenges are identified and described as follows,

• More complex classification models with time
series could reduce detection time and persistence
time after the anomaly’s cause has ceased; they
could also reduce the confusion between events
and attacks presented in this case study.

• Detecting and classifying several anomalies
coinciding is another challenge not addressed in
this paper.

• More complex machine learning models may
require devices with more storage and processing
capacity than is available on an edge device.
Multiple IIoT devices, or a combination of cloud
and edge, could run the models, considering
latency, security, and processing capacity issues.

• Another open research topic is real-time
classification, or at least detecting anomalies
not included in the training set.

• A single-edge device was used in this case study.
A more complex IIoT system may require models
combining data from other devices to make their
own real-time predictions, using the edge device’s
limited processing and storage resources.

• Optimizing methods for working with time series
can exploit the spatial and temporal correlation
between variables. Finding algorithms robust
enough to handle time series and yet simple
enough to be implemented on edge devices and
classify anomalies in real-time is a challenge.

• Another open challenge is to test these machine
learning models on IoT devices with greater
storage and processing constraints, considering
security, latency, and processing requirements.

7. Conclusion
In this work, we found that it is possible to run machine
learning algorithms on an edge device to differentiate
a temperature fault, a DoS attack on the MQTT
broker, and a harmless script execution event using

8

Acce
pte

d M
an

usc
rip

t

internal CPU data. Methods with low complexity,
such as SVM and MLP, showed a good performance
in classifying anomalies, with FP just after a real
anomaly facilitating the interpretation of the FP by
the detection system or the human operator, avoiding
the waste of resources in dealing with false alarms.
Future work with time series models could reduce
detection times and the persistence of anomaly effects.
More complex machine learning models could help to
correctly differentiate a higher number of anomalies
and differentiate anomalies that coincide.

8. Declaration of competing interest
We declare that we have no significant competing
interests, including financial or non-financial,
professional, or personal interests, that interfere
with the complete and objective presentation of the
work described in this manuscript.

9. Funding
The author(s) received no financial support for this
article’s research, authorship, and/or publication.

10. Author contributions
All the authors conceived, designed, performed the
analysis, and corrected the paper. M.R. collected the
data and edited the document.

11. Data availability statement
The authors confirm that the data supporting the
findings of this study are available within the article
[and/or] its supplementary materials.

References
[1] S. Alexandra and M. Vitaliy, “Approaches for data

collection and process standardization in smart
manufacturing: systematic literature review,” Journal
of Industrial Information Integration, p. 100578, 2024.

[2] A. Angelopoulos, E. T. Michailidis, N. Nomikos,
P. Trakadas, A. Hatziefremidis, S. Voliotis, and
T. Zahariadis, “Tackling faults in the industry 4.0 era—a
survey of machine-learning solutions and key aspects,”
Sensors, vol. 20, no. 1, p. 109, 2019.

[3] M. Rodríguez, D. P. Tobón, and D. Múnera, “Anomaly
classification in industrial internet of things: A review,”
Intelligent Systems with Applications, p. 200232, 2023.

[4] C. Ni and S. C. Li, “Machine learning enabled industrial
iot security: Challenges, trends and solutions,” Journal of
Industrial Information Integration, p. 100549, 2024.

[5] E. Luján, A. Otero, S. Valenzuela, E. Mocskos, L. A.
Steffenel, and S. Nesmachnow, “An integrated platform for
smart energy management: the cc-sem project,” Revista
Facultad de Ingeniería Universidad de Antioquia, no. 97,
pp. 41–55, 2020.

[6] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile
networks and applications, vol. 19, no. 2, pp. 171–209, 2014.

[7] A. Karkouch, H. Mousannif, H. Al Moatassime, and
T. Noel, “Data quality in internet of things: A
state-of-the-art survey,” Journal of Network and Computer
Applications, vol. 73, pp. 57–81, 2016.

[8] N. Ghosh, K. Maity, R. Paul, and S. Maity, “Outlier
detection in sensor data using machine learning techniques
for iot framework and wireless sensor networks: A brief
study,” in 2019 International Conference on Applied
Machine Learning (ICAML). IEEE, 2019, pp. 187–190.

[9] N. Mohamudally and M. Peermamode-Mohaboob,
“Building an anomaly detection engine (ade) for iot
smart applications,” Procedia computer science, vol. 134,
pp. 10–17, 2018.

[10] S. Afroz, S. A. Islam, S. N. Rafa, and M. Islam, “A two layer
machine learning system for intrusion detection based on
random forest and support vector machine,” in 2020 IEEE
International Women in Engineering (WIE) Conference
on Electrical and Computer Engineering (WIECON-ECE).
IEEE, 2020, pp. 300–303.

[11] N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and
Z. Tari, “Explainable intrusion detection for cyber defences
in the internet of things: Opportunities and solutions,”
IEEE Communications Surveys & Tutorials, 2023.

[12] Y. Wang, M. Perry, D. Whitlock, and J. W. Sutherland,
“Detecting anomalies in time series data from a
manufacturing system using recurrent neural networks,”
Journal of Manufacturing Systems, 2020.

[13] C. EUREKA, G. de Antioquia et al., “Engineering for
transformation,” in Expo Ingenieria. Fondo Editorial EIA,
2022.

[14] G. Tertytchny, N. Nicolaou, and M. K. Michael,
“Classifying network abnormalities into faults and attacks
in iot-based cyber physical systems using machine learning,”
Microprocessors and Microsystems, vol. 77, p. 103121,
2020.

[15] L. E. Contreas-Bravo, N. Nieves-Pimiento, and
K. González Guerrero, “Prediction of university-level
academic performance through machine learning
mechanisms and supervised methods,” Ingeniería, vol. 28,
no. 1, 2023.

[16] Z.-X. Guo and P.-L. Shui, “Anomaly based sea-surface small
target detection using k-nearest neighbor classification,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 56, no. 6, pp. 4947–4964, 2020.

[17] S. Rani, K. Tripathi, Y. Arora, and A. Kumar, “Analysis
of anomaly detection of malware using knn,” in 2022
2nd International Conference on Innovative Practices in
Technology and Management (ICIPTM), vol. 2. IEEE,
2022, pp. 774–779.

[18] A. Abid, A. Kachouri, A. B. F. Guiloufi, A. Mahfoudhi,
N. Nasri, and M. Abid, “Centralized knn anomaly
detector for wsn,” in 2015 IEEE 12th International
Multi-Conference on Systems, Signals & Devices (SSD15).
IEEE, 2015, pp. 1–4.

[19] P. Naraei, A. Abhari, and A. Sadeghian, “Application of
multilayer perceptron neural networks and support vector
machines in classification of healthcare data,” in 2016
Future Technologies Conference (FTC). IEEE, 2016, pp.
848–852.

[20] S. Shakya and S. Sigdel, “An approach to develop a hybrid
algorithm based on support vector machine and naive bayes
for anomaly detection,” in 2017 International Conference
on Computing, Communication and Automation (ICCCA).

9

Acce
pte

d M
an

usc
rip

t

IEEE, 2017, pp. 323–327.
[21] S. A. Arenas-Hoyos and Á. Bernal-Noreña, “Support vector

machines implementation over integers modulo-m and
residue number system,” Dyna, vol. 90, no. 226, pp. 17–26,
2023.

[22] Scikit-Learn, “sklearn.svm.SVC,” https://scikit-learn.org/
stable/modules/generated/sklearn.svm.SVC.html, 2022,
[Online; accessed 10-August-2022].

[23] T.-H. Lin and J.-R. Jiang, “Anomaly detection with
autoencoder and random forest,” in 2020 International
Computer Symposium (ICS). IEEE, 2020, pp. 96–99.

[24] K. Bhuva, K. Srivastava et al., “Comparative study of the
machine learning techniques for predicting the employee
attrition,” IJRAR-International Journal of Research and
Analytical Reviews (IJRAR), vol. 5, no. 3, pp. 568–577,
2018.

[25] R. Porteiro, L. Hernández-Callejo, and S. Nesmachnow,
“Electricity demand forecasting in industrial and residential
facilities using ensemble machine learning,” Revista
Facultad de Ingeniería Universidad de Antioquia, no. 102,
pp. 9–25, 2022.

[26] Y.-C. Lai, K.-Z. Zhou, S.-R. Lin, and N.-W. Lo,
“F1ow-based anomaly detection using multilayer
perceptron in software defined networks,” in 2019
42nd International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 2019, pp. 1154–1158.

[27] H. Zhang, S. Shen, and Y. Shen, “Power system transient
stability evaluation based on multilayer perceptron neural
network,” in 2021 China Automation Congress (CAC).
IEEE, 2021, pp. 3313–3316.

[28] T. Huuhtanen and A. Jung, “Anomaly location detection
with electrical impedance tomography using multilayer
perceptrons,” in 2020 IEEE 30th International Workshop
on Machine Learning for Signal Processing (MLSP).
IEEE, 2020, pp. 1–6.

[29] L. Van Efferen and A. M. Ali-Eldin, “A multi-layer
perceptron approach for flow-based anomaly detection,” in
2017 international symposium on networks, computers and
communications (ISNCC). IEEE, 2017, pp. 1–6.

[30] S. Ranjeeth, V. A. K. Kandimalla et al., “Predicting
diabetes using outlier detection and multilayer perceptron
with optimal stochastic gradient descent,” in 2020
IEEE India Council International Subsections Conference
(INDISCON). IEEE, 2020, pp. 51–56.

[31] X.-J. Shen, Y. Dong, J.-P. Gou, Y.-Z. Zhan, and J. Fan,
“Least squares kernel ensemble regression in reproducing
kernel hilbert space,” Neurocomputing, vol. 311, pp.
235–244, 2018.

[32] B. B. Hazarika, D. Gupta, and P. Borah, “An
intuitionistic fuzzy kernel ridge regression classifier for
binary classification,” Applied Soft Computing, vol. 112, p.
107816, 2021.

[33] S. Akila and U. S. Reddy, “Credit card fraud detection
using non-overlapped risk based bagging ensemble (nrbe),”
in 2017 IEEE international conference on computational
intelligence and computing research (ICCIC). IEEE, 2017,
pp. 1–4.

[34] Y. Zahid, M. A. Tahir, and M. N. Durrani, “Ensemble
learning using bagging and inception-v3 for anomaly
detection in surveillance videos,” in 2020 IEEE
International Conference on Image Processing (ICIP).
IEEE, 2020, pp. 588–592.

[35] X. Berger, “RPi-Monitor,” https://xavierberger.github.
io/RPi-Monitor-docs/index.html, 2018, [Online; accessed
10-August-2022].

10

Acce
pte

d M
an

usc
rip

t

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://xavierberger.github.io/RPi-Monitor-docs/index.html
https://xavierberger.github.io/RPi-Monitor-docs/index.html

	Introduction
	Background
	K-Nearest Neighbor
	Support Vector Machine
	Random Forest
	Multilayer Perceptron

	Related Works
	Research strategy
	Methodology
	Testbed
	Dataset
	Machine learning methods
	Metrics

	Results and Discussion
	Open Challenges
	Conclusion
	Declaration of competing interest
	Funding
	Author contributions
	Data availability statement

