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ABSTRACT: In this work, we introduce a novel methodology for modeling discrete count variables within the
framework of stochastic processes. Our approach integrates two statistical areas: Non-Homogeneous Poisson
Processes for the estimation and prediction of intensity functions based on explanatory variables and functional
data estimation techniques. Through a comprehensive case study focusing on an infectious disease with viral
characteristics, we demonstrate the potential of our methodology. We provide empirical evidence that our
methodology offers a robust alternative for modeling count variables. Our findings support the utility of
our approach in capturing the complex dynamics inherent in count data in infectious disease epidemiological
phenomena.

RESUMEN: En este trabajo, presentamos una nueva metodología para modelar variables de conteo discretas
dentro del marco de procesos estocásticos. Nuestro enfoque integra dos áreas estadísticas: los procesos de
Poisson no homogéneos para la estimación y predicción de funciones de intensidad basadas en variables
explicativas y las técnicas de estimación de datos funcionales. A través de un estudio de caso integral centrado
en una enfermedad infecciosa de características virales, demostramos el potencial de nuestra metodología.
Proporcionamos evidencia empírica de que nuestra metodología ofrece una alternativa robusta para modelar
variables de conteo. Nuestros hallazgos apoyan la utilidad de nuestro enfoque para capturar la dinámica
compleja inherente a los datos de conteo en los fenómenos epidemiológicos de enfermedades infecciosas.

1. Introduction

Modeling count data is essential in numerous
real-world scenarios where understanding the
frequency of discrete events is crucial for effective
decision-making and policy development. For example,
in environmental studies, modeling counts of wildlife
sightings or occurrences of natural disasters supports
conservation efforts and risk management strategies
[1]. Similarly, in transportation engineering, analyzing
vehicle counts at intersections or along roadways
provides insights into traffic patterns, identifies
congestion hotspots, and informs infrastructure
planning [2]. In epidemiology, modeling the counts
of infections over time enables researchers and public
health officials to identify trends, assess intervention
impacts, and forecast disease spread [3].

The study of count data dates back to the late 19th
century, exemplified by the classic analysis of annual
deaths caused by mule kicks in the Prussian Army
[4], where the data were found to follow a Poisson

distribution. Traditional models for count data
often rely on assumptions about the underlying data
distribution, such as Poisson or Gaussian distributions.
These models can effectively explain count variables
[5], but they may struggle to capture temporal patterns
and seasonality, leading to suboptimal predictions and
analyses [6].

Poisson regression and its variants are powerful tools
for modeling count data but come with specific
assumptions and limitations. Counts often exhibit
heteroscedasticity, where variance increases with
the mean, making ordinary least squares (OLS)
regression unsuitable [7]. Poisson regression addresses
issues of non-constant variance and non-normal error
distributions but assumes equal mean and variance,
which often leads to overdispersion in real-world
scenarios. This results in inaccurate confidence
intervals and hypothesis tests [8]. Negative binomial
regression addresses overdispersion by allowing for
a more flexible variance structure but still relies on
specific assumptions [9]. Zero-Inflated Models tackle
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the prevalence of zeros by assuming two distinct
processes generate the zero and non-zero counts
[10, 11]. Furthermore, the assumption of independent
counts, inherent in many models derived from Poisson
regression, does not always hold, particularly in the
presence of state dependence [12].

While traditional models do not explicitly account
for time dependency, this can sometimes be
addressed indirectly using time-related predictors.
However, time series models, such as integer-valued
autoregressive (INAR) models [13], are better suited
for capturing temporal structures. INAR models
account for event occurrences in one time period
influencing subsequent periods through a conditional
mean. Integer-valued Generalized Autoregressive
Conditional Heteroscedasticity (INGARCH) models
[14] extend this framework by introducing conditional
heteroscedasticity, accommodating variance changes
over time (volatility). Specific variants, such as
INARCH [12], use a Poisson distribution with a
conditional mean based on past observations. These
are also referred to as autoregressive conditional
Poisson (ACP) models [15] or linear-Poisson
autoregressive models [16].

Regression-based or generalized linear models
effectively incorporate explanatory variables into
count data models. However, challenges like
overdispersion and zero inflation persist. Count-based
time series models excel in capturing dynamics,
trends, and seasonality but often neglect the influence
of explanatory variables on the counting process or its
intensity function. Integrating these methodologies to
model count phenomena as stochastic processes may
address these limitations. Furthermore, incorporating
functional data analysis (FDA) techniques into
this framework could enhance both prediction and
inference for count phenomena.

The main contribution of this work is the development
of a novel methodology for modeling and predicting
count data by combining Non-Homogeneous Poisson
Processes (NHPP) with Functional Data (FDA)
techniques. The key contributions are: (i) modeling
and prediction of count data subject to explanatory
variables and time evolution, and (ii) estimating
the most significant trajectory and non-parametric
confidence intervals (or envelopes) for cumulative
counting processes. FDA complements NHPP
by providing a flexible, non-parametric approach for
estimating intensity functions and capturing functional
relationships between variables. This integration
enables robust modeling of the interactions between
covariates and count data intensity, enhancing

predictions and inference robustness.

The manuscript is organized as follows: Section 2
provides an overview of the materials and methods
employed, delving into the theoretical underpinnings
of the techniques utilized and offering a concise
methodology outlining the approach to the problem
and the proposed solution. In Section 3, the primary
findings derived from the implementation of each
technique are presented in detail. Finally, Section
4 offers a comprehensive discussion of the results
alongside the concluding remarks of this research.

2. Methods
In this section, we explore discrete count data models
crucial for analyzing phenomena characterized by
random events over time. We begin by examining
the dynamics of count data phenomena, starting with
Poisson Regression, a foundational tool for modeling
dependencies between count data and covariates. We
then delve into NHPP counting processes, emphasizing
the significance of incorporating time-varying intensity
functions in count data modeling and elucidating
their generation process. These discussions lay the
groundwork for our proposed methodology, which
integrates NHPP and FDA to effectively model and
predict count data scenarios influenced by both
temporal evolution and exogenous variables.

2.1 Homogeneous and Non-Homogeneous
Poisson Processes

A count data phenomenon refers to the accumulation
of the number of times that some event occurs during a
fixed time-space interval [17], for example, the arrival
of clients at a window to request some service or the
moments in which certain machinery requires repair.
As previously mentioned, the Poisson distribution
is fundamental for modeling these events in time.
Assuming events occur randomly at an average rate
λ, and the occurrence of one event is independent of
any other, then the number of events arising in a unit
time interval has a Poisson distribution with parameter
λ [18, Chapter 7]. This independence property makes
it particularly useful for stochastic models based on
probability functions [19, pp. 3].

Poisson Regression

In the conventional regression framework, a dependent
variable N is a discrete non-negative random variable
whose conditional mean depends on some vector of
regressors X. If N ∼ Poisson(λ), it allows λ to depend
on regressors, such that, for the ith independent event
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E[Ni|Xi] = λ(Xi, β), an exact dependency without
any other source of stochastic variation, defines the
Poisson regression [20]. For a stochastic dependence
on this intensity function, other distributions should
be taken into consideration.

Poisson regression has a special property, the mean
and variance are the same. This property is rarely
satisfied in real data, so overdispersion, i.e. excess
variability, and underdispersion arise as problems for
this approach [21]. The first can be solved with
a distribution that considers a dispersion parameter,
such as a negative binomial [22], the second may
be treated through a generalized Poisson model [23].
Zero counts are also a concern, whether they are
excluded as a possibility from the model, which
requires a zero-truncated model, or present in an
excessive amount (zero-inflated model) since they can
prevent the sum of probabilities to one from being
fulfilled [7].

NHPP Counting Process

Formally, a counting process {N(t); t ≥ 0} is a
stochastic process that represents the number of events
that occur in a time interval [0, t] that satisfies the
following properties

• N(0) = 0

• N(t) ∈ {0, 1, 2, . . . } ∀t ≥ 0

• N(t)−N(s) is the number of events that ocur in
the interval [s, t] or increments

The classical approach for modeling a counting process
is to assume that the n events or counts during
an interval I = [s , t] , s ̸= 0 follow a Poisson
distribution, whose probability mass function is given
by fN[s,t]

(n) = eλ(t−s)(λ(t − s))n/n!, where, λ(t −
s) denotes the intensity parameter of the process
which measures the average events per interval. This
parameter characterizes the distribution satisfying
E(N[s,t]) = V (N[s,t]) = λ(t − s). Nonetheless, if it
is assumed that λ varies as a function of time, i.e,
λ(t), a Non-Homogeneous Poisson Processes (NHPP) is
reached, this kind of counting process has the following
properties

• N(0) = 0

• N(t) has independent increments

• P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h)

• P (N(t+ h)−N(t) ≥ 2) = o(h)

The intensity function λ(t) plays a pivotal role in
NHPP, distinguishing them from their Homogeneous

counterparts (HPP). While HPP assumes a constant
intensity rate over time, NHPP allows for the intensity
rate to vary with time, making it a versatile tool
for modeling diverse counting phenomena. The
intensity function represents the rate at which
events occur per unit of time and is essential for
characterizing the temporal dynamics of the counting
process. Unlike HPP, where the intensity function
remains constant, NHPP accommodates changes in the
intensity function, reflecting real-world scenarios where
counting processes may deteriorate or improve over
time. An NHPP can be seen as a ”Minimal Repair
Process” because the counting system is deteriorating
and/or improving over time [24]. This inherent
flexibility in modeling the temporal dynamics of
counting processes sets the importance of NHPP, as it
provides a more realistic representation of phenomena
where changes in count intensity occur naturally.

Intensity Function Estimation

Many estimation procedures exist for the intensity
function of a NHPP process in the literature.
In [25], a general methodology with the use of
an exponential-polynomial trigonometric function
for cyclic behavior and trends was proposed. In
[26], a piecewise-polynomial intensity function
was contributed, and [27, pp. 407] suggested
a piecewise-constant function through a simple
nonparametric procedure [28], but dependent on
some arbitrary parameters. These various approaches
highlight the complexity and intricacy of intensity
function modeling, driving the need to choose
the appropriate method based on the specific
characteristics of the data and the objectives of the
analysis.

Valuable insights into the estimation of λ(t) for
NHPPs, which are essential for statistical modeling
based on point processes, are provided in [29]. In an
NHPP, the intensity of the process λ(t) is not constant
over time but varies according to certain covariates,
such as time trends, seasonal terms, or external factors.
The time NHPP behavior is typically represented by
modeling the intensity function λ(t) as a function of
these covariates. Ensuring that the intensity function
λ(t) remains positive, a common approach involves
using a logarithm link function. Specifically, the
logarithm of the intensity function is modeled as a
linear combination of covariates and parameters, given
by

log(λ(t;β)) = X⊤(t)β, (1)

where X⊤(t) represents the row vector of covariates
at time t, and β denotes the vector of parameters
to be estimated. By employing this logarithmic link
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function, the estimation of the intensity function is
facilitated while ensuring it is non-negative.

In an NHPP, λ(t) ≥ 0 ∀t ∈ (0, S], and is continuous
for almost every t ∈ (0, S], with S being a known
constant that could be the upper limit for a time cycle.
Having k realizations of NHPP, it is possible to obtain
a cumulative intensity function or intensity measure of
the process, on (0, S] [30] and can be estimated with
a structure λ(X, t), where X ∈ Rn×p is the matrix
where each row denotes a temporal observation and
each column an explanatory variable.

Random Generation of NHPP Trajectories

Available methods to generate an NHPP can be
classified into three categories: inversion methods,
order statistics methods, and acceptance-rejection
methods. One of the earliest techniques is to take the
cumulative intensity function inversion to compute the
required event times. Another approach is to assume
the event times as order statistics from a sample with
a distribution function in terms of the cumulative
intensity function [31, Section 23]. The last method is
the most popular, as it uses thinning to determine a
constant rate function and rejects a certain fraction of
generated events to achieve the desired intensity [32,
pp. 179].

The first and second methods can be computationally
expensive when the cumulative intensity adjusts to
a function that does not allow an efficient analytic
inversion, which is common. Modern methods
employ the first and second approaches, through the
construction of a majorizing function in a favorable
structure that benefits from the thinning process [33,
pp. 2015-2018]. The Cinlar method [34] provides an
efficient approach for generating points from an NHPP.
Its key advantage lies in avoiding discretization of the
intensity function, similar to the thinning approach
[35]. This makes the Cinlar method faster, especially
when the inversion of the cumulative intensity function
can be easily computed. A brief overview of the Cinlar
method is as follows:

1. Transformation to a Unit Rate Homogeneous
Poisson Process (HPP): The method starts by
transforming the NHPP into a unit-rate HPP
using a time-scale transformation

tHi =

∫ tNH
i

0

λ(t)dt. (2)

This step involves generating points tHi in a
unit rate HPP through independent exponential
distances [36].

2. Transformation Back to NHPP: The points tNH
i

in the NHPP with intensity λ(t) are obtained by
transforming the points tHi using the inverse of the
transformation function. Since our study assumes
that λ(t) is constant in [t, t + 1), the points tNH

i

are calculated iteratively such that the sum of the
intensities up to tNH

i equals tHi .

The Cinlar method is implemented in our methodology
through the function simNHP.fun from the NHPoisson
package for R [37]. This function enables the generation
of points within a specified period (0, T ), where the
intensity at each time point must be provided. The
length of the intensity vector determines the value of
T . Furthermore, to ensure reproducibility, a seed can
be set in the generation process using the fixed.seed
argument.

2.2 Functional Data Estimation Techniques
Given a set of values that follow a generated NHPP
trajectory, it is possible to transform these observations
into a function or curve, i.e. a functional observation,
by an interpolating or smoothing procedure, for
instance, using a linear combination of a known base
function like polynomial, spline, wavelet, or Fourier
[38].

A functional data Yi = Yi(t) : t ∈ T (i = 1, . . . , n) with
T ⊂ R, is the observation of n functional variables
Yi which takes values in an infinite dimensional space
[39]. For this kind of data, there are multiple tools
to perform exploratory data analysis in order, for
example, to estimate the main, central, or most
representative curve, estimate functional dispersion,
dependence, confidence intervals, etc. [40, 41]. In
[42], the Modified Band-Depth (MBD) estimator is
proposed. A methodology to compute a ranking
estimation of all the curves in the functional data
sample is denoted by

MBD(Yr) =
n∑

i=1

n∑
j=i+1

λ({t ∈ I | min(Yi(t), Yj(t)) ≤
Yr(t) ≤ max(Y i(t), Yj(t))})(

n
2

)
λ(I)

.

(3)
The MBD(Yr) measures the average proportion of
times that Y r is within the envelope generated by
the curves Yi and Yj (i ̸= j). So, the higher the
MBD(Yr) the deeper the observation Y r. Therefore,
an estimation of the functional median, based on
depth rankings, is Y[1](t) = maxr=1;...;nMBD(Yr).

Another exploratory data analysis tool, extended
to the functional case, is the boxplot. In [43],
it is proposed a functional version of the boxplot,
which is constructed analogously in comparison to the

4



common univariate boxplot. The functional boxplot
is computed as follows: The functional median is
estimated by the MBD, specifically by Y[1](t) =
maxr=1,...,n MBD(Yr) and the functional interquartile
range (C0.5) is determined as the region where 50% of
the deepest curves are in, which is defined by

(4)

C0.5 = {(t, Y (t))

: minr=1,...,n2
Y[r](t)

≤ Y (t)

≤ maxr=1,...,n2
Y[r](t)}.

Additionally, the corresponding functional whiskers
(FW ) are given by

FW = Envelope(C0.5)± 1.5C0.5, (5)

where the notation Envelope(C0.5) denotes the pair of
functional observations that enclose the 50% deepest
curves within their envelope.

It is worth considering the interpretation of the
envelope of the functional boxplot as a confidence
region. This perspective leads to a proposed
adaptation of the envelope to create confidence regions
of type 1 − α, where α represents a specified
level of error or significance. Such an adaptation
offers the potential to provide insights into the
uncertainty surrounding the estimated functional
median, enhancing the inferential capabilities of
the proposed methodology, explained in the next
subsection.

2.3 Proposed Methodology
We propose the combination of both NHPP and FDA
for modeling and predicting count data problems, we
denote it as NHPP-FD, following the next steps:

1. Model the intensity function λ(t) as a function
of p covariates X = (X1, . . . , Xp), where
Xj = (x1j , . . . , xtj)

′ (j = 1, . . . , p), using the
theoretical regression model in Equation (6)

λ(X, t) = exp (Xβ) , (6)

where β ∈ Rp×1 is a vector of the unknown
regression coefficients, to obtain λ̂(X, t).

2. Define a future time period t + L and predict
L future values for each Xj , denote it X̂

[t+L]
j =

(x̂(t+1)j , x̂(t+2)j , . . . , x̂(t+L)j)
′ for j = 1, . . . , p.

Then, store all predictions in a new matrix
X̂[t+L] =

(
X̂

[t+L]
1 , . . . , X̂

[t+L]
p

)
. To obtain X̂

[t+L]
j

we propose a model of the form X̂
[t+L]
j = g(Xj),

where g(·) is any time series model; we suggest the

implementation of either Holt-Winters, LOESS
or ARIMA [44]. In our empirical findings,
the Holt-Winters smoother shows a proficient
performance.

3. Predict t + L periods the estimated intensity
function λ̂(X, t) with X̂[t+L] by the NHPP model
in Equation (6) following the expression presented
in Equation (7)

λ̂(t+ L) = exp
(
X̂[t+L]β̂

)
. (7)

4. Once λ̂(t + L) is estimated from (7), generate
random k NHPP trajectories, following the
definition presented in Cinlar [34]

Nk,λ̂(t+L)

=
[{

N1

(
t, λ̂(t+L)

)}
, . . . ,

{
Nk

(
t, λ̂(t+L)

)}]
′.

(8)

Now, from the Independent Increments
assumption, each

{
Ni

(
t, λ̂(t+ L)

)}
(i = 1, . . . , k) follows the original counting
process {N(t)}, the observed cumulative
counting variable. Moreover, note that all{
Ni

(
t, λ̂(t)

)
: t ≥ 0

}
are both NHPP trajectories.

5. Compute the MBD for the sample Nk,λ̂(t)

and denote the most representative or
deepest NHPP trajectory as Nk,λ̂(t+L)[1]

=

maxr=1,...,k MBD
(
Nk,λ̂(t+L)

)
[r]

.

6. Finally, compute a functional bootstrap procedure
of B replicates to the sample Nk,λ̂(t+L) in order
to obtain a set composed by MBD statistics of
the resamplings [45]. Thus, we define BMBD ={

M̂BD[1]

(
NBoot=1

k,λ̂(t+L)

)
, . . . , M̂BD[1]

(
NBoot=B

k,λ̂(t+L)

)}
the set of deepest curves of the B
bootstrap replicates. Define A =

minr=1,...,(1−α)B M̂BD[1]

(
NBoot

k,λ̂(t+L)

)
[r]

and

B = maxr=1,...,(1−α)B M̂BD[1]

(
NBoot

k,λ̂(t+L)

)
[r]

,
then, given a confidence level 1 − α, then the
confidence envelope of Ni,λ̂(t)[1](t) is denoted as

(9)

C1−α =
{(

k, M̂BD[1]

(
NBoot

k,λ̂(t+L)

))
: A

≤ M̂BD[1]

(
NBoot

k,λ̂(t+L)

)
≤ B

}
.
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C1−α represents the envelope in which the (1 −
α)100% of the estimated deepest trajectories will
be in it. Therefore, the borders of C1−α can be
seen as the confidence bands of the prediction
Nk,λ̂(t+L)[1]

.

3. Results and Discussion

In this section, we present the outcomes of applying
our proposed methodology to analyze count data from
an infectious disease. While it would be interesting
to design a case application that is less specific
and relies on a controlled simulation environment to
ensure more consistent and unbiased results, this is
challenging. The complexity arises from the influence
of covariates on the time series and other factors that
are difficult to specify in such a complex scenario
for our proposed counting model. We begin by
detailing the data collection process and providing
a thorough description of the dataset. Building
upon the insights gained from the data analysis, we
then compare our proposed methodology with existing
approaches. Finally, we evaluate the performance
of our methodology in predicting Dengue cases over
time through a comparative analysis with competing
methodologies.

Data and Information Collection

The data comprises weekly Dengue cases in the
department of Antioquia, Colombia, during the years
2008 and 2012. Additionally, Google search trends
for the word ”dengue” (X1) and climatological data
such as temperature (X2), precipitation (X3), and
relative humidity (X4) are employed as covariates
to adjust the proposed model as described in step
4 of our methodology. X1 was obtained from the
Google Trends tool as an open resource, and the rest
was obtained through a formal solicitation to the
Secretaría de Salud del Departamento de Antioquia,
and the Instituto de Hidrología, Meteorología y
Estudios Ambientales (IDEAM, spanish acronym) [46].

To explore the relationship between Dengue cases
and these covariates, Figure 1 visually illustrates
the temporal trends of Dengue cases and related
variables, offering insights into potential associations
and patterns within the data.
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Figure 1 The plot shows the temporal evolution of Dengue
cases alongside various covariates. Dengue cases reach

their maximum peak of approximately 60 cases per week
around week 120. During this period, there is also a

graphical depiction of an increase in average temperature,
suggesting a potential relationship between these

variables. Moreover, the search trends for the word
”dengue” show a strong relationship with cases, indicating

their potential as factors in the spread of the disease.

Following the exploration of the dataset, Figure
2 presents a comprehensive visualization of the
covariates. The figure encapsulates density graphs,
scatter plots, and Pearson correlations, offering a
multifaceted insight into the characteristics of the
dataset. Scatter plots elucidate relationships between
pairs of variables, providing visual cues to potential
associations. Moreover, Pearson correlations quantify
these associations, highlighting notable relationships
between temperature and precipitation with relative
humidity.
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Figure 2 Comprehensive visualization of covariates:
Density Graphs, Scatter Plots, and Pearson Correlations.
Density graphs depict the distribution of each covariate,

revealing right asymmetries for all variables except
relative humidity, which exhibits left asymmetry. This

figure also includes scatter plots and Pearson correlations
for each pair of variables, highlighting notable

relationships between temperature and precipitation with
relative humidity.

Comparison with Other Methodologies and
Evaluation

Considering one of the most common models for count
data in the literature, we use INGARCH in the case
of the time series approach and Poisson regression
in the regression framework. A comparison of their
performance will test how well these models fit the
datasets against our methodology.

We conducted our research using the R software [47],
a preferred tool for research in various fields due to
its open-source nature and diverse range of packages
for statistical methodologies and machine learning
algorithms. Specifically, for fitting generalized linear
models and conducting Poisson regression, we utilized
the glm() function from the base R package stats.
Similarly, to implement the INGARCH model with
covariates, we utilized the tsglm() function, from
the tscount package [48]. Within the tsglm()
function, we specified various model parameters,
such as the type of distribution, link function, and
the inclusion of external covariates. For prediction
purposes, we utilized the predict() function to
generate forecasts based on the fitted models, using
simulated covariate data for which predictions were
desired. Specifically, we utilized 12 covariate data
points to obtain predictions for the response variable
over the subsequent 12 periods.

To illustrate the role of covariates in NHPP-FD,
consider the intensity function, a core aspect of this

methodology. Figure 3 depicts this function for the
Dengue fever case study. The intensity function
essentially captures how the expected number of cases
changes over time.
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Figure 3 Estimated intensity function for the Dengue
fever case study. The black line shows the estimated

intensity function based on the observed Dengue fever
data. In contrast, the red line represents the predicted
intensity function based on forecasted covariate values

using Holt-Winters. This visual comparison demonstrates
how NHPP-FD incorporates covariates to dynamically

adjust the expected number of cases over time.

In our evaluation of proposed methodologies, we
conducted a comparative analysis of raw count
predictions for the 12 forecasted periods with
the simulated covariate values, starting with a
simplistic Poisson regression model, which served as
a foundational benchmark. Despite its simplicity, the
Poisson regression model demonstrated a remarkable
ability to stick closely to the midpoint of the
confidence band, indicating a high degree of reliability
in estimating overall uncertainty. However, further
examination revealed that while the Poisson regression
model stood out in maintaining proximity to the
midpoint of the confidence band, it struggled to match
the peaks of the time series data and lacked variability.
Subsequent comparison with the INGARCH model
reinforced these findings, showcasing improved
performance in capturing dynamic structure but
still falling short in peak modeling precision. Figure
4 presents a comparison of counts for INGARCH,
Poisson Regression, and NHPP-FD, highlighting the
aforementioned differences in performance, as well
as a visual comparison of cumulative counts across
competing methodologies.
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Figure 4 Comparison of predicted weekly cases and
cumulative cases using INGARCH, Poisson Regression,
NHPP-FD, and the proposed methodology. For Weekly

Cases INGARCH and Poisson Regression tend to be
closer to the midpoint of the confidence band, indicating
reliability in overall uncertainty estimation, but struggle

to capture the dynamic structure of the time series,
particularly the peaks. In contrast, the proposed
methodology shows peak modeling precision. For

Cumulative Cases, competing methodologies fail to
remain within the confidence band of the cumulative

cases. The proposed approach consistently stays within
this band throughout the predicted values. Additionally,

NHPP-FD exhibits a varying behavior, showcasing its
ability to capture dynamic phenomena effectively.

The performance in cumulative counts is a crucial
metric in understanding the overall progression of
the observed phenomena. Strikingly, we observed
that the methodologies under scrutiny consistently
failed to remain within the confidence band of the
cumulative cases, indicating significant discrepancies
in their predictions. However, our proposed approach
demonstrated remarkable consistency, maintaining
alignment within the confidence band throughout
the predicted values. Additionally, while Poisson
regression exhibited near-constant behavior with a
more linear pattern, NHPP-FD displayed a varying
behavior, showcasing its ability to capture dynamic
phenomena effectively. This visual representation
offers valuable insights into the comparative
performance of methodologies in predicting cumulative
counts and underscores the robustness of our proposed
approach. In Figure 5, we show how these predicted
trajectories compare to the defined time series of
cumulative counts of the phenomena, and also present
the non-cumulative counts, offering a detailed view of
the weekly variations.
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Figure 5 Comparison of Cumulative and Weekly Counts.
The total known count trajectory of dengue cases is
illustrated by the black dotted line time series, with

forecasted predictions starting after the 261st period. The
cumulative counts figure highlights the overall trend and

the long-term accumulation of cases, while the weekly
counts figure focuses on the short-term fluctuations,
providing a more granular perspective on the model

performance and the inherent variability in the data.

In Table 1, we present the proportion of cumulative
predictions that fall within the confidence band for
the various forecasting predictions we obtained. The
analysis focuses on evaluating the consistency of each
method in accurately capturing the dynamic behavior
of the observed data while maintaining adherence to
the predefined confidence band. Notably, NHPP-FD
demonstrates remarkable consistency, regularly
achieving a proportion of 1 for predictions within the
confidence band. This proves the robustness of our
approach in providing reliable forecasts that align
closely with the observed data dynamics.

Method Proportion
Poisson Regression 0.083
NHPP-FD 1.000
INGARCH 0.583

Table 1 Proportion of cumulative predictions within the
confidence bands. It illustrates the proportion of times the

cumulative predictions from different methods fall within
the confidence band. NHPP-FD consistently maintains

this criterion while capturing dynamic behavior.

The Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are widely used statistical
measures for model selection, providing a balance
between goodness of fit and model complexity. Lower
values of the AIC and BIC indicate better model fit
with a preference for simpler models. In this analysis,
we compare the AIC and BIC values obtained
from different models, including Poisson regression,
NHPP-FD model, and INGARCH model. Table 2
presents AIC and BIC of the models. The results shed
light on the relative performance of these models in
capturing the underlying data dynamics.
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Model AIC BIC
Poisson Regression 3138.22 3156.05
NHPP-FD 55.05 72.88
INGARCH Model 1787.72 2661.03

Table 2 Comparison of AIC and BIC values for different
models. The results suggest that our model demonstrates

significantly lower AIC and BIC values compared to the
other models, indicating superior goodness of fit and

parsimony.

The inherent properties of the Poisson process
underpinning NHPP-FD offer distinct advantages. By
preserving these properties in our counts generation,
we ensure a faithful representation of the underlying
phenomenon, enhancing the explanatory power of
the model. The non-parametric approach to
modeling intensity further contributes to the versatility
and accuracy of the methodology, allowing for a
comprehensive understanding of the process dynamics.
Furthermore, NHPP-FD enables quantification of
the influence of explanatory variables through its
structured intensity function. This feature facilitates
a deeper insight into the factors driving the observed
phenomena capabilities. In contrast, competing
models lack this level of granularity. Overall,
NHPP-FD stands out as a fantastic choice for
modeling complex processes, offering advantages
in accuracy, versatility, and interpretability over
traditional techniques by providing a robust framework
for analyzing dynamic phenomena and making
informed predictions.

4. Concluding Remarks
This work introduces a methodology for analyzing
count data by combining NHPP and FDA approaches,
with an application to infectious disease cases. The
NHPP-FD method preserves the inherent properties
of the underlying stochastic process governing the
occurrence of Dengue cases. By maintaining fidelity to
these properties, we ensure the reliability and accuracy
of our model predictions. NHPP-FD harnesses the
concepts of NHPP Counting Processes and Functional
Data Analysis, combining temporal evolution and
exogenous variables to model and predict count
data scenarios. This approach enables us to capture
the dynamic nature of the data. Moreover, the
incorporation of covariates given in our data set as
search trends and climatological data further enhances
the predictive capabilities of our model, allowing for
a more nuanced analysis of count data phenomena
dynamics. Comparative analysis against existing
methodologies reaffirms the strengths of our approach.
When contrasting our results with those obtained from

traditional techniques such as Poisson regression and
INGARCH, NHPP-FD performed well in modeling
peaks and fluctuations over time.

Designing a case application based on specific
conditions and established covariates presents
challenges in planning a simulation scenario that
allows for equal comparison of different models’
competitiveness. Ensuring a fair and reliable
competition among models is difficult to achieve due
to the unique characteristics of each case. The results
obtained in this study focus on dengue, a specific
scenario within epidemiology. As future work, it would
be interesting to design a simulation framework that
allows for more general comparisons across various
methodologies applicable to count data. This would
ensure a more reliable and fair assessment of different
approaches.

This framework can be extended to analyze diverse
datasets beyond infectious disease counts. By
exploring datasets that vary across different disciplines
and even different dimensions such as space rather
than time, we can leverage the inherent properties
of NHPP-FD to gain deeper insights into complex
phenomena. For instance, integrating our technique
with spatial analysis methods like Geographic
Information Systems (GIS) could facilitate the
exploration of spatial patterns and correlations
in disease spread. Additionally, interdisciplinary
collaborations with fields such as ecology and
environmental science could enable us to model the
impact of ecological factors on disease dynamics and
other phenomena. Moreover, integrating machine
learning techniques such as neural networks or
ensemble methods could enhance the predictive
capabilities of our model, enabling more accurate and
timely forecasting of disease outbreaks.
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