Diseño optimo y evaluación del desempeño de amortiguadores de masa sintonizada inerter en edificaciones
DOI:
https://doi.org/10.17533/udea.redin.20210959Palabras clave:
control pasivo, optimización metaheurística, evolución diferencial, desempeño sismicoResumen
Este trabajo está referido a la evaluación numérica del desempeño de sistemas de múltiples grados de libertad equipados con amortiguadores de masa sintonizada inerter (AMSI), el cual es un dispositivo de control pasivo empleado para el control de vibraciones mecánicas inducidas por cargas dinámicas. El dispositivo inerter, comúnmente es utilizado para incrementar la masa aparente de los clásicos amortiguadores de masa sintonizada (AMS), mejorando su desempeño sísmico. Para evaluar la acción de TMDI, se emplean tres casos de estudio, determinados a partir de tres edificios de la ciudad de Medellín de baja, mediana y gran altura (30 metros, 97 metros y 144 metros, respectivamente). Los parámetros de diseño óptimos se determinan mediante una optimización metaheurística basada en el método de evolución diferencial, primero, para la minimización de los desplazamientos máximos horizontales, y luego, para la minimización de la media cuadrática de los desplazamientos (valor eficaz). Además, los estudios de caso se evalúan utilizando ocho registros de aceleraciones sísmicas representativos de la literatura. Finalmente, el rendimiento sísmico se evalúa en cada caso de estudio considerando diferentes valores de inertancia inducidos por el dispositivo inerter: 5%, 20% y 50% con respecto a la masa total del edificio, observándose un mejor comportamiento dinámico cuando Se implementan el AMSI con valores bajos de inertancia.
Descargas
Citas
I. G. Buckle, “Passive control of structures for seismic loads,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 33, no. 3, 2000. [Online]. Available: https://doi.org/10.5459/bnzsee.33.3.209-221
H. Frahm, “Device for damping vibrations of bodies,” U.S. Patent 989 958, Apr. 18, 1911.
G. P. Cimellaro and S. Marasco, Eds., Tuned-Mass Dampers, ser. Introduction to Dynamics of Structures and Earthquake Engineering. Springer, Cham, 2018. [Online]. Available: https://doi.org/10.1007/978-3-319-72541-3_18
L. Tophøj, N. Grathwol, and S. O. Hansen, “Effective mass of tuned mass dampers,” Vibration, vol. 1, no. 1, 2018. [Online]. Available: https://doi.org/10.3390/vibration1010014
J. Ormondroyd, “The theory of the dynamic vibration absorber,” ASME, Applied Mechanics, no. 50, pp. 9–22, 1928.
J. P. D. Hartog, “Mechanical vibrations,” The Aeronautical Journal, vol. 61, no. 554, 1957. [Online]. Available: https://doi.org/10.1017/S0368393100131049
G. B. Warburton, “Optimum absorber parameters for various combinations of response and excitation parameters,” Earthquake Engineering & Structural Dynamics, vol. 10, no. 3, 1982. [Online]. Available: https://doi.org/10.1002/eqe.4290100304
F. Sadek, B. Mohraz, A. W. Taylor, and R. M. Chung, “A method of estimating the parameters of tuned mass dampers for seismic applications,” Earthquake Engineering & Structural Dynamics, vol. 26, no. 6, 1997. [Online]. Available: t.ly/KFOA
F. Rüdinger, “Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation,” Journal of Engineering Mechanics, vol. 132, no. 1, Jan. 2006. [Online]. Available: https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(46)
N. Hoang, Y. Fujino, and P. Warnitchai, “Optimal tuned mass damper for seismic applications and practical design formulas,” Engineering Structures, vol. 30, no. 3, Mar. 2008. [Online]. Available: https://doi.org/10.1016/j.engstruct.2007.05.007
L. Lara-Valencia, J. Brito, and S. Avila, “Vibration control in a gerber beam using tuned mass dampers,” DYNA, vol. 77, no. 164, Dec. 2010. [Online]. Available: t.ly/SyCf
A. Farshidianfar and S. Soheili, “Optimization of tmd parameters for earthquake vibrations of tall buildings including soil structure interaction,” International Journal of Optimization in Civil Engineering, vol. 3, no. 3, 2013. [Online]. Available: http://www.iust.ac.ir/ijoce/article-1-141-en.pdf
A. Farshidianfar and S. Soheili, “Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction,” Soil Dynamics and Earthquake Engineering, vol. 51, Aug. 2013. [Online]. Available: https://doi.org/10.1016/j.soildyn.2013.04.002
S. Pourzeynali, S. Salimi, and H. E. Kalesa, “Robust multi-objective optimization design of tmd control device to reduce tall building responses against earthquake excitations using genetic algorithms,” Scientia Iranica, vol. 20, no. 2, Apr. 2013. [Online]. Available: https://doi.org/10.1016/j.scient.2012.11.015
S. Pourzeynali and S. Salimi, “Multi-objective optimization design of control devices to suppress tall buildings vibrations against earthquake excitations using fuzzy logic and genetic algorithms,” in Research Methods: Concepts, Methodologies, Tools, and Applications. Resources Management Association, IGI Global„ 2015.
S. Pal, D. Singh, and V. Kumar, “Hybrid soma: A tool for optimizing tmd parameters,” in Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, Feb. 2017. [Online]. Available: https://doi.org/10.1007/978-981-10-3322-3_4
M. Mohebbi and A. Joghataie, “Optimal tmds for improving the seismic performance of historical buildings,” Scientia Iranica, vol. 23, no. 1, Feb. 2016. [Online]. Available: https://doi.org/10.24200/SCI.2016.2099
D. Caicedo, L. Lara-Valencia, and Y. Valencia-González, “Optimal design of tuned mass dampers through differential evolution method for reducing the dynamic response of structures subjected to earthquake loads,” Revista Entramado, vol. 17, no. 2, Jul-Dec. 2021. [Online]. Available: https://doi.org/10.18041/1900-3803/entramado.2.7081
L. A. Lara-Valencia, D. Caicedo, and Y. Valencia-Gonzalez, “A novel whale optimization algorithm for the design of tuned mass dampers under earthquake excitations,” Applied Sciences, vol. 11, no. 13, Jul. 02 2021. [Online]. Available: https://doi.org/10.3390/app11136172
M. C. Smith, “Synthesis of mechanical networks: the inerter,” IEEE Transactions on Automatic Control, vol. 47, no. 10, Oct. 2002. [Online]. Available: https://doi.org/10.1109/TAC.2002.803532
C. Papageorgiou and M. C. Smith, “Laboratory experimental testing of inerters,” in Proceedings of the 44th IEEE Conference on Decision and Control, Dec. 15 2005. [Online]. Available: https://doi.org/10.1109/CDC.2005.1582679
L. Marian and A. Giaralis, “Optimal design of inerter devices combined with tmds for vibration control of buildings exposed to stochastic seismic excitation,” in Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, G. Deodatis, B. R. Ellingwood, and D. M. Frangopol, Eds. Boca Ratón: CRC Press, 2013, pp. 1025–1032.
L. Marian and A. Giaralis, “Optimal design of a novel tuned mass-damper-inerter (tmdi) passive vibration control configuration for stochastically support-excited structural systems,” Probabilistic Engineering Mechanics, vol. 38, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.probengmech.2014.03.007
D. Pietrosanti, M. D. Angelis, and M. Basili, “Optimal design and performance evaluation of systems with tuned mass damper inerter (tmdi),” Earthquake Engineering & Structural Dynamics, vol. 46, no. 8, Jul. 10 2017. [Online]. Available: https://doi.org/10.1002/eqe.2861
A. Giaralis and A. A. Taflanidis, “Reliability-based design of tuned mass-damper-inerter (tmdi) equipped multi-storey frame buildings under seismic excitation,” in 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Jul. 12-15 2015. [Online]. Available: t.ly/1erE
A. Giaralis and A. A. Taflanidis, “Optimal tuned mass-damper-inerter (tmdi) design for seismically excited mdof structures with model uncertainties based on reliability criteria,” vol. 25, no. 2, Feb. 2018. [Online]. Available: https://doi.org/10.1002/stc.2082
K. Kanai, “Semi-empirical formula for the seismic characteristics of the ground motion,” Bulletin of the Earthquake Research Institute, vol. 35, no. 2, pp. 309–325, 1957.
H. Tajim, “A statistical method of determining the maximum response of a building structure during an earthquake,” in Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, 1960, pp. 781–798.
D. Caicedo, L. Lara-Valencia, J. Blandon, and Y. Farbiarz, “Differential evolution for the optimal design of tuned mass dampers in a building of medellin city,” Journal of Building Engineering, vol. 34, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.jobe.2020.101927
D. Caicedo, L. Lara-Valencia, J. Blandon, and Y. Farbiarz, “Differential evolution for the optimal design of tuned mass dampers in a building of medellin city,” in Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 2020. [Online]. Available: t.ly/s8Do
L. Lara-Valencia, D. Caicedo, Y. Farbiarz, J. Brito, and Y. Valencia-Gonzalez, “Design of a tuned mass damper inerter using optimization based on exhaustive search for the vibration control of a seismically excited structures,” in 17th World Conference on Earthquake Engineering (17WCEE), Sendai, Japan, 2020. [Online]. Available: t.ly/4ACy
R. Storn and K. Price, “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, Dec. 1997. [Online]. Available: https://doi.org/10.1023/A:1008202821328
X. Liu, J. Z. Jiang, B. Titurus, and A. Harrison, “Model identification methodology for fluid-based inerters,” Mechanical Systems and Signal Processing, vol. 106, Jun. 2018. [Online]. Available: https://doi.org/10.1016/j.ymssp.2018.01.018
S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Self-adaptive differential evolution incorporating a heuristic mixing of operators,” Computational Optimization and Applications, vol. 54, 2013. [Online]. Available: https://doi.org/10.1007/s10589-012-9493-8
“Reglamento colombiano de construcción sismo resistente,” Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá D. C., Tech. Rep. NSR10, Jan. 2010.
B. Alavi and H. Krawinkler, “Behavior of moment-resisting frame structures subjected to near-fault ground motions,” Earthquake Engineering & Structural Dynamics, vol. 133, no. 6, May. 2004. [Online]. Available: https://doi.org/10.1002/eqe.369
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.