Uso de residuos agroindustriales de plátano (Musa paradisiaca) en la adsorción de Ni (II)

Autores/as

  • Candelaria Tejada-Tovar Universidad de Cartagena https://orcid.org/0000-0002-2323-1544
  • Ángel Villabona-Ortíz Universidad de Cartagena
  • Walter Cortina-Góngora Universidad de Cartagena
  • Betty Díaz-Navarro Universidad de Cartagena
  • Rodrigo Ortega Toro Universidad de Cartagena https://orcid.org/0000-0003-0815-5317

DOI:

https://doi.org/10.17533/udea.redin.20210428

Palabras clave:

tratamiento de residuos, residuos agrícolas, modelado, termodinámica

Resumen

La presencia de metales pesados en medios acuosos representa una grave amenaza para los ecosistemas porque no son biodegradables, además son tóxicos y cancerígenos. En el presente trabajo se estudió la utilización de residuos agroindustriales de la obtención de almidón de plátano para remoción de Ni (II), estableciendo el efecto de la temperatura, dosis de adsorción y concentración inicial. Se estudió la cinética, el equilibrio y los parámetros termodinámicos que determinan el proceso. Para ello, las pruebas se realizaron en un sistema discontinuo manteniendo constante agitación (200 rpm), pH (2) y volumen de solución (100 mL). La concentración de metal restante se determinó mediante adsorción atómica a 237 nm. Se encontró que las mejores condiciones de adsorción se dieron a 55 ºC, 0,6775 g y 368 mg / L obteniendo una capacidad máxima de adsorción de 47,57 mg / g correspondiente a una remoción del 87%. El modelo cinético que mejor se ajusta a los datos experimentales fue el de pseudo segundo orden, y la isoterma que describe el proceso es Langmuir y Freundlich, por lo que la adsorción viene dada por quimisorción y multicapas. Los parámetros termodinámicos determinados sugieren que el proceso es favorable, no espontáneo, endotérmico e irreversible en las condiciones estudiadas. Los resultados muestran que la biomasa residual de la obtención de almidón de plátano es un buen precursor para absorber Ni (II) en solución acuosa.

|Resumen
= 999 veces | PDF (ENGLISH)
= 772 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Candelaria Tejada-Tovar, Universidad de Cartagena

Maestría en Ingeniería Ambiental. IDAB - Grupo de Investigación en Diseño de Procesos y Aprovechamiento de Biomasas.

Ángel Villabona-Ortíz, Universidad de Cartagena

Maestría en Ingeniería Ambiental, Grupo de Investigación Envasado de alimentos y vida útil (FP&SL). 

Walter Cortina-Góngora, Universidad de Cartagena

Ingeniero Químico.

Rodrigo Ortega Toro, Universidad de Cartagena

Profesor de Ingeniería de Alimentos e Ingeniería de Materiales, Programa de Ingeniería de Alimentos.

Citas

B. A. Bhanvase, R. P. Ugwekar, and R. B. Mankar, Novel Water Treatment and Separation Methods : Simulation of Chemical Processes. Toronto, Waretown, NJ: Apple Academic Press, 2017.

A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of heavy metals from industrial wastewaters: A review,” ChemBioEng Reviews, vol. 4, no. 1, Feb. 1, 2017. [Online]. Available: https://doi.org/10.1002/cben.201600010

C. Tejada-Tovar, A. Villabona-Ortíz, E. Ruiz-Paternina, A. Herrera-Barros, and R. Ortega-Toro, “Characterization and use of agroindustrial by-products in the removal of metal ions in aqueous solution,” Jurnal Teknologi (Sciences & Engineering), vol. 81, no. 6, Nov. 2019. [Online]. Available: https://doi.org/10.11113/jt.v81.13644

Y. F. Lam, L. Yee, S. J. Chua, S. S. Lim, and S. Gan, “Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly lansium domesticum peel biosorbent,” Ecotoxicology and Environmental Safety, vol. 127, May. 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.01.003

V. Manirethan, N. Gupta, R. M. Balakrishnan, and K. Raval, “Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes,” Environmental Science and Pollution Research, vol. 27, Oct. 10, 2019. [Online]. Available: https://doi.org/10.1007/s11356-019 06310-8

S. Buxton and et al., “Concise review of nickel human health toxicology and ecotoxicology,” Inorganics (Special Issue Bioinorganic Chemistry of Nickel), vol. 7, no. 7, May. 24, 2019. [Online]. Available: https://doi.org/10.3390/inorganics7070089

S. Afroze and T. K. Sen, “A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents,” Water, Air, & Soil Pollution, vol. 229, no. 7, Jun. 20, 2018. [Online]. Available: https://doi.org/10.1007/s11270-018-3869-z

C. Lee and et al., “Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbón foam,” Chemosphere, vol. 116, Ene. 2017. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2016.09.093

Y. Chen, H. Wang, W. Zhao, and S. Huang, “Four different kinds of peels as adsorbents for the removal of CD (II) from aqueous solution: Kinetics, isotherm and mechanism,” Journal of the Taiwan Institute of Chemical Engineers, vol. 88, Jul. 2018. [Online]. Available: https://doi.org/10.1016/j.jtice.2018.03.046

N. M. Rane, S. P. Shewale, S. V. Admane, and R. S. Sapkal, “Adsorption of hexavalent chromium by using sweet lime and orange peel powder,” in Novel Water Treatment and Separation Methods: Simulation of Chemical Processes. Toronto, Waretown, NJ: Apple Academic Press, 2017, pp. 101–114.

A. ul Haq and et al., “Evaluation of sorption mechanism of PB (II) and NI (II) onto pea (pisum sativum) peels,” Journal of Oleo Science, vol. 66, no. 7, 2017. [Online]. Available: https://doi.org/10.5650/jos.ess17020

C. Tejada-Tovar, A. Villabona-Ortíz, and E. Ruiz-Paternina, “Adsorción de NI (II) por cáscaras de ñame (dioscorea rotundata) y bagazo de palma (elaeis guineensis) pretratadas,” Revista Luna Azul (On Line), no. 42, Feb. 9, 2016. [Online]. Available: https://doi.org/10.17151/luaz.2016.4.

P. Premkumar and R. Sudha, “Comparative studies on the removal of chromium(VI) from aqueous solutions using raw and modified citrus limettioides peel,” Indian Journal of Chemical Technology, vol. 25, no. 3, 2018. [Online]. Available: http://14.139.47.23/index.php/IJCT/article/view/11706

S. Parlayici and E. Pehlivan, “Comparative study of CR(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic,” Journal of Analytical Science and Technology, vol. 10, no. 1, Abr. 6, 2019. [Online]. Available: https://doi.org/10.1186/s40543-019-0175-3

R. Rinaldi, Y. Yasdi, and W. L. C. Hutagalung, “Removal of NI (II) and CU (II) ions from aqueous solution using rambutan fruit peels (nephelium lappaceum l.) as adsorbent,” Communications Week, vol. 2026, no. 1, Oct. 29, 2018. [Online]. Available: https://doi.org/10.1063/1.5065058

H. O. N. Altino, B. E. S. Costa, and R. N. D. Cunha, “Biosorption optimization of NI(II) ions on macauba (acrocomia aculeata) oil extraction residue using fixed-bed column,” Journal of Environmental Chemical Engineering, vol. 5, no. 5, Oct. 2017. [Online]. Available: https://doi.org/10.1016/j.jece.2017.09.025

N. M. Rane, S. V. Admane, and R. S. Sapkal, Adsorption of Hexavalent Chromium from Wastewater by Using Sweetlime and Lemon Peel Powder by Batch Studies. Singapore: Springer, 2019.

H. T. Vu, C. J. Scarlett, and Q. V. Vuong, “Phenolic compounds within banana peel and their potential uses: A review,” Journal of Functional Foods, vol. 40, Ene. 2018. [Online]. Available: https://doi.org/10.1016/j.jff.2017.11.006

B. C. Maniglia and D. R. Tapia-Blácido, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocolloids, vol. 55, 2016. [Online]. Available: https://doi.org/10.1016/j.foodhyd.2015.11.001

C. Tejada-Tovar, A. Herrera-Barros, and E. Ruiz-Paternina, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios,” Ciencia en desarrollo, vol. 7, no. 1, Feb. 15, 2016. [Online]. Available: https://doi.org/10.19053/01217488.4228

Z. Mahdi, Q. J. Yu, and A. E. Hanandeh, “Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar,” Journal of Environmental Chemical Engineering, vol. 6, no. 1, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.jece.2018.01.021

J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” Journal of Hazardous Materials, vol. 390, May. 15, 2020. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2020.122156

H. N. Tran, S. J. You, and H. P. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study,” Journal of Environmental Chemical Engineering, vol. 4, no. 3, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.jece.2016.05.009

E. C. Nleonu, E. E. Oguzie, G. N. Onuoha, and P. I. Okeke, “The potentials of chrysophylum albidum peels as natural adsorbent,” World Journal of Pharmaceutical Research, vol. 6, no. 6, 2017. [Online]. Available: http://doi:10.20959/wjpr20176-8548.

N. M. A. Al-Lagtah, A. H. Al-Muhtaseb, M. N. M. Ahmad, and Y. Salameh, “Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons,” Microporous and Mesoporous Materials, vol. 225, May. 1, 2016. [Online]. Available: https: //doi.org/10.1016/j.micromeso.2016.01.043

D. Cherik and K. Louhab, “A kinetics, isotherms, and thermodynamic study of diclofenac adsorption using activated carbon prepared from olive stones,” Communications Week, vol. 39, no. 6, 2018. [Online]. Available: https://doi.org/10.1080/01932691.2017.1395346

A. A. Ceyhan, O. Sahin, O. Baytar, and C. Saka, “Surface and porous characterization of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it’s the adsorption of iodine,” Journal of Analytical and Applied Pyrolysis, vol. 104, Nov. 2013. [Online]. Available: https://doi.org/10.1016/j.jaap.2013.06.009

W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of CR(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, vol. 221, Abr. 2019. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2019.01.100

S. M. Batagarawa and A. K. Ajibola, “Comparative evaluation for the adsorption of toxic heavy metals on to millet, corn and rice husks as adsorbents,” Journal of Analytical & Pharmaceutical Research, vol. 8, no. 3, May. 24, 2019. [Online]. Available: http://doi:10.15406/japlr.2019.08.00325.

K. Johari and et al., “Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents,” International Biodeterioration & Biodegradation, vol. 109, Abr. 2016. [Online]. Available: https://doi.org/10.1016/j.ibiod.2016.01.004

I. A. Aguayo-Villarreal, A. Bonilla-Petriciolet, and R. Muñiz-Valencia, “Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions,” Journal of Molecular Liquids, vol. 230, Mar. 2017. [Online]. Available: https://doi.org/10.1016/j.molliq.2017.01.039

R. Labied, O. Benturki, A. Y. E. Hamitouche, and A. Donnot, “Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study,” Adsorption Science & Technology, vol. 36, no. 3-4, Ene. 14, 2018. [Online]. Available: https://doi.org/10.1177/0263617417750739

Y. Wu and et al., “Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of CR(VI) and NI(II) from single and binary systems,” Biochemical Engineering Journal, vol. 105, no. Parte A, Ene. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.bej.2015.08.017

N. A. Medellín-Castillo, M. G. Hernández-Ramírez, J. J. Salazar-Rábago, G. J. Labrada-Delgado, and A. Aragón-Piña, “Bioadsorción de plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (agave lechuguilla Torr. y yucca carnerosana (Trel.) mckelvey),” Revista internacional de contaminación ambiental, vol. 33, no. 2, May. 2017. [Online]. Available: https://doi.org/10.20937/rica.2017.33.02.08

S. Singh and S. R. Shukla, “Theoretical studies on adsorption of NI(II) from aqueous solution using citrus limetta peels,” Environmental Progress & Sustainable Energy, vol. 36, no. 3, Ene. 14, 2017. [Online]. Available: https://doi.org/10.1002/ep.12526

R. Sudha, K. Srinivasan, and P. Premkumar, “Removal of nickel(II) from aqueous solution using citrus limettioides peel and seed carbon,” Ecotoxicology and Environmental Safety, vol. 117, Jul. 2015. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2015.03.025

W. P. Putra and et al., “Biosorption of CU(II), PB(II) and ZN(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies,” Journal of Encapsulation and Adsorption Sciences, vol. 4, no. 1, Mar. 1, 2014. [Online]. Available: http://doi:10.4236/jeas.2014.41004.

O. Allahdin, J. Mabingui, M. Wartel, and A. Boughriet, “Removal of pb2+ ions from aqueous solutions by fixed-BED column using a modified brick: (Micro)structural, electrokinetic and mechanistic aspects,” Applied Clay Science, vol. 148, Nov. 2017. [Online]. Available: https://doi.org/10.1016/j.clay.2017.08.002

S. Rangabhashiyam and N. Selvaraju, “Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and zncl2 activated sterculia guttata shell,” Journal of Molecular Liquids, vol. 207, Jul. 2015. [Online]. Available: https://doi.org/10.1016/j.molliq.2015.03.018

H. Guedidi, L. Reinert, Y. Soneda, N. Bellakhal, and L. Duclaux, “Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths,” Arabian Journal of Chemistry, vol. 10, no. 2, May. 2017. [Online]. Available: https://doi.org/10.1016/j.arabjc.2014.03.007

M. Mushtaq, H. Nawaz, M. Iqbal, and S. Noreen, “Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies,” Journal of Environmental Management, vol. 176, Jul. 1, 2016. [Online]. Available: https://doi.org/10.1016/j.jenvman.2016.03.013

N. Renugadevi, R. Rajalakshmi, S. Subhashini, P. Lalitha, and T. Malarvizhi, “Usefulness of activated carbon prepared from agro waste in the removal of dyes from aqueous solution,” Indian Journal of Environmental Protection, vol. 29, no. 3, Mar. 2009. [Online]. Available: https://bit.ly/3ybCF3C

N. Ibisi and C. Asoluka, “Use of agro-waste (musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water,” Chemistry International, vol. 4, no. 1, Ene. 2018. [Online]. Available: http://bosaljournals.com/chemint/images/pdffiles/18-7.pdf

R. A. Khera and et al., “Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to archontophoenix alexandrae: conditions optimization by rsm,” Desalination and Water Treatment, vol. 201, Oct. 2020. [Online]. Available: https://doi.org/10.5004/dwt.2020.25937

K. M. Oghenejoboh, “Biosorption of nickel (II) ion from synthetic wastewater on watermelon rind activated carbon using reponse surface methodology (RSM) optimization approach,” Nigerian Journal of Technology, vol. 37, no. 3, Jul. 2018. [Online]. Available: http://dx.doi.org/10.4314/njt.v37i3.13

C. Tejada-Tovar, A. Villabona-Ortiz, A. Cabarcas, C. Benitez, and D. Acevedo, “Optimization of variables in fixed-bed column using the response surface methodology,” Contemporary Engineering Sciences, vol. 11, no. 3, 2018. [Online]. Available: https://doi.org/10.12988/ces.2018.83101

Z. N. Garba, N. I. Ugbaga, and A. K. Abdullahi, “Evaluation of optimum adsorption conditions for NI (II) and CD (II) removal from aqueous solution by modified plantain peels (MPP),” Beni-Suef University Journal of Basic and Applied Sciences, vol. 5, no. 2, Jun. 2016. [Online]. Available: https://doi.org/10.1016/j.bjbas.2016.03.001

M. Vasudevan, P. S. Ajithkumar, R. P. Singh, and N. Natarajan, “Mass transfer kinetics using two-site interface model for removal of CR(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents,” Korean Society of Environmental Engineers, vol. 21, no. 2, Jun. 30, 2016. [Online]. Available: https://doi.org/10.4491/eer.2015.152

J. Shah, M. R. Jan, A. Haq, and M. Zeeshan, “Equilibrium, kinetic and thermodynamic studies for sorption of NI (II) from aqueous solution using formaldehyde treated waste tea leaves,” Journal of Saudi Chemical Society, vol. 19, no. 3, May. 2015. [Online]. Available: https://doi.org/10.1016/j.jscs.2012.04.004

K. M. Doke and E. M. Khan, “Equilibrium, kinetic and diffusion mechanism of CR(VI) adsorption onto activated carbon derived from wood apple shell,” Arabian Journal of Chemistry, vol. 10, no. 1, Feb. 2017. [Online]. Available: https://doi.org/10.1016/j.arabjc.2012.07.031

E. Bibaj and et al., “Activated carbons from banana peels for the removal of nickel ions,” International Journal of Environmental Science and Technology, vol. 16, Feb. 4, 2019. [Online]. Available: https://doi.org/10.1007/s13762-018-1676-0

H. Haroon and et al., “Equilibrium kinetic and thermodynamic studies of CR(VI) adsorption onto a novel adsorbent of eucaliptus camaldulensis waste: Batch and column reactors,” Korean Journal of Chemical Engineering, vol. 33, Sep. 19, 2016. [Online]. Available: https://doi.org/10.1007/s11814-016-0160-0

M. Šuránek, Z. Melichová, V. Kureková, L. Kljajević, and S. Nenadović, “Removal of nickel from aqueous solutions by natural bentonites from slovakia,” Materials, vol. 14, no. 2, Ene. 7, 2021. [Online]. Available: https://doi.org/10.3390/ma14020282

R. M. Naik, S. Ratan, and I. Singh, “Use of orange peel as an adsorbent for the removal of CR(VI) from its aqueous solution,” Indian Journal of Chemical Technology, vol. 25, May. 2018. [Online]. Available: http://nopr.niscair.res.in/handle/123456789/44561

S. Mondal, K. Sinha, K. Aikat, and G. Halder, “Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk,” Journal of Environmental Chemical Engineering, vol. 3, no. 1, Mar. 2015. [Online]. Available: https://doi.org/10.1016/j.jece.2014.11.021

Descargas

Publicado

2021-04-22

Cómo citar

Tejada-Tovar, C., Villabona-Ortíz, Ángel, Cortina-Góngora, W., Díaz-Navarro, B., & Ortega Toro, R. (2021). Uso de residuos agroindustriales de plátano (Musa paradisiaca) en la adsorción de Ni (II) . Revista Facultad De Ingeniería Universidad De Antioquia, (103), 138–151. https://doi.org/10.17533/udea.redin.20210428

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 > >> 

También puede {advancedSearchLink} para este artículo.