Heavy metal removal by biopolymers-based formulations with native potato starch/nopal mucilage

Keywords: Functional groups, heavy metal removal, native potato starch, nopal mucilage, solubility


The contamination of water bodies by heavy metals is a critical problem for human health and ecosystems, and it can bioaccumulate in organisms to toxic levels and even lead to the living being’s death. This research aimed to synthesize and characterize a biopolymer with the capacity to remove heavy metals in wastewater, elaborated from potato starch, glycerin, and nopal mucilage. Native potato starch of the Allcca sipas variety was extracted by conventional methods; the mucilage was extracted with ethanol. Four formulations of biopolymers were synthesized at 60 and 70 °C. The solubility, structural characteristics, and adsorption capacity of heavy metals were evaluated. Starch, mucilage, and biopolymers presented predominant functional groups as -OH, -C-O-, -NH-, -C-H-, -C-OH determined by FTIR, allowing to remove up to 50.18% of Al, 56.81% of As, 35.95% of Cr, 37.43% of Hg and 73.22% of Pb determined through an ICPE-OES, for a contact time of 100 minutes at pH 5.0, heavy metal removal and solubility were significantly influenced (p-value < 0.05) by the addition of starch and mucilage. The synthesized biopolymers present a high capacity for heavy metal removal in wastewater.
= 323 veces | PDF
= 239 veces|


Download data is not yet available.

Author Biographies

David Choque-Quispe, Universidad Nacional José María Arguedas

Professor and Researcher, Departament Agroindustrial Engineering

Betsy Suri Ramos-Pacheco, Universidad Nacional José María Arguedas

 Professor and researcher Agroindustrial Engineering

Carlos Alberto Ligarda-Samanez, Universidad Nacional José María Arguedas

Agroindustrial Engineering, Professor and researcher

Gloria Inés Barboza-Palomino, Universidad Nacional de San Cristobal de Huamanga

Chemical Engineering, Professor and researcher

Aydeé Kari-Ferro, Universidad Nacional Micaela Bastidas

Agroecological Engineering, Professor and Researcher

Fredy Taipe-Pardo, Universidad Nacional José María Arguedas, Andahuaylas

Agroindustrial Engineering, Professor and Researcher

Yudith Choque-Quispe, Universidad Nacional Tecnológica de los Andes

Environmental Engineering, Professor and Researcher


P. Kumar and et al., “Removal of Cd (II) from aqueous solution by agricultural waste cashew nut shell,” Korean Journal of Chemical Engineering, vol. 29, Jun. 2012. [Online]. Available: http://dx.doi.org/10.1007/s11814-011-0259-2

C. A. Rozaini and et al., “Optimization of Nickel and Copper Ions Removal by Modified Mangrove Barks,” International Journal of Chemical Engineering and Applications, vol. 1, Jun. 2010. [Online]. Available: http://dx.doi.org/10.7763/IJCEA.2010.V1.14

L. Zhang, W. Xia, B. Teng, X. Liu, and W. Zhang, “Zirconium cross-linked chitosan composite: preparation, characterization and application in adsorption of cr(vi),” Chemical Engineering Journal, vol. 229, Aug. 01 2013. [Online]. Available: http://dx.doi.org/10.1016/j.cej.2013.05.102

D. I. Caviedes, R. A. Muñoz, A. Perdomo, D. Rodríguez, and I. J. Sandoval, “Tratamientos para la remoción de metales pesados,” Revista Ingeniería y Región, vol. 13, Sep. 09 2015. [Online]. Available: http://dx.doi.org/10.25054/22161325.710

C. Tejada, A. Villabona, and L. Garcés, “Adsorción de metales pesados en aguas residuales usando materiales de origen biologico,” Tecno Lógicas, vol. 18, no. 34, Jan-Jun 2015. [Online]. Available: https://www.redalyc.org/pdf/3442/344234336010.pdf

P. N. A, G. Rincón, L. A. Delgado, and N. González, “Use of biopolymers for the removal of heavy metals produced by the oil industry - a feasibility study,” Adsorption, vol. 12, no. 4, Jul. 2006. [Online]. Available: http://dx.doi.org/10.1007/s10450-006-0504-x

M. Rahim and M. R. Hakim, “Application of biopolymer composites in arsenic removal from aqueous medium: A review,” Journal of Radiation Research and Applied Sciences, vol. 8, no. 2, Mar. 06 2015. [Online]. Available: http://dx.doi.org/10.1007/s10450-006-0504-x

A. Vicentius, K. Trilestari, J. Sunarso, N. Indraswati, and S. Ismadji, “Review, recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies,” CLEAN: Soil, Air, Water, vol. 36, no. 12, Nov. 28 2008. [Online]. Available: http://dx.doi.org/10.1002/clen.200800167

D. Saravanan, T. Gomathi, and P. N. Sudha, “Sorption studies on heavy metal removal using chitin/bentonite biocomposite,” International Journal of Biological Macromolecules, vol. 53, Feb. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.ijbiomac.2012.11.005

U. Malayoglu, “Removal of heavy metals by biopolymer (chitosan)/ nanoclay composites,” Advances in Colloid and Interface Science, Jun. 19 2017. [Online]. Available: http://dx.doi.org/10.1016/j.cis.2017.06.008

K. Rani, T. Gomathi, V. Kumar, S. Madhavan, and P. N. Sudha, “Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (ii) removal,” International Journal of Biological Macromolecules, vol. 131, Jun. 15 2019. [Online]. Available: http://dx.doi.org/10.1016/j.ijbiomac.2019.03.064

E. Agama, E. Juárez, S. Evangelista, O. L. Rosales, and L. A. Bello, “Características del almidón de maíz y relación con las enzimas de su biosíntesis,” Agrociencia, vol. 47, no. 1, Jan-Feb 2013. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952013000100001

D. Saravanan and P. N. Sudha, “Batch adsorption studies for the removal of copper from wastewater using natural biopolymer,” International Journal of ChemTech Research, vol. 6, no. 7, Sep-Oct 2014. [Online]. Available: shorturl.at/bqtHZ

W. S. Wan, L. C. Teong, and M. A. K. M. Hanafiah, “Adsorption of dyes and heavy metal ions by chitosan composites: A review,” Carbohydrate Polymers, vol. 83, no. 4, Feb. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.carbpol.2010.11.004

M. Dick and et al., “Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties,” Carbohydrate Polymers, vol. 130, Oct. 2015. [Online]. Available: http://dx.doi.org/10.1016/j.carbpol.2015.05.040

T. Bourtoom and M. Chinnan, “Preparation and properties of rice starch–chitosan blend biodegradable film,” LWT - Food Science and Technology, vol. 41, no. 9, Nov. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.lwt.2007.10.014

D. Fox, T. Pichler, D. Yeh, and N. Alcantar, “Removing heavy metals in water: The interaction of cactus mucilage and arsenate (as (v)),” Environ. Sci. Technol., vol. 46, no. 8, Mar. 08 2012. [Online]. Available: http://dx.doi.org/10.1021/es2021999

G. Barreto, A. Pua, D. D. Alba, and M. Pión, “Extracción y caracterización de pectina de mango de azucar (mangifera indica l.),” Revista Temas Agrarios, vol. 22, no. 1, Jan-Jun 2017. [Online]. Available: http://dx.doi.org/10.21897/rta.v22i1.918

M. Guzmán and E. A. Murillo, “Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent,” DYNA, vol. 85, no. 206, 2018. [Online]. Available: http://dx.doi.org/10.15446/dyna.v85n206.71819

B. Buenaño, E. Vera, and M. B. Aldás, “Study of coagulating/flocculating characteristics of organic polymers extracted from biowaste for water treatment,” Ingeniería e Investigación, vol. 39, no. 1, 2019. [Online]. Available: http://dx.doi.org/10.15446/ing.investig.v39n1.69703

J. Yang, J. Yu, and X. Ma, “Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (esptps),” Carbohydrate Polymers, vol. 66, no. 1, Oct. 05 2006. [Online]. Available: http://dx.doi.org/10.1016/j.carbpol.2006.02.029

M. F. Ma, J. G. Yu, and J. Wan, “Urea and ethanolamine as a mixed plasticizer for thermoplastic starch,” Carbohydrate Polymers, vol. 64, no. 2, May 11 2006. [Online]. Available: http://dx.doi.org/10.1016/j.carbpol.2005.11.042

A. Nešić and et al., “Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials,” Composites Part B: Engineering, vol. 110, Feb. 01 2017. [Online]. Available: http://dx.doi.org/10.1016/j.compositesb.2016.11.01

D. C. González and et al., “Formulation and characterization of edible films based on organic mucilage from mexican opuntia ficus-indica,” Coatings, vol. 9, no. 8, Aug. 09 2019. [Online]. Available: http://dx.doi.org/10.3390/coatings9080506

A. Galindez, L. D. Daza, A. Homez, V. S. Eim, and H. A. Váquiro, “Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature,” Carbohydrate Polymers, vol. 215, Jul. 01 2019. [Online]. Available: http://dx.doi.org/10.1016/j.carbpol.2019.03.074

G. Vargas, P. Martínez, and C. Velezmoro, “Propiedades funcionales de almidón de papa (solanum tuberosum) y su modificación química por acetilación,” Scientia Agropecuaria, vol. 7, 2016. [Online]. Available: http://dx.doi.org/10.17268/sci.agropecu.2016.03.09

P. Martínez and et al., “Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the andean region,” Food Chemistry: X, vol. 2, Jun. 30 2019. [Online]. Available: http://dx.doi.org/10.1016/j.fochx.2019.100030

R. Gheribi and K. Khwaldia, “Cactus mucilage for food packaging applications,” Coatings, vol. 9, no. 10, Oct. 11 2019. [Online]. Available: http://dx.doi.org/10.3390/coatings9100655

M. S. P. Damas, V. A. Pereira, R. K. Nishihora, and M. G. N. Quadri, “Edible films from mucilage of cereus hildmannianus fruits: Development and characterization,” Journal of Applied Polymer Science, vol. 134, no. 35, May 22 2017. [Online]. Available: http://dx.doi.org/10.1002/app.45223

M. Rahzi and et al., “Influence of the nature of the metal ions on the complexation with chitosan. application to the treatment of liquid waste,” European Polymer Journal, vol. 38, no. 8, Aug. 2002. [Online]. Available: http://dx.doi.org/10.1002/app.45223

R. Alvarez, C. Valenzuela, and J. Garrido, “Modeling the adsorption and precipitation process of cu(ii) on humin,” Journal of Colloid and Interface Science, vol. 277, no. 1, Sep. 01 2004. [Online]. Available: http://dx.doi.org/10.1016/j.jcis.2004.04.031

R. Schmuhl, H. M. Krieg, and K. Keizer, “Adsorption of cu (ii) and cr (vi) ions by chitosan: Kinetics and equilibrium studies,” Water SA, vol. 27, no. 1, Apr. 15 2004. [Online]. Available: http://dx.doi.org/10.4314/wsa.v27i1.5002

M. Zerpa and et al., “Evaluación de la afinidad para la remoción de iones mg y ni en hidrogeles copolímeros de poli(acrilamida-co-ácidos orgánicos),” Rev. LatinAm. Metal. Mat., vol. S7, 2017. [Online]. Available: https://www.rlmm.org/ojs/index.php/rlmm/article/view/879

S. Larous and A. H. Meniai, “Removal of copper (ii) from aqueous solution by agricultural by-products sawdust,” Energy Procedia, vol. 18, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2012.05.106

Y. R. V. L. Triana and, E. L. Romero, H. F. Zuluaga, and M. N. Chaur-Valencia, “New chitosan-imine derivatives: from green chemistry to removal of heavy metals from water,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 89, Oct. 02 2018. [Online]. Available: https://doi.org/10.17533/udea.redin.n89a05

A. E. Navarro and et al., “Synthesis and characterization of powdered native and cross-linked cuaternary chitosan for their application on adsorption ofanionic metals,” Rev Soc Quím Perú, vol. 76, no. 4, 2010. [Online]. Available: https://www.redalyc.org/pdf/3719/ 371937619002.pdf

E. Díaz, M. C. Villarán, F. Río, C. A. Ramírez, and L. Lorenzo, “Utilización de adsorbentes basados en quitosano y alginato sódico para la eliminación de iones metálicos: Cu, pb, cr, co,” Revista Iberoamericana de Polímeros, vol. 8, no. 1, 2007. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=2591474

E. Rodríguez and I. Katime, “Behavior of acrylic acid–itaconic acid hydrogels in swelling, shrinking, and uptakes of some metal ions from aqueous solution,” Journal of Applied Polymer Science, vol. 90, no. 2, Oct. 10 2003. [Online]. Available: https://doi.org/10.1002/app.1272

A. Singha and A. Guleria, “Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater,” International Journal of Biological Macromoleculese, vol. 67, Jun. 2014. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2014.03.046

N. Efimova, A. Krasnopyorova, G. Yuhno, and A. Scheglovskaya, “Sorption of heavy metals by natural biopolymers,” Adsorption Science & Technology, vol. 35, no. 7, 8, Apr. 25 2017. [Online]. Available: https://doi.org/10.1177/0263617417703113

M. Barakat, “New trends in removing heavy metals from industrial wastewater,” Arabian Journal of Chemistry, vol. 4, no. 4, Oct. 2011. [Online]. Available: https://doi.org/10.1016/j.arabjc.2010.07.019

How to Cite
Choque-Quispe D., Ramos-Pacheco B. S., Ligarda-Samanez C. A., Barboza-Palomino G. I., Kari-Ferro A., Taipe-Pardo F., & Choque-Quispe Y. (2020). Heavy metal removal by biopolymers-based formulations with native potato starch/nopal mucilage. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20201112