Potential ecological risk index for metals in a grazing area, Guasca, Cundinamarca

Keywords: Kriging, Soil pollution, Soil quality, physical and chemical soil properties, Potential Ecological Risk Index

Abstract

The presence of metals in soils used for primary economic activities can negatively impact the environment and public health. This research identified soil contamination by heavy metals (Lead, Copper, Zinc, and Manganese) by examining physical and chemical properties (Phosphorus, Potassium, organic carbon, cation exchange capacity, pH, texture, and bulk density) of the area during the dry and rainy seasons of 2017. Composite samplings of soil were carried out in both seasons, in order to obtain a representative value of the soil in certified laboratories. Thereafter, through interpolation by means of the Kriging method, a spatial scale of metal concentrations was conducted. This led to the conclusion that the study area has an acceptable environmental quality (5.8-6.9) for its current use of grazing. Likewise, the area presents a medium level (75.37), pursuant to the Potential Ecological Risk Index (RI) for the dry season, and a very high risk (195.04) during the rainy season. These estimates are directly related to lead concentrations, introduced to the soil of the area by human development activities and by contributions of parent material to the soil surface layers, through natural processes of weathering.

|Abstract
= 197 veces | PDF
= 87 veces|

Downloads

Download data is not yet available.

Author Biographies

Maira Alejandra Barriga-Vélez, Universidad Sergio Arboleda

Enviromental Engineer

Laura Carolina Ramírez-Vargas, Universitat de Barcelona

M. Sc. Renewable Energies and Energy Sustainability

Ellie Anne López Barrera, Universidad Sergio Arboleda

PhD Instituto de Estudios y Servicios Ambientales-IDEASA

Carlos Arturo Peña-Rincón, Universidad Sergio Arboleda

PhD Mathematics

References

[1] Ministerio de Ambiente y Desarrollo Sostenible. Gestión Sostenible del Suelo. In Política para la Gestión Sostenible del Suelo. 2016. http://www.andi.com.co/Uploads/Política_para_la_gestión_sostenible_del_suelo_FINAL.pdf
[2] Guzmán, M R, Prieto, G. A. Estudio ambiental sobre el riesgo ecológico que representa el plomo presente en el suelo. Revista EAN 2012:66–75.
[3] Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.
[4] Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., & Fu, Y. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicology and Environmental Safety, 2014:154–163.
[5] Kumar, V., Sharma, A., Kaur, P., Singh Sidhu, G.P., Bali, A.S., Bhardwaj, R., Thukral, A.K., Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art, Chemosphere, Do. https://doi.org/10.1016/j.chemosphere.2018.10.066. Accessed 2018.
[6] IDEAM, & FOPAE. 2018. PRECIPITACIÓN DIARIA EN LA SABANA DE BOGOTÁ - IDEAM. Retrieved on April 7th, 2018, from http://www.ideam.gov.co/web/tiempo-y-clima/precipitacion-diaria-en-la-sabana-de-bogota
[7] Arrieche, R. A.-S. 2012. Evaluación de la calidad del suelo, en el sistema productivo orgánico de La Estancia, Madrid, Cundinamarca, 2012. Utilizando indicadores de Calidad de Suelos. Pontificia Universidad Javeriana.
[8] Pérez, M. A. (2010). Sistema agroecológico rápido de evaluación de calidad de suelo y salud de cultivos: Guía metodológica, 91 pp.
[9] Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. 2014. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610. https://doi.org/10.5194/nhess-14-1599-2014
[10] Van der Hammen, T., Gaviria, S., & Caro, P. 2004. Aspectos geoambientales de la Sabana de Bogotá (27th ed.; Instituto de Investigación e Información Geocientífica Minero-Ambiental y Nuclear, Ed.). Retrieved from: https://books.google.com.co/books?id=m5wgAQAAIAAJ
[11] Vargas, O., Prieto, G., González, L. M., & Matamoros, A. 2004. Geoquimica de metales pesados en los suelos de la cuenca del Río de Bogotá. Geoglogía Básica, 1.
[12] Hakanson, L. 1980. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 14, 975–1001.
[13] Zhang, Y., Zhou, J., Gao, F. J., Zhang, B. J., Ma, B., & Li, L. Q. 2015. Comprehensive ecological risk assessment for heavy metal pollutions in three phases in rivers. Transactions of Nonferrous Metals Society of China (English Edition), 25(10), 3436–3441. https://doi.org/10.1016/S1003-6326(15)63979-6
[14] Oliver, M., & Webster, R. 2015. Basics Steps in Geostatistics: The Varigram and Kriging (1st ed.; SpringerBriefs in Agriculture, Ed.). Retrieved from: https://www.springer.com/gp/book/9783319158648
[15] Abi-Saab Arrieche, R. 2012. Evaluación de la calidad del suelo en el sistema productivo orgánico la estancia en Madrid, Cundinamarca. Retrieved from: https://repository.javeriana.edu.co/bitstream/handle/10554/8990/AbiSaabArriecheRosana2012.pdf?sequence=1
[16] Garrido Valero, M. S. 1993. Interpretación de análisis de suelo. Guía práctica para muestrear los suelos e interpretar sus análisis (Vol. 5). Madrid: Ministerio de Agricultura, Pesca y Alimentación. Retrieved from: http://www.magrama.gob.es/ministerio/pags/biblioteca/hojas/hd_1993_05.pdf
[17] Sanzano, A. 2016. El potasio del suelo, 6–8. Retrieved from: http://www.edafologia.com.ar/Descargas/Cartillas/El Potasio del Suelo.pdf
[18] Perdomo, C., Barbazán, M. 1999. Nitrógeno. (F. de Agronomia, Ed.), Uruguay. Montevideo, Uruguay: Univerisdad de la República. Retrieved from: http://www.fagro.edu.uy/~fertilidad/publica/Tomo N.pdf
[19] Martinez Sánchez; Jimenez, Alex; Santander, L. (2015). La Contaminación del Suelo. Scielo, 3(7-8-9-23–25), 46. Retrieved from http://www.tdx.cat/bitstream/handle/10803/11036/Tasm03de16.pdf?sequence
[20] Pereira, C., Maycotte, C., Restrpo, B., Mauro, F., Montes, A., & Esther, M. J. (2011). Edafología 1. Edafologia 1, 170. Retrieved from https://www.uaeh.edu.mx/investigacion/productos/4776/edafologia.pdf
[21] USDA. 1999. Guía para la Evaluación de la Calidad y Salud del Suelo. Instituto de Calidad de Suelos, Departamento de Agricultura de los Estados Unidos.
[22] Castellanos Ramos, J., & Rodríguez, D. 2014. El Zinc (Zn), en la Nutrición de los Cultivos.
[23] Casierra Posada, F., & Poveda, J. 2005. La toxicidad por exceso de Mn y Zn disminuye la producción de materia seca, los pigmentos foliares y la calidad del fruto en fresa (Fragaria sp. cv. Camarosa). Taken from: de http://www.scielo.org.co/pdf/agc/v23n2/v23n2a13.pdf
[24] Bech, J., Roca, N., & Pazos, M. S. 2007. Disponibilidad de cobre, hierro, manganeso, zinc en suelos del NO argentino. Taken from: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672007000100005
[25] Galán, E., Romero, A. 2008. Contaminación de Suelos por Metales Pesados. Macla, 10, 48 –60.
Published
2021-04-06
How to Cite
Barriga-Vélez M. A., Ramírez-Vargas L. C., López Barrera E. A., & Peña-Rincón C. A. (2021). Potential ecological risk index for metals in a grazing area, Guasca, Cundinamarca. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20210422
Section
Research paper